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1. Introduction and Statement of results

A partition of a non-negative integer n is any non-increasing sequence of positive integers
whose sum is n. As usual, let p(n) denote the number of partitions of n. The partition function
satisfies the famous “Ramanujan congruences” declaring that for c ∈ {5, 7, 11} we have for all
n ≥ 0 that p(cn + δc) ≡ 0 (mod c), where δc is defined by the congruence 24δc ≡ 1 (mod c).
In order to understand these from a combinatorial point of view, Dyson defined the rank of a
partition as its largest part minus its number of parts [11]. Atkin and Swinnerton-Dyer [4] later
proved that Dyson’s rank provides a combinatorial explanation of the congruences modulo 5
and 7, but not the congruence modulo 11. To simplify notation, for integers 0 ≤ a < c, we let
N(a, c;n) to be the number of partitions of n whose rank is congruent to a (mod c).

Rank differences have been the focus of several works and lead to interesting new automorphic
forms, so called harmonic Maass forms. Harmonic Maass forms are generalizations of modular
forms, in that they satisfy the same transformation law, and (weak) growth conditions at cusps,
but instead of being holomorphic, they are annihilated by the weight k hyperbolic Laplacian.
As an example, consider the function

f(q) := 1 +
∞∑

n=1

(N(0, 2, n)−N(1, 2, n))qn = 1 +
∞∑

n=1

qn2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
,

which is one of the third order mock theta functions Ramanujan defined in his last letter to
Hardy [18]. Thanks to work of Zwegers [21] this function is now known to be the “holomorphic
part” of a harmonic Maass form as are all the rank generating functions [7]. Asymptotic and
exact formulas for the coefficients of f(q) are proven by Dragonette [10], Andrews [1], and the
first author and Ono [6]. These imply (as conjectured by Ramanujan) that

ᾱ(n) := N(0, 2, n)−N(1, 2, n) ∼ 1
2
(−1)n−1n−

1
2 exp

(
π

√
n

6
− 1

144

)
.

In particular we obtain that for n sufficiently large (a statement which can be made precise)
ᾱ(n) is positive (resp. negative) if n is odd (resp. even), which was first observed by Lewis [16]
using combinatorial methods.
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We next observe that the process of partition conjugation yields the identity

N(a, c;n) = N(c− a, c;n). (1.1)

In their proof of Dyson’s rank conjecture Atkin and Swinnerton-Dyer [4] also showed some
non-trivial identities including

N(1, 7; 7n + 1) = N(2, 7; 7n + 1) = N(3, 7; 7n + 1). (1.2)

Moreover they related rank differences to infinite (modular) products, such as

∞∑
n=0

(N(0, 7; 7n + 6)−N(1, 7; 7n + 6)) qn = −(q; q7)2∞(q6; q7)2∞(q7; q7)2∞
(q; q)∞

. (1.3)

With the benefit of retrospect, we may now view, thanks to Zwegers thesis [20], such identities
in the framework of automorphic forms occurring from relations between non-holomorphic parts
of harmonic Maass forms. Their proof then boils down to a calculation of a finite number of
Fourier coefficients. Using this idea the first author, Ono, and Rhoades [9] found infinite families
of modular relations between rank differences which were then made explicit by S. Kang [15].

The situation is more complicated if one considers inequalities between rank differences since
here a proof cannot be reduced to a finite computation of Fourier coefficients. For this reason
only isolated examples of such inequalities have been shown so far. For example, Andrews and
Lewis [3, 16] proved that

N(0, 2; 2n) < N(1, 2; 2n) if n ≥ 1,

N(0, 4;n) > N(2, 4;n) if 26 < n ≡ 0, 1 (mod 4),
N(0, 4;n) < N(2, 4;n) if 26 < n ≡ 2, 3 (mod 4).

Moreover, they conjectured (see Conjecture 1 of [3]).

Conjecture. (Andrews and Lewis)
For all n > 0, we have

N(0, 3;n) < N(1, 3;n) if n ≡ 0 or 2 (mod 3),
N(0, 3;n) > N(1, 3;n) if n ≡ 1 (mod 3).

This conjecture was proven (up to a finite number of exceptions in which case one has equality)
by the first author [5] using automorphic properties of the rank generating functions combined
with the Circle Method. Here we obtain a similar result for the moduli 5, 7, and 9. In view of
(1.1) we may assume that 0 ≤ a < b ≤ c−1

2 .

Theorem 1.1. For sufficiently large n (see the Appendix for the exact statement) the following
hold:

(1) We have

N(a, 5, 5n + d)−N(b, 5, 5n + d)

{
< 0 if (a, b, d) ∈ {(0, b, 0), (0, 1, 2), (a, 2, 3)} ,

> 0 if (a, b, d) ∈ {(1, 2, 0), (0, b, 1), (1, 2, 2), (0, 1, 3)} .
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(2) We have that the difference N(a, 7, 7n + d)−N(b, 7, 7n + d) is
< 0 if (a, b, d) ∈ {(0, 1, 2), (2, 3, 2), (1, 2, 3), (2, 3, 4), (0, 1, 6), (0, 2, 6), (1, 2, 6)} ,

> 0 if (a, b, d) ∈ {(0, b, 0), (1, b, 0), (0, b, 1), (0, 2, 2), (1, b, 2), (0, 1, 3),

(0, 3, 3), (2, 3, 3), (0, 2, 4), (1, 2, 4), (0, 3, 6), (1, 3, 6), (2, 3, 6)} .

(3) We have that the difference N(a, 9, 3n + d)−N(b, 9, 3n + d) is
< 0 if (a, b, d) ∈ {(0, 1, 0), (1, 3, 1), (2, 3, 1), (0, 1, 2), (0, 2, 2), (3, 4, 2)} ,

> 0 if (a, b, d) ∈ {(0, 2, 0), (0, 3, 0), (0, 4, 0), (1, b, 0), (2, b, 0), (0, b, 1),

(1, 2, 1), (a, 4, 1), (0, 3, 2), (1, b, 2), (2, b, 2)} .

Remarks.
1) Some comments are in order concerning Theorem 1.1. Of the above inequalities for the moduli
5 and 7 some were conjectured and some were proven by Garvan [12, 13] using combinatorial
methods. For completeness we decided to give a full list for all (odd) moduli here (the remaining
cases can be found in Theorem 1.2). We further recall that the above mentioned equalities (1.2)
and (1.3) arose from relations between non-holomorphic parts and thus from a modern point
of view can be seen as statements about modular forms. Similarly, some of the inequalities
in Theorem 1.1, in particular those shown by Garvan, are statements about the positivity of
Fourier coefficients of modular forms. Of particular interest are those inequalities for which this
is not the case, i.e., the associated harmonic Maass forms also have nontrivial non-holomorphic
parts, for example the case (0,1,0) (for moduli 5), which is related to the mock theta conjectures
going back to Ramanujan. These are a list of ten identities involving Ramanujan’s mock theta
functions of order 5. Andrews and Garvan [2] proved that these are equivalent to the truth of
the following pair of combinatorial identities

N(1, 5, 5n) = N(0, 5, 5n) + ρ0(n),
2N(2, 5, 5n + 3) = N(1, 5, 5n + 3) + N(0, 5, 5n + 3) + ρ1(n) + 1,

where ρ0(n) is the number of partitions of n with unique smallest part and all other parts ≤
the double of the smallest part and ρ1(n) is the number of partitions of n with unique smallest
part and all other parts ≤ one plus the double of the smallest part. Clearly these statistics
are non-negative so the first mock theta identity implies the case (0, 1, 0) of Theorem 1.1. The
mock theta conjectures remained open until Hickerson’s important paper [14] in which he used
lengthy and highly complicated combinatorial methods.
2) ¿From [4], we know that in the missing cases equality holds for the cases 5 and 7, while
Santa-Gadea [19] has shown that equality holds in the missing cases for c = 9.

Given the nature of the Andrews-Lewis Conjecture and Theorem 1.1 one might expect a
similar behavior in the case for general moduli, namely that rank inequalities are dictated by
congruence conditions. However, we show that in the case of higher moduli the rank inequality
is surprisingly unaffected by the residue class.

Theorem 1.2. Assume that c > 9 is an odd integer. Then for 0 ≤ a < b ≤ c−1
2 we have for

n > Na,b,c, where Na,b,c is an explicit constant, the inequality

N(a, c, n) > N(b, c, n).
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Remarks.
1) The proof of Theorem 1.2 gives an explicit algorithm to determine the bound Na,b,c. Using
this algorithm we obtained the bounds necessary to show Theorem 1.1. Since the proof merely
amounts to a numerical calculation we chose to not include further details in the paper.
2) We recall that Atkin and Swinnerton-Dyer’s proof of Dyson’s rank conjecture relied on iden-
tities like (1.2). Theorem 1.2 shows that although there are infinitely many identities of type
(1.3) by [9], identities of type (1.2) cannot exist for moduli above 9. Thus the rank cannot be
used to dissect the partition function for any of these moduli (not even for sufficiently large n).

Acknowledgements

The authors thank J. Lovejoy and K. Mahlburg for fruitful conversations.

2. Proof of Theorem 1.2

For simplicity we throughout assume that c is a prime, since the case of composite c is treated
similarly but with slightly varying bounds. We write

∑
n

(N(a, c;n)−N(b, c;n)) qn =
2
c

c−1
2∑

j=1

ρj(a, b, c)R
(
ζj
c ; q
)
, (2.1)

where ζc := e
2πi
c and

R(z; q) :=
∞∑

n=0

∑
m∈Z

N(n, m)zmqn,

with N(m,n) counting the number of partitions of n with rank m. Moreover,

ρj(a, b, c) :=
(

cos
(

2πaj

c

)
− cos

(
2πbj

c

))
.

Define the coefficients A
(

j
c ;n
)

by

R(ζj
c ; q) =: 1 +

∞∑
n=1

A

(
j

c
;n
)

qn.

To determine the asymptotic behavior of (2.1), we use Theorem 1.1 of [5]. To state this, we
require some notation. We let k and h be coprime integers, and define h′ by hh′ ≡ −1 (mod k)
if k is odd and by hh′ ≡ −1 (mod 2k) if k is even. Moreover, if c - k, we define 0 < l < c by the
congruence l ≡ jk (mod c). Moreover, if f

c ∈ (0, 1) \ {1
2 , 1

6 , 5
6}, then define the integer s(f, c) by

s(f, c) :=


0 if 0 < f

c < 1
6 ,

1 if 1
6 < f

c < 1
2 ,

2 if 1
2 < f

c < 5
6 ,

3 if 5
6 < f

c < 1.

(2.2)
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In particular, set s := s(l, c). Let ωh,k be the multiplier occuring in the transformation law of the
partition function p(n) (see [17]) which can be written in terms of Gauss sums and in particular
satisfies |ωh,k| = 1. Moreover we define, for n, m ∈ Z, the following sums of Kloosterman type

Bj,c,k(n, m) := (−1)jk+1 sin
(

πj

c

) ∑
h (mod k)∗

ωh,k

sin
(

πjh′

c

) · e− 3πij2h′
c · e

2πi
k

(nh+mh′)

if c|k, and
Dj,c,k(n, m) := (−1)jk+l

∑
h (mod k)∗

ωh,k · e
2πi
k

(nh+mh′).

Here the sums run through all primitive residue classes modulo k. Moreover, for c - k, let

δj,c,k,r :=


−
(

1
2 + r

)
l
c + 3

2

(
l
c

)2
+ 1

24 if 0 < l
c < 1

6 ,

− 5l
2c + 3

2

(
l
c

)2
+ 25

24 − r
(
1− l

c

)
if 5

6 < l
c < 1,

0 otherwise,

and for 0 < l
c < 1

6 or 5
6 < l

c < 1

mj,c,k,r :=


1

2c2

(
−3j2k2 + 6ljk − jkc− 3l2 + lc− 2jrkc + 2lcr

)
if 0 < l

c < 1
6 ,

1
2c21

(
−6jkc− 3j2k2 + 6ljk + jkc + 6lc if 5

6 < l
c < 1.

−3l2 − 2c2 − lc + 2jrkc + 2c(c− l)r
)

In [5], the following asymptotic formulas for the coefficients A
(

j
c ;n
)

were shown using the Circle
Method.

Theorem 2.1. If 0 < j < c are coprime integers and c is odd, then for positive integers n we
have that

A

(
j

c
;n
)

=
4
√

3i√
24n− 1

∑
1≤k≤

√
n

c|k

Bj,c,k(−n, 0)√
k

sinh
(

π
√

24n− 1
6k

)

+
8
√

3 · sin
(

πj
c

)
√

24n− 1

∑
1≤k≤

√
n

c-k
r≥0

δj,c,k,r>0

Dj,c,k(−n, mj,c,k,r)√
k

sinh

(
π
√

2δj,c,k,r(24n− 1)
√

3k

)
+ Oc (nε) .

Remarks.
We note that by work of the first author and Ono [8] an exact formula for A

(
j
c ;n
)

involving
infinite sums on k is known. To prove Theorem 1.2 one could also employ this formula and
bound the tails (i.e., those terms with large k) for example by using spectral theory. However
it seems much more complicated to make these bounds explicit.

Inserting Theorem 2.1 into (2.1) yields that

N(a, c;n)−N(b, c;n) =

c−1
2∑

j=1

(Sj(a, b; c) + Tj(a, b; c)) + Oc (nε) , (2.3)
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where

Sj(a, b; c) := ρj(a, b, c)
8
√

3i

c
√

24n− 1

∑
1≤k≤

√
n

c|k

Bj,c,k(−n, 0)√
k

sinh
(

π
√

24n− 1
6k

)
, (2.4)

Tj(a, b; c) := ρj(a, b, c)
16
√

3 · sin
(

πj
c

)
c
√

24n− 1

∑
1≤k≤

√
n

c-k
r≥0

δj,c,k,r>0

Dj,c,k(−n, mj,c,k,r)√
k

sinh

(
π
√

2δj,c,k,r(24n− 1)
√

3k

)
.

(2.5)
In order to show Theorem 1.2, we must determine which terms give the main contribution to
(2.3) and then bound the other terms explicitly.

2.1. Determining the main terms. We first compare the occurring arguments of the hy-
perbolic sines in (2.4) and (2.5) in order to determine the main terms. In the sums Sj , one
can directly see that the largest argument occurs when k = c. In Tj the term coming from
k = 1, r = 0, and j = 1 has the argument

π
√

2δ0(24n− 1)√
3

, (2.6)

where δ0 := 3
2c2

− 1
2c + 1

24 . We will proceed to show that this gives the main contribution to
(2.3). Using that c > 7, it is not hard to see that the argument in the hyperbolic sine is smaller
in the terms coming from Sj . Turning to Tj , we may assume that r = 0, since for fixed j and k

this yields the largest argument. Assuming without loss of generality that 0 < l
c < 1

6 , we have

δj,c,k,0 = − l

2c
+

3
2

(
l

c

)2

+
1
24

≤ δ0.

Moreover, for k = 1, we have l = j and δj,c,1,0 < δ0, when j 6= 1, which yields that the main
contribution occurs for k = 1, r = 0, and j = 1.

The main term coming from k = 1, r = 0, and j = 1 gives the contribution

T1(a, b; c) =
2
c
ρ1(a, b, c)

8
√

3 sin
(

π
c

)
√

24n− 1
sinh

(
π
√

2δ0(24n− 1)√
3

)
.

We note that the sign of this equation is entirely determined by the sign of ρj(a, b, c), which is
clearly positive since 0 ≤ a < b ≤ c−1

2 . This yields that N(a, c, n) > N(b, c, n) for n sufficiently
large. In the following we will make this statement more precise.

2.1.1. Bounding the contribution of Sj and Tj. We first consider Sj and estimate

|Sj(a, b; c)| ≤ 8|ρj(a, b, c)|
√

3
c
√

24n− 1

∑
1≤k≤

√
n

c|k

|Bj,c,k(−n, 0)|√
k

sinh
(

π
√

24n− 1
6k

)

≤ 8|ρj(a, b, c)|
√

3
c
√

24n− 1

∣∣∣∣sin(πj

c

)∣∣∣∣ sinh
(

π
√

24n− 1
6c

) ∑
1≤k≤

√
n

c|k

k−
1
2

k∑
h=1

(h,k)=1

1∣∣sin (πh
c

)∣∣ .
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We estimate the inner sum using the inequality

k∑
h=1

(h,k)=1

1∣∣sin (πh
c

)∣∣ ≤ 2k

c

c−1
2∑

h=1

1∣∣sin (πh
c

)∣∣ ≤ 2k

π

c−1
2∑

h=1

1

h
(
1− π2

24

) ≤
2k
(
1 + log

(
c−1
2

))
π
(
1− π2

24

) . (2.7)

This yields

|Sj(a, b; c)| ≤ 16|ρj(a, b, c)|
√

3
c
√

24n− 1

∣∣∣sin(πj
c

)∣∣∣ (1 + log
(

c−1
2

))
π
(
1− π2

24

) sinh
(

π
√

24n− 1
6c

) ∑
1≤k≤

√
n

c|k

k
1
2

≤
64
(
1 + log

(
c−1
2

))
n

3
4

√
24n− 1c2

√
3π
(
1− π2

24

) sinh
(

π
√

24n− 1
6c

)
.

We note that this estimate could be improved in specific cases.
We next explicitly estimate the error coming from Tj and we will bound Dj,c,k(−n, mj,c,k,r)

trivially by k in all instances. Using the above, we see that every term inside the sum with
k ≥ 2, for each r such that δj,c,k,r > 0, can be bounded against

k
1
2 sinh

(
π

√
2δ0(24n− 1)

2
√

3

)
≤ k

1
2

2
e
π

√
2δ0(24n−1)

2
√

3 .

Due to symmetry we may in the following assume that j
c < 1

6 . We note that the number of
r satisfying δj,c,k,r > 0 is decreasing as a function of l and thus has its maximum at l = 1, in
which case it equals ⌊

c

24
+

1
2

+
3
2c

⌋
<

c + 18
24

.

Thus the contribution coming from k 6= 1 can be estimated against

4(c + 18)
3
√

3c
√

24n− 1
n

3
4 e

π

√
2δ0(24n−1)

2
√

3 .

Moreover, letting δ1 := δ2,c,1,0, the contribution of k = 1 can be estimated against

2(c + 18)√
3c
√

24n− 1
e
π

√
2δ1(24n−1)√

3 .

2.2. Estimation of the error term arising in the Circle Method. We next explicitly
estimate the error terms which occurred in Theorem 2.1 from using the Circle Method. For the
readers convenience, we first recall the required set up of the Circle Method following [5].

2.2.1. Set up. By Cauchy’s Theorem we have for n > 0

A

(
j

c
;n
)

=
1

2πi

∫
C

N
(

j
c ; q
)

qn+1
dq,

where

N

(
j

c
; q
)

:= R
(
ζj
c ; q
)
,
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and where C is an arbitrary path inside the unit circle surrounding 0 counterclockwise. Choosing
the circle with radius e−

2π
n and as a parametrisation q = e−

2π
n

+2πit with 0 ≤ t ≤ 1, gives

A

(
j

c
;n
)

=
∫ 1

0
N

(
j

c
; e−

2π
n

+2πit

)
· e2π−2πint dt.

Define

ϑ′h,k :=
1

k(k1 + k)
, ϑ′′h,k :=

1
k(k2 + k)

,

where h1
k1

< h
k < h2

k2
are adjacent Farey fractions in the Farey sequence of order N :=

⌊
n1/2

⌋
.

From the theory of Farey fractions it is known that

1
k + kj

≤ 1
N + 1

(j = 1, 2). (2.8)

We decompose the path of integration in paths along the Farey arcs −ϑ′h,k ≤ Φ ≤ ϑ′′h,k, where
Φ = t− h

k and 0 ≤ h ≤ k ≤ N with (h, k) = 1. Thus

A

(
j

c
;n
)

=
∑
h,k

e−
2πihn

k

∫ ϑ′′h,k

−ϑ′h,k

N

(
j

c
; e

2πi
k

(h+iz)

)
· e

2πnz
k dΦ,

where z = k
n − kΦi. Applying the transformation law for the rank generating functions shown

in [5] gives

A

(
j

c
;n
)

= i sin
(

πj

c

)∑
h,k
c|k

ωh,k
(−1)jk+1

sin
(

πjh′

c

) · e− 3πij2kh′

c2
− 2πihn

k

∫ ϑ
′′
h,k

−ϑ′h,k

z−
1
2 · e

2πz
k (n− 1

24)+ π
12kz

×N

(
jh′

c
; q1

)
dΦ− 4i sin

(
πj

c

)∑
h,k
c-k

ωh,k (−1)jk+l e−
2πih′sj

c
− 3πih′j2k

c2
+ 6πih′lj

c2
− 2πihn

k

∫ ϑ
′′
h,k

−ϑ′h,k

z−
1
2 · e

2πz
k (n− 1

24)+ π
12kz · q

sl
c
− 3l2

2c2

1 ·N
(
jh′, l, c; q1

)
dΦ + 2 sin2

(
πj

c

)∑
h,k

ωh,k

k
· e−

2πihn
k

∑
ν (mod k)

(−1)ν e−
3πih′ν2

k
+πih′ν

k

∫ ϑ
′′
h,k

−ϑ′h,k

e
2πz
k (n− 1

24) · z
1
2 · Ij,c,k,ν(z)dΦ =:

∑
1

+
∑

2

+
∑

3

,

where q1 := e
2π
k (h′+ i

z ),

N(a, b, c; q) :=
i

2(q; q)∞

( ∞∑
m=0

(−1)me−
πia
c · q

m
2

(3m+1)+ms(b,c)+ b
2c

1− e−
2πia

c · qm+ b
c

−
∞∑

m=1

(−1)me
πia
c · q

m
2

(3m+1)−ms(b,c)− b
2c

1− e
2πia

c · qm− b
c

)
,
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and

Ij,c,k,ν(z) :=
∫

R
e−

3πzx2

k ·Hj,c

(
πiν

k
− πi

6k
− πzx

k

)
dx

with

Hj,c(x) :=
cosh(x)

sinh
(
x + πij

c

)
· sinh

(
x− πij

c

) .

To estimate
∑

1, we split N
(

hj′

c ; q1

)
into a contribution coming from the constant term (which

will be part of the main contribution) and an error contribution coming from the remaining
terms. We denote the associated sums by S1 and S2. Throughout we need the easily verified
fact that Re(z) = k

n , Re
(

1
z

)
> k

2 , |z|−
1
2 ≤ n

1
2 · k−

1
2 , and ϑ′h,k + ϑ

′′
h,k ≤

2
k(N+1) .

2.2.2. Estimation of S2. We get

S2 ≤ 2
∣∣∣∣sin(πj

c

)∣∣∣∣ e2π
∑
k≤N
c|k

k−
3
2

k−1∑
h=1

(h,k)=1

1∣∣sin (πh
c

)∣∣ max
z

∣∣∣∣e π
12kz

(
N

(
h

c
; q1

)
− 1
)∣∣∣∣ .

To estimate
∣∣∣e π

12kz

(
N
(

h
c ; q1

)
− 1
)∣∣∣, recall that

N

(
h

c
; q1

)
=

1
(q1; q1)∞

+

(
1− ζh

c

)
(q1; q1)∞

∞∑
m=1

(−1)mq
m
2

(3m+1)

1

1− ζh
c qm

1

+

(
1− ζ−h

c

)
(q1; q1)∞

∞∑
m=1

(−1)mq
m
2

(3m+1)

1

1− ζ−h
c qm

1

.

Thus
∣∣∣e π

12kz

(
N
(

h
c ; q1

)
− 1
)∣∣∣ can be bounded against

e
π
24

∞∑
m=1

p(m) e−πm + e
π
24

∞∑
m=0

p(m) e−πm
∞∑

m=1

e−
πm(3m+1)

2

∣∣∣∣∣ 1− ζh
c

1− ζh
c qm

1

+
1− ζ−h

c

1− ζ−h
c qm

1

∣∣∣∣∣
≤ e

π
24

∞∑
m=1

p(m) e−πm + 2
(
1 +

∣∣∣cos
(π

c

)∣∣∣) e
π
24

∞∑
m=0

p(m) e−πm
∞∑

m=1

e−
πm(3m+1)

2

1− e−πm
.

This gives the estimate

S2 ≤ 2e2π

∣∣∣∣sin(πj

c

)∣∣∣∣ e π
24

(
c2 + 2

(
1 +

∣∣∣cos
(π

c

)∣∣∣) c1(1 + c2)
)∑

k≤N
c|k

k−
3
2

k−1∑
h=1

1∣∣sin (πh
c

)∣∣ ,
where

c1 :=
∞∑

m=1

e−
πm(3m+1)

2

1− e−πm
, c2 :=

∞∑
m=1

p(m)e−πm.

Using (2.7) and estimating the sum on k yields

S2 ≤
8e2π+ π

24

(
c2 + 2

(
1 +

∣∣cos
(

π
c

)∣∣) c1(1 + c2)
) ∣∣∣sin(πj

c

)∣∣∣n 1
4

(
1 + log

(
c−1
2

))
π
(
1− π2

24

)
c

.
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2.2.3. Terms in
∑

2 with positive exponent. We next estimate the terms in
∑

2 corresponding

to positive exponents in the q1-expansion of e
π

12kz q
sl
c
− 3l2

2c2

1 N (jh′, l, c; q1) which will contribute to
the error. We denote this series by N∗(jh′, l, c; q1) and denote the whole associated sum by T2.
We have

T2 ≤ 8e2π

∣∣∣∣sin(πj

c

)∣∣∣∣∑
h,k
c-k

k−
3
2 max

z
|N∗ (h, l, c; q1)| .

To estimate N∗, we write

N(h, l, c; q1) = − iζh
2cq

− l
2c

1

2(q1; q1)∞

(
1− ζh

c q
− l

c
1

) +
iζh

2cq
− l

2c
+2−s

1

2(q1; q1)∞

(
1− ζh

c q
1− l

c
1

)

− iζh
2cq

− l
2c

1

2(q1; q1)∞

∞∑
m=2

(−1)m q
m
2

(3m+1)−sm

1

1− ζh
c q

m− l
c

1

+
iζ−h

2c q
l
2c
1

2(q1; q1)∞

∞∑
m=1

(−1)m q
m
2

(3m+1)+sm

1

1− ζ−h
c q

m+ l
c

1

.

We only estimate the first summand since the other terms are treated similarly. For this, we
write

− iζh
2cq

− l
2c

+ sl
c
− 3l2

2c2

1 e
π

12kz

2(q1; q1)∞

(
1− ζh

c q
− l

c
1

) =
i

2
ζ−h
2c q

l
2c

+ sl
c
− 3l2

2c2

1 e
π

12kz

∞∑
m=0

p(m)qm
1

∞∑
r=0

ζ−hr
c q

lr
c

1 . (2.9)

If s = 0, then the terms contributing to N∗ are given by

1
2
e−

πl
2c

+ 3πl2

2c2
+ π

24

∑
r≥r0

e−
πrl
c +

∞∑
r=0

e−
πrl
c

∞∑
m=1

p(m)e−πm

 (2.10)

with

r0 :=
⌈
−1

2
+

3l

2c
+

c

24l

⌉
.

It is not hard to see that (2.10) can be estimated against

e−
πl
2c

+ 3πl2

2c2
+ π

24
−πr0l

c

2
(
1− e−

πl
c

) +
e−

πl
2c

+ 3πl2

2c2
+ π

24 c2

2
(
1− e−

πl
c

) ≤ 1 + eπδ0c2

2
(
1− e−

π
c

) .

In the case s 6= 0, (2.9) can be bounded by

1
2

e−
πl
2c

+ 3πl2

2c2
−πsl

c
+ π

24

1− e−
πl
c

(1 + c2) ≤
1 + c2

2
(
1− e−

π
c

) .

Thus N∗ can be estimated against

2 + c2

(
1 + eπδ0

)
2
(
1− e−

π
c

) +
1
2
eπδ0(1 + c2)(e−πc3 + c1) =: A(c),
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where

c3 :=
∞∑

m=2

e−
πm
2

(3m+1)+3πm

1− eπ−πm
.

We hence obtain the bound

T2 ≤ 16A(c)
∣∣∣∣sin(πj

c

)∣∣∣∣n 1
4 e2π.

2.2.4. Estimation of
∑

3. We next consider the error coming from
∑

3. For this, we write

H+
j,c(x) + H−

j,c(x) = Hj,c(x)

with
H±

j,c(x) := ± i

2 sin
(

πj
c

)
sinh

(
x± πij

c

) .

We denote the contribution of these functions to Ij,c,k,ν(x) by I±j,c,k,ν(x). Proceeding as in the
proof of Lemma 3.1 of [5], we obtain∣∣∣z 1

2 I±j,c,k,ν(z)
∣∣∣ ≤ k

2π|z|
1
2

∣∣∣sin(πν
k − π

6k ±
πj
c

)∣∣∣ 1∣∣∣sin(πj
c

)∣∣∣
∫

R
e−

3k
π

Re( 1
z )t2dt

=

√
k

2
√

3
(

Re
(

1
z

)
|z|
) 1

2

∣∣∣sin(πj
c

)∣∣∣ ∣∣∣sin(πν
k − π

6k ±
πj
c

)∣∣∣
≤ 2−

3
4

√
3

n
1
4

1∣∣∣sin(πj
c

)∣∣∣ ∣∣∣sin(πν
k − π

6k ±
πj
c

)∣∣∣ .
This yields the inequality∑

3

≤ 2
5
4 e2πn−

1
4

√
3

∣∣∣∣sin(πj

c

)∣∣∣∣∑
±

∑
k≤N

∑
ν (mod k)

1

k
∣∣∣sin(πν

k − π
6k ±

πj
c

)∣∣∣ .
We next estimate the sum on ν. We have∑

±

∑
ν (mod k)

1∣∣∣sin(πν
k − π

6k ±
πj
c

)∣∣∣ = 2
∑

ν (mod k)

1∣∣sin (πν
k − π

6k

)∣∣
= 2

 [ k
2 ]∑

ν=1

1∣∣sin (πν
k − π

6k

)∣∣ +
[ k+1

2 ]−1∑
ν=0

1∣∣sin (πν
k + π

6k

)∣∣


≤ 2k

π

 [ k
2 ]∑

ν=1

1(
ν − 1

6

){
1− 1

6

(
π
k

([
k
2

]
− 1

6

))2} +
[ k+1

2 ]−1∑
ν=0

1(
ν + 1

6

){
1− 1

6

(
π
k

([
k+1
2

]
− 5

6

))2}


≤
4k log

(
k
2

)
π
(
1− π2

24

) .
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where {x} := x− [x]. Combing the above bounds gives the estimate

∑
3

≤
2

9
4 · 2

1
4 e2πn

1
4

∣∣∣sin(πj
c

)∣∣∣ log
(

n
4

)
√

3π
(
1− π2

24

) .

2.2.5. Symmetrizing paths of integration. We write∫ ϑ
′′
h,k

−ϑ′h,k

=
∫ 1

kN

− 1
kN

−
∫ − 1

k(k+k1)

− 1
kN

−
∫ 1

kN

1
k(k+k2)

and estimate the contributions to the error terms from the last two integrals as before (using
Re(z) = k

n , Re
(

1
z

)
< k, and |z|2 ≥ k2

n2 ). Their contribution to
∑

1 can be estimated against

8e2π+ π
12

(
1 + log

(
c−1
2

))
· n

1
4

cπ
(
1− π2

24

) ∣∣∣∣sin(πj

c

)∣∣∣∣ .
We next consider the error that is introduced by symmetrizing

∑
2, which can be estimated

against

8e2π

∣∣∣∣sin(πj

c

)∣∣∣∣ ∑
r,k

δj,c,k,r>0

k−
1
2 e2πδj,c,k,r .

Recall that δj,c,k,r > 0 implies that s ∈ {0, 3}. For s = 0, the sum on r equals

e−
πl
c

+ 3πl2

c2
+ π

12

∑
r≤r0−1

e−
2πlr

c =
e−

πl
c

+ 3πl2

c2
+ π

12

(
e−

2πl
c

r0 − 1
)

e−
2πl
c − 1

≤ e2πδ0

1− e−
2π
c

.

The case s = 3 is treated similarly and yields the same error term. Thus the error introduced
by symmetrizing

∑
2 can be estimated against

16e2π

∣∣∣∣sin(πj

c

)∣∣∣∣n 1
4

e2πδ0

1− e−
2π
c

.

2.2.6. Error introduced by integrating along the smaller arc. To finish the evaluation of
∑

1 and∑
2 we have to consider integrals of the form

Ik,r :=
∫ 1

kN

− 1
kN

z−
1
2 · e

2π
k (z(n− 1

24)+ r
z )dΦ.

Substituting z = k
n − ikΦ gives

Ik,r =
1
ki

∫ k
n

+ i
N

k
n
− i

N

z−
1
2 · e

2π
k (z(n− 1

24)+ r
z ) dz.

We denote the circle through k
n ±

i
N and tangent to the imaginary axis at 0 by Γ. Writing

z = x + iy, Γ is given by x2 + y2 = αx, with α := k
n + n

N2k
. We change the path of integration

into the larger arc by Cauchy’s Theorem and then estimate the contribution to the error term
from the integral along the smaller arc by using the fact that on the smaller arc we have
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2 > α > 1
k , Re(z) ≤ k

n , and Re
(

1
z

)
< k. Denoting by A the smaller arc on the circle, we can

estimate the contribution against

2
k
e2π+2πr

∫
A
|z|−

1
2 dz ≤ 1

k
e2π+2πrα−

1
4

∣∣∣∣∣43
(

k

n

) 3
4

+ i

∫ k
n

0
x−

3
4

α− 2x

2
√

α− x
dx

∣∣∣∣∣ .
It is not hard to see that the function f(x) := α−2x

2
√

α−x
on [0, α] obtains its maximum at x = 0.

Thus we have a contribution of at most

2
k
e2π+2πrα−

1
4

(
4
3

(
k

n

) 3
4

+ 2α
1
2

(
k

n

) 1
4

)
≤
(

4
3

+ 2
5
4

)
2
k
e2π+2πrN− 1

2 .

This yields, using (2.7), that the contribution coming from
∑

1 can be bounded by

4
(

4
3 + 2

5
4

) ∣∣∣sin(πj
c

)∣∣∣ (1 + log
(

c−1
2

))
e2π+ π

12 n
1
4

πc
(
1− π2

24

) .

Similarly the contribution coming from
∑

2 can be estimated against

8
∣∣∣∣sin(πj

c

)∣∣∣∣ (4
3

+ 2
5
4

)
e2πδ0+2π

1− e−
2π
c

.

Having bounded all of the relevant terms, we conclude Theorem 1.2.

Appendix

Following the argument given in the proof of Theorem 1.2 to bound the error terms, one can
obtain effective bounds for c = 5, c = 7, and c = 9 beyond which the main term of the asymptotic
formula dominates the other terms. Noting that the sign of the main term is determined by n
modulo c easily gives Theorem 1.1 for sufficiently large n. Since the upper bounds for integers
that might not satisfy the inequalities in Theorem 1.1 are relatively small, we obtain the explicit
set of exceptions to Theorem 1.1 after a quick computer check (calculations were done here with
MAGMA and MAPLE). For 0 ≤ a < b ≤ c−1

2 and d (mod c) fixed, Tables 1, 2, and 3 contain
the set of n ≡ d (mod c) which do not satisfy the inequality given in Theorem 1.1 for c = 5,
c = 7, and c = 9, respectively. For brevity we omit the choices of (a, b, d) for which there are no
exceptions.

Table 1. Exceptions to the inequality for c = 5.

(a, b, d) Exceptions n

(0, 2, 0) {5, 10, 20, 30, 50}
(0, 1, 2) {7, 27}
(1, 2, 2) {7, 27}
(0, 1, 3) {8}
(0, 2, 3) {3, 13}
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Table 2. Exceptions to the inequality for c = 7.

(a, b, d) Exceptions n

(0, 1, 0) {14, 42, 56, 70, 84, 126}
(0, 2, 0) {14, 42}
(0, 3, 0) {14, 42}
(1, 2, 0) {7, 21, 28, 35, 49, 63, 77, 91, 133}
(1, 3, 0) {7, 21, 28, 35, 49, 63, 77, 91, 133}
(0, 2, 2) {2, 9, 23, 30, 51}
(2, 3, 2) {2, 9, 23, 30, 51}
(0, 1, 3) {10, 24, 52}
(0, 3, 3) {10, 24, 52}
(1, 2, 3) {10, 24, 52}
(2, 3, 3) {10, 24, 52}
(0, 2, 4) {11, 18, 39, 53}
(1, 2, 4) {11, 18, 39, 53}
(2, 3, 4) {11, 18, 39, 53}
(0, 1, 6) {13, 27, 41, 48, 55, 76, 83, 97, 111, 125}
(0, 2, 6) {13}
(0, 3, 6) {6, 20, 34}
(1, 2, 6) {6, 20, 34}
(1, 3, 6) {13}

Table 3. Exceptions to the inequality for c = 9.

(a, b, d (mod 3)) Exceptions n

(0, 1, 0) {3, 9, 12, 15, 21, 27, 33, 39, 45, 57, 75}
(0, 2, 0) {3, 6, 12, 15, 18, 24}
(0, 3, 0) {6}
(0, 4, 0) {6}
(1, 2, 0) {3, 12, 15, 21, 39}
(1, 3, 0) {3}
(1, 4, 0) {3}
(2, 3, 0) {6, 9}
(2, 4, 0) {6, 9}
(0, 1, 1) {4}
(0, 3, 1) {4, 16}
(1, 2, 1) {1, 7, 13, 19, 25}
(1, 3, 1) {1, 4, 10}
(1, 4, 1) {1, 7}
(2, 3, 1) {1, 7}
(2, 4, 1) {1, 4, 10}
(3, 4, 1) {1}
(0, 1, 2) {5}
(0, 2, 2) {2, 5, 14}
(0, 3, 2) {2, 8}
(1, 2, 2) {5, 8, 11, 17, 23, 35}
(1, 4, 2) {5}
(2, 3, 2) {2}
(2, 4, 2) {2, 5, 14}
(3, 4, 2) {2, 8}
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