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1. Introduction 

 
The purpose of this study is to demonstrate the benefit of using alternative methodologies for making 

performance comparisons across water utilities. Others have demonstrated the strengths and limitations of 
various methodologies in addressing issues ranging from the effects of ownership on efficiency, impacts 
of incentives, and measurements of productivity change.2  The present study utilizes Data Envelopment 
Analysis (DEA) and Stochastic Frontier Analysis (SFA) to rank relative performance within Peru, where 
all of the water utilities are publicly owned.3 

Since the Peruvian water regulator (Superintendencia Nacional de Servicios de 
Saneamiento—SUNASS) publishes a ranking of water utilities (along with supporting data), this nation 
serves as a good case study of utility performance evaluation. Given the difficulty of creating strong 
incentives for cost containment and service expansion for publicly owned water utilities, yardstick 
comparisons represent a key tool for regulators in developing countries. Widely available scorecards of 
relative utility performance can put public pressure on under-performing firms. This study utilizes both 
parametric and non-parametric benchmarking methods to obtain comparisons across water utilities. 

The collection and analysis of water utility data represents an important tool for documenting past 
performance, establishing baselines for gauging improvements, and making comparisons across service 
providers.  In the water sector particularly, valid comparisons can contribute to improved performance.  
Rankings can inform policymakers, the providers of investment funds, and customers regarding the cost 

                                                        
2 Recent studies have focused on the relative performance of public and private water utilities in the United States 
(Bhattacharyya, Parker, and Raffiee 1994; Wallsten and Kosec 2005), the United Kingdom (Hunt and Lynk 1995; 
Cubbin, and Tzanidakis 1998; Ashton 2000; Saal and Parker 2001), Asia (Estache and Rossi 2002), Latin America 
(Clarke, Kosec, and Wallsten 2004; Tupper and Resende 2004), and Africa (Estache and Kouassi 2002; Kirkpatrick, 
Parker, and Zhang 2004).  For a more detailed and comprehensive literature review, readers are referred to the 
recent work by Estache et al. (2005), who survey recent productivity and efficiency literatures in infrastructure 
industries (energy, ports, railways, roads, telecommunications and water/sewerage) in developing countries.  
3 Researchers have used a combination of DEA and SFA (or other methodologies) to assess technical efficiency in 
several sectors. For example, Mizala, Romaguera, and Farren, D. (2002) analyze the technical efficiency of schools 
in Chile, finding that the two methods give similar rankings for schools. Latruffe, Balcombe, Davidova, and 
Zawalinska.(2004) report the determinants of technical efficiency for crop and livestock farms in Poland 
(DEA-second stage analysis is used to check the robustness of the SFA results). Also, Fiordelisi and Molyneux 
(2004) examined efficiency and productivity in the Italian factoring industry using DEA and the Malmquist Index.  
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effectiveness of different service providers. Utility managers are concerned about how such rankings 
reflect on their capabilities, so they may wish to limit information available to regulators, avoiding public 
scrutiny in the press. The audiences for yardstick comparisons have different degrees of expertise and 
interest when it comes to evaluating water utilities; nevertheless, those concerned with the production 
efficiency will want rankings that reflect reality. If the criterion of consistency is not met, these groups 
cannot be confident that the relative performance indicators are meaningful. However, when alternative 
methodologies yield broadly similar rankings, stakeholders are less likely to engage in acrimonious 
high-stakes disputes. Despite the topic’s importance, only a few papers examine the sensitivity of efficiency 
and rankings based on different methodologies. Cubbin and Tzanidakis (1998) compare the rankings based on 
OLS and DEA using a sample of 29 U.K. water utilities in year 1994. They found that the rankings based on 
the OLS model are different from the ones based on DEA models. In this study, we conduct a systematic check 
of the sensitivity of efficiency and rankings based on different methodologies, including OLS, DEA (CRS, 
VRS, and Super-efficiency), SFA distance function model and the evaluation system employed by the 
regulator.   

The present study is directed to economists and policy analysts responsible for producing, evaluating, 
and interpreting benchmarking studies.  For example, Tupper and Resende (2004) use DEA 
supplemented by econometric analyses to provide efficiency scores for twenty Brazilian state water and 
sewage companies. Using a different methodology, Corton (2003) studied forty-four Peruvian water 
utilities, estimated a cost function, and ranked firms in terms of their performance relative to that 
predicted by the estimated model.  In a paper that focused on service quality in Peru, Lin (2005) utilizes 
SFA to demonstrate the importance of incorporating chlorine tests, accounted for water, service continuity 
(hours per day), and coverage in benchmarking models. The present paper only includes two aspects of 
service quality (continuity and coverage) in order to provide more comprehensive comparisons across a 
broader range of alternative model specifications (both SFA and DEA).   

To be of use to regulators who implement infrastructure policy, and to be accepted by other 
stakeholders, performance comparisons must be robust to promote confidence that the performance 
rankings do indeed reflect managerial skill rather than accidents of geography or history.  Typically, the 
regulatory commission reviews studies and establishes performance incentives to achieve policy 
objectives. Without confidence in the scores and relative rankings, those responsible for creating 
incentives will not risk their credibility by instituting rewards or applying penalties. Regulators will be 
unwilling to apply incentives based on performance unless they are very confident that the rankings can 
survive challenges.   

Thus, relative and absolute rankings can become catalysts for improved cost containment and service 
quality if stakeholders have confidence in the analysis.  Relative rankings allow stakeholders to compare 
the performance of utilities in comparable situations.  Here, the key problem is how to select firms that 
are truly similar to one another.  Analysts want the relative ranking to reflect managerial decisions rather 
than the unique characteristics of service territories beyond managers’ control, including topography, 
hydrology, and customer density. In addition, history matters: current managers have inherited utility 
systems that reflect a set of political and economic (including regulatory) decisions made by others.  
Thus, performance improvements over time also need to be taken into consideration.  
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Absolute comparisons are also necessary, since the weakest performer in one group might have much 
better performance than the best firms in another group of comparable firms (say, those in another country 
at a similar stage of development).  Comparisons are valid so long as the results do indeed tell us 
whether particular firms are performing below their potential. Therefore, the problem of consistency 
requires a reasonable, reliable, and stable scorecard that takes into account the political and economic 
environment of different countries, the specific targets set by the regulators, the availability of the data, 
and other factors.    

Two recent studies of Peru note the problems faced within the sector. Torero and Pasco-Font (2003, p. 
283) point out that the water sector has made some progress, but “. . . water is available for limited 
periods of time, and its quality is poor.  Consequently households incur additional costs in efforts to 
improve quality and to ensure access.” Corton (2003) agrees that the water sector in Peru is characterized 
by serious problems, including inadequate system maintenance, a high level of unaccounted-for water, 
excess staff, low metering rates, and low water quality. The lack of readily available comparative data 
about quality, operation costs, quantity, and service coverage makes it hard for customers to exert pressure 
on the water companies to improve their performance. Performance measurement has been recognized as 
a way of introducing competitive pressures while motivating appropriate behavior by management.4 

This study employs the parametric benchmarking model, SFA, and DEA, the non-parametric 
benchmarking model, to evaluate the cross-sectional efficiency of Peru’s water industry. The rankings 
provided by SFA and DEA analysis are then compared to the SUNASS ranking and the regression model 
presented by Corton (2003).  The latter approaches are presented first to illustrate the nature of the data 
used for benchmarking. 
 
 
2. Past Studies: the SUNASS Ranking Method and a Regression Model  

 
The Peruvian government created SUNASS in 1992 to regulate water and sanitation services. In late 

1999, SUNASS established a benchmark system as a first step toward informing citizens and political 
leaders about the relative performance of the municipal utilities. The expectation was that low-efficiency 
companies would gradually reach the level of the most efficient companies in response to greater pressure 
to perform efficiently. SUNASS developed a system of efficiency indicators and a benchmarking scheme 
through internal working groups and guidance from a World Bank consulting team. The process consisted 
of identifying areas of efficiency affecting the interests of each group of stakeholders and then identifying 

                                                        
4 As Smith (1990) observes, comparative data provide a mechanism whereby consumers can appraise the quality of 
local services. The benchmarking results can also help regulators decide the efficient cost and determine the 
appropriate price caps (Carrington et al. 2002). In the case of Peru, all the utilities are publicly-owned, so using 
higher X-factors (as a stick) for poorly performing firms may be inappropriate: citizens benefit from lower prices, 
but they are likely to experience lower service quality as the poorly managed utilities have reduced cash flows. 
Informed public opinion can exert pressure on managers via local elections. Perhaps devising managerial 
compensation schemes based on improvements in rankings offers greater promise (as a carrot). 
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indicators for these areas. Nine indicators were selected and grouped into four areas of efficiency.  
 
1. Quality of Service includes three variables: compliance with the residual chlorine rule, continuity 

of service, and percentage of water receiving chemical treatment.  
2. Coverage of Service Attained consists of two variables: water coverage and sewerage coverage.  
3. Management Efficiency reflects three variables: operating efficiency (a combination of continuity 

of service and the volume of water produced to serve each person in a connection), percentage of 
connections with meters installed, and the ratio of bills not yet collected to the total number of 
bills (nonpayment).  

4. Managerial Finance Efficiency is defined by the ratio of direct costs and other expenses to 
revenues. 

 
The first two broad areas of efficiency are intended to represent the interests of society. The third 

reflects the companies' performance, and the fourth represents the citizen-owner’s perspective. Each of 
the nine sub-indicators was assigned a weight of 1 as a first step in the benchmarking process. The 
emphasis on social concerns is evident in the greater number of indicators related to efficiency affecting 
society. Each indicator expressed as a percentage is multiplied by its weight and added to the percentage 
total per company. This total per company is divided by nine, the number of indicators.  Finally, each 
company providing water and sanitation services (Empresas Proveedoras de Servicios or EPS) is ranked 
on the basis of points attained within a group, with groupings determined by number of service 
connections, as follows: 17 EPS are small with fewer than 10,000 connections; 20 EPS are medium-sized, 
with 10,000–40,000 connections;7 EPS are big, with 40,000–160,000 connections. Although SUNASS 
does evaluate SEDAPAL, the water utility of Lima, that EPS is not included in the present study since its 
high number of connections (nearly one million) would distort the results.  

Each company reports its efficiency indicators within a master plan according to its financial and 
operational resources. This document is submitted annually to SUNASS for review and approval. Once 
the master plan is approved, it is viewed as involving mandatory targets. At the end of the year, the 
ranking based on actual data is calculated and published by SUNASS. Thus, the ranking represents a 
potentially contentious listing from the standpoint of municipal politics. However, SUNASS cannot (at 
present) implement formal rewards or penalties based on these rankings, so the comparisons are not 
widely distributed.  

The dependent variable in Corton’s regression model was operation cost; the independent variables 
are volume of water produced (Volprod), the length of mains (Length) measured in kilometers, and the 
number of districts administered by each company (Loc). Two dummies for region are included in the 
model: RC=1 if the company is located on the coast, RR=1 if the company is located in the mountains, 0 
otherwise(forest)..The equation of the regression model is shown as: 

LocLengthVolprodRRRCOperCost lnlnlnln 321321 βββααα +++++= + e   (1) 

Level of efficiency= (Actual Operating Cost- Predicted Operating Cost) / (Predicted Operating Cost) 
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The ranking results are quite different in the SUNASS evaluation and the Corton regression model.  
Furthermore, both models have limitations. In the SUNASS model, an equal weight of 1 is assigned to 
each of the nine indicators. This weighting does not differentiate among the different performance 
dimensions: equal weighting needs some justification. More importantly, most indicators in the SUNASS 
scheme lack input-output causative relationships. Only the indicator for managerial efficiency considers 
the cost issue. The basic definition of productivity is output/inputs. Therefore, the benchmarking scheme 
in the Peruvian water sector is actually an output-oriented benchmarking scheme, not a productivity 
benchmarking scheme. The Corton model focuses on the cost efficiency of the company. It does not 
consider other important factors such as input price, quality of service and coverage of service. In addition, 
an inherent problem of regression analysis is that it requires specification of functional form and so risks 
inappropriate specification. Another potential problem is that all deviations are attributed to the 
inefficiency in regression models, while random shocks might also account for some deviation in the real 
world. Thus, it is useful to consider how other methodologies could be used to construct alternative 
performance evaluation systems.  
 
 
3.  Data Envelopment Analysis and Stochastic Frontier Analysis  

 
Charnes, Cooper and Rhodes (1978) proposed a non-parametric relative efficiency measure (referred 

to hereafter as CCR) based on linking inputs to outputs via an efficiency frontier: DEA. The current study 
utilizes DEA as well as parametric SFA to develop sets of performance rankings for Peruvian water 
utilities. The analytics of each approach is summarized in a Technical Appendix available from the 
authors upon request.5 

The fundamental problem is how to evaluate a decision-making unit’s performance when a system 
has multiple inputs and outputs. Single-measure gap analysis is often used for performance evaluation and 
benchmarking. For example, regulators in the water industry commonly use efficiency indicators, such as 
number of workers per connection and number of connections per 100 households, to assess utilities' 
performance. However, these measures are not good substitutes for efficiency frontiers, which recognize 
the complex nature of interactions between inputs and outputs. DEA does not require any specification of 
the functional form of the production relationship, but develops a frontier relating inputs to outputs.  

SFA, on the other hand, constructs the efficiency frontier with a sophisticated economic specification 
of the production relationship. Its advantage is that the approach attempts to account for the effects of 
noise in the data. With both DEA and regression analysis, all deviation is attributed to inefficiency. The 
limitation of SFA is that, in accounting for noise, it assumes that random shock and inefficiency display a 
specific distribution6.  

                                                        
5 Books by Cooper, Seiford, and Zhu (2004) and Charnes, Cooper, Lewin and Seiford (1994) survey DEA 
applications. The book by Kumbhakar and Lovell (2003) provides a comprehensive overview of various SFA 
methodologies.   
6 With a sufficiently large number of periods, a SFA model using panel data can help in mitigating the strong 
distributional assumptions that are necessary to disentangle the effects of inefficiency and random noise (Coelli et al. 
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4. Model Specification and Data 
 
4.1 DEA Model Specification  

 
We are now in a position to analyze the actual performance of 44 EPS from 1996 to 1998. We 

exclude three companies (company 1, 4, and 5) because of missing data.  As Estache et al. (2004) note in 
their study of South American electric utilities, there are several possible ways to deal with the panel data 
within the context of DEA. One is to compute a frontier for each period (three cross-sectional analyses in 
this case) and compare these cross-sectional runs. In this way, one constructs a frontier in each year and 
can calculate the efficiency of each firm relative to the frontier in each period. Another possibility is to 
treat the panel as a single cross-section (each firm in each period being considered as an independent 
observation) and pool the observations. This way, a single frontier is computed, and the relative efficiency 
of each firm in each period is calculated by reference to this single frontier. In this study, the DEA models 
are based on pooled data.  

The models draw from the earlier research on the characteristics of Peru’s water industry (high water 
loss, low water quality, and excess staff). The inputs of the models are operating costs, water loss, and the 
number of water connections. The outputs are volume of water billed, the number of customers, coverage 
of service, and continuity of service. Operating cost is calculated by adding direct production costs, sales 
expenses, administrative expenses, depreciation and provision for uncollectible bills.  

Either the network length or the number of water connections can be used to measure the capital of 
the companies. Because data are missing for network length in 1996-97, we use the number of 
connections as an indicator of capital. Volume of water billed and the number of customers are two widely 
used outputs. According to Corton (2003), Peru has a serious problem with water loss. More than half the 
water is unaccounted for in more than a third of the companies.  Therefore, we use water billed, not 
water delivered, as an output. We add two additional outputs: coverage of service and continuity of 
service.  Coverage of service is the second area of efficiency in the SUNASS evaluation system. 
Continuity of service is an indicator in two SUNASS categories: quality of service (area 1) and 
management efficiency (area 3).  Model 1 is based on the CCR DEA model. Model 2 is based on the 
Banker, Charnes, and Cooper (BCC) model which drops the constant returns to scale restriction and 
accommodates variable returns to scale. One limitation of the DEA model is that as the number of variables 
in a DEA model increases, the discrimination power of DEA models decreases: more firms tend to be on the 
efficiency frontier. An individual firm is likely to be using relatively less of a particular input or producing 
more of a particular output, which places it near or on the multidimensional frontier (Rossi and Ruzzier (2000). 
This problem is more common under the variable returns to scale (VRS) environment since the VRS efficiency 
scores are relatively higher than CRS efficiency scores. In order to deal with this problem, an input-oriented 
Super-efficiency VRS model (model 3) is employed.7 The input-oriented DEA models are used because 

                                                                                                                                                                                   
2005) and reduce the bias due to unobserved heterogeneity (Farsi et al. 2005). Given the limited number of periods, 
the panel structure is not explored in this study. A comprehensive review and application of different panel SFA 
models can be found in Farsi et al. (2005). 
7 The detail descriptions of the models are presented in the Technical Appendix available from the authors. 
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water utilities are supposed to meet demand (the output is exogenous). Therefore, input quantities appear to be 
the primary decision variables related to firm efficiency (Coelli et al. 2005). The operating costs have been 
adjusted by using the GDP Deflator.  Table 1 lists the features of each model. The summary statistics of 
the variables for 1996-98 are shown in Table 2. 

 
 

  Table 1: DEA Model Specification 

Model 1 CCR; Model 2 BCC; Model 3 Super-efficiency

Operating costs
Number of employees

Number of water connections
Volume of water billed
Number of customers
Coverage of service

Inputs

Outputs

Continuity of service
 

 
 
 

Table 2 : Sample Summary Statistics 
Variable Mean Standard Deviation Minimum Maximum 
Physical Outputs      
Water Billed (m3) 5860856 8097041 224870 3.30E+07 
Number of customers 98913.44 141488.4 6660 706848 
Quality Outputs      
Service Coverage 0.724 0.157 0.21 0.99 
Service Continuity 14.343 5.886 1 24 
Inputs      
Operation Cost (S/.) 5623718 9136168 114406 4.73E+07 
Number of Connections 19781.99 28347.78 1480 147260 
Number of workers 121.86 162.97 7 856 

 
Before presenting the efficiency values and rankings obtained by using these two specifications of the 
DEA model, we summarize the SFA approach.  
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4.2 SFA Model Specification Augmented by an Input Distance Function 
 
A disadvantage of the production frontier SFA is that it cannot consider multiple inputs and outputs 

simultaneously.8 To solve this problem and obtain a more comprehensive ranking, an input distance 
function was utilized: it is capable of describing the multiple-input and multiple-output production 
technology of water companies and does not require assumptions about the behavior of the companies 
(e.g., cost minimization or profit maximization).  
 
Input Distance Function:  Following Coelli and Perelman (1999, 2000), Carrington et al. (2002) and 
Estache et al. (2004), the translog input distance function is adopted, and written as:  
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Those required for symmetry are as follows:  
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8 We estimated a production frontier model: 

itit uvttConnectionOPEXVolume −++++++= 2
543210 lnWorkerlnlnln ββββββ  The result shows that 

inefficiency accounts for 97 percent of the deviation. All the signs of the coefficients are consistent with the 
expectation. The OPEX and number of connections have positive and significant impact on the water delivered. 



 10

Following Carrington et al. (2002) and Estache et al. (2004), the restrictions can be imposed by 
normalizing the function by one of the inputs. Because of the homogeneity, if we arbitrarily choose one of 
the inputs, such as the kth input, we can obtain:  

KK xyxDyxxD /),(),/( =                              (6) 
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The distance term )ln( itD− can be viewed as an error term that explains the difference between the 

observed data points and those points predicted by the estimated transformation function. In the SFA 

distance function model, the distance term can be replaced with a composed error term, itit uv − , to 

estimate the function as a standard stochastic frontier function. In contrast, Coelli and Perelman (1999, 
2000) employ a traditional estimation of distance functions (without two-components errors) and rely on 
corrected ordinary least squares (COLS). The main difference between COLS and SFA is that COLS 
attributes all the deviations to inefficiency while SFA models attribute part of the deviations to 
inefficiency and part of the deviations to random noises. In other words, the SFA models take both 
inefficiency and random noise into account. We use the software STATA 8.0 and Frontier 4.1 (developed 
by Tim Coelli) in the estimation. As would be expected, both sets of software yield the same results. 

Although the translog function is a flexible functional form, it often violates assumptions required in 
the input distance function, such as monotonicity or concavity. Furthermore, translog functions can create 
a multicollinearity problem, which influences the statistical significance of the model (Coelli et al. 2005).9  

                                                        
9 We did run the translog model in equation (9). The monotonicity requirement cannot be satisfied. Two out of the 
six first order terms have wrong signs for coefficients. One of the two is statistically significant at p=0.05. None of 
the rest first order terms are statistically significant. We also found a very serious multicollinearity problem in the 
translog function. Many correlations between the regressors exceed 0.85 or even 0.95. In the present study, these 
problems may prevent us from obtaining meaningful results from the translog specification. 
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More importantly, given our sample size, the translog functional form will consume too many degrees of 
freedom (35 regressors in a translog model). Therefore, we employ a log-linear function as an alternative, 
where the distance function model can be simplified as: 
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The dependent variable is negative logconnection. Both the truncated normal and half normal model are 
employed. Since they yield quite similar results, the more general truncated normal model is presented 
here. The definitions and differences between the two models are described in Kumbhakar and Lovell, 
2003. The models are tested using the panel data from 1996 to 1998.  The inputs are number of 
employees, operation cost and number of water connections. The outputs are volume of water billed, 
number of customers, coverage ratio, and continuity of service.  The empirical results indicate that the 
input distance function SFA model is well-behaved. All the terms have correct signs: the output 
coefficients are negative, and the inputs coefficients are positive. After controlling for the other inputs, an 
increase in output should require an increase in the specific input. Notice that the dependent variable is 
negative input. Therefore, the coefficients of outputs are negative. Similarly, given the outputs, an 
increase in the other inputs will result in a decrease in the specific input. Therefore, the coefficients of 
outputs are positive. The impacts of volume billed, number of customers, service coverage and 
operational costs are statistically significant. The Maximum likelihood estimated parameter “gamma” is 

0.732 ( 22

2

vu

u

σσ
σ

γ
+

= ), indicating that inefficiency is the main resource of the deviation.10 See Table 3.  

 

                                                        
10 Caudill et al. (1995) suggests that size-related heteroskedasticity of inefficiency variable could lead to biased 
estimates if the inefficiency term embodies factors “under firm control.” We did try the model proposed by Caudill 
et al. (1995) where variance of inefficiency term is modelled as a function of firm size (log revenue of the firm in a 
specific year). The estimation results are consistent with the results presented in Table 3 in terms of sign and 
statistical significance. The mean efficiency scores of the two models are roughly the same (0.89 vs. 0.9) and 
individual scores are significantly correlated with each other (the correlation is 0.8). Furthermore, the inclusion of 
the heteroskedasticity adjusted SFA model does not change our interpretation and conclusion qualitatively in the 
following comparisons. 
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  Table 3:  SFA Distance Function Model 

 
Stoc.Frontier Truncated Normal Model    obs =  129 

       Wald chi2(8)= 16131.74 
Log-Likelihood =154.02     Prob> chi2= 0.000 
         
neglogconnection | Coef. Std. Error z P>|z| [95% Conf. Interval]  
-------------------------------------------------------------------------------------------------------------------------------------- 
logvolumebill | -0.077  0.034  -2.250  0.024  -0.143  -0.010   
logcustomer | -0.885  0.035  -25.280 0.000  -0.953  -0.816   
logcontinuity | -0.017  0.012  -1.400  0.163  -0.041  0.007   
logcov | -0.130  0.029  -4.510  0.000  -0.186  -0.073   
logadjustopex | 0.063  0.026  2.450  0.014  0.013  0.113   
logadjustlabor | -0.011  0.030  -0.370  0.709  -0.071  0.048   
t | 0.008  0.029  0.280  0.779  -0.048  0.064   
t2 | -0.003  0.014  -0.250  0.800  -0.030  0.023   
_cons | 1.772  0.248  7.160  0.000  1.287  2.257   
-------------------------------------------------------------------------------------------------------------------------------------- 
sigma2 | 0.007  0.003       
gamma | 0.732  0.284       
sigma_u2 | 0.005  0.004       
sigma_v2 | 0.002  0.002       

 
 
5. Data Analysis and Comparison 

 
As noted above, this study focuses mainly on the results for the year 1998 to allow comparison with 

the SUNASS ranking and Corton (2003). The efficiency scores indicate the presence and extent of 
inefficiency of input use. For instance, an efficiency score of 0.80 means that the company could reduce 
its inputs by about 20 percent, while still maintaining its output level. We also find that the SFA 
techniques yield lower efficiency scores than does DEA. According to Carrington et al. (2002), this 
difference arises because the estimated frontier binds the data less tightly than with DEA. Fewer efficient 
decision-making units are identified when the frontier is estimated by SFA analysis. SFA recognizes that 
some of the distance from the frontier is attributable to random shocks or statistical noise in the data, so it 
is common to have no efficient decision-making units in a sample. So now we turn to comparisons among 
the different methodologies.  Table 4 displays the summary statistics of the efficiency scores from the 
different models.11  

                                                        
11 For the input oriented super efficient model, the efficiency scores range from 0 to∞ . The higher the efficiency 
scores, the more efficient the firms would be. However, the efficiency scores can only give a ranking order of the 
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Table 4. Summary Statistics of Efficiency Scores from Different Models 
Models Mean Std. Min Max 
       
CCR 0.949 0.066 0.738 1.000 
BCC 0.910 0.075 0.732 1.000 
Super 1.064 0.540 0.738 6.104 
Distance 0.904 0.044 0.797 0.980 

 
Bauer et al. (1998) proposed several sensitivity tests that, if satisfied, would avoid the choice among 

different technical approaches. In our study, we check the sensitivity in efficiency scores, the rankings, 
and identification of the best and worst performance. In the first-level test, we compare only the DEA 
model 1, 2 and SFA Distance Function model because the regression model, the SUNASS evaluation 

system and Super-efficiency model give the scores in a different scale (not in [ ]1,0 ). The correlation 

matrix of the efficiency scores of four models are presented in Table 5. 
 

Table 5: Correlation Matrix of Efficiency Scores 
    BCC CCR DISTANCE 

BCC 

Pearson 
Correlation 

1.000  0.736** 0.513** 

Sig. (2-tailed) . 0.000  0.000  
N 123 123 120 

CCR 

Pearson 
Correlation 

0.736** 1.000  0.707** 

Sig. (2-tailed) 0.000  . 0.000  
N 123 123 120 

DISTANCE 

Pearson 
Correlation 

0.513** 0.707** 1.000  

Sig. (2-tailed) 0.000  0.000  . 
N 120 120 129 

** Correlation is significant at the 0.01 level (2-tailed).   

  
The correlation between BCC and CCR Modes is 0.736, which is significant at the 0.01 level. The 
correlation between BCC and the SFA distance model is 0.513, and 0.707 between CCR and the SFA 
distance model, both significant at the 0.01 level. We see that the three parametric and non-parametric 
comprehensive evaluation models with multiple inputs and outputs yield consistent results, providing a 
reasonable basis for regulators to design fair scorecards and relevant policies. 

                                                                                                                                                                                   
firms. They are not quantitatively comparable as the CCR and BCC models, because the efficient DMUs are not 
compared to the same “standards”. (The frontier constructed from the remaining DMUs changes for each efficient 
DMU under evaluation.)  (Cooper et al. 2004) 
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To compare the DEA, SFA production and SFA distance models to the SUNASS evaluation system 
and Corton’s regression model, we test consistency in rankings. Table 6 shows the correlation matrix of 
the rankings and the rankings provided by different methods. 

 
 

Table 6: Spearman’s Ranking Correlation Matrix of Different Techniques 
    SUNASS REGRESS BCC CCR SUPER DIST 

SUNASS 
Correlation Coefficient 1.000  -0.428**  -0.110  -0.396**  -0.121  -0.255  

Sig. (2-tailed) . 0.007  0.505  0.013  0.481  0.117  

REGRESS 
Correlation Coefficient -0.428** 1.000  0.201  0.445**  0.319**  0.117  

Sig. (2-tailed) 0.007  . 0.220  0.005  0.058  0.480  

BCC 
Correlation Coefficient -0.110  0.201  1.000  0.643**  0.946**  0.443** 

Sig. (2-tailed) 0.505  0.220  . 0.000  0.000  0.004  

CCR 
Correlation Coefficient -0.396** 0.445**  0.643** 1.000  0.731**  0.696** 

Sig. (2-tailed) 0.013  0.005  0.000  . 0.000  0.000  

SUPER 
Correlation Coefficient -0.121  0.319**  0.946** 0.731**  1.000  0.416** 

Sig. (2-tailed) 0.481  0.058  0.000  0.000  . 0.009  

DIST 
Correlation Coefficient -0.255  0.117  0.443** 0.696**  0.416**  1.000  

Sig. (2-tailed) 0.117  0.480  0.004  0.000  0.009  . 

** Correlation is significant at the .01 level (2-tailed).      

* Correlation is significant at the .05 level (2-tailed).         

 
The comparison of the ranking correlations (Table 6) with the current SUNASS evaluation system 

shows that rankings provided by CCR and Corton’s regression model have a negative and statistically 
significant correlation with the SUNASS rankings. However, if we take the economies scale into account 
and allow for variable return to scale, the correlation between SUNASS ranking and the three models 
(BCC, Super-efficiency and Distance function) is not statistically distinguishable from zero. As we 
mentioned above, there are several potential reasons for this inconsistency. First, the SUNASS ranking 
system assigns an equal weight to each of the nine sub-dimensions. This method is somewhat arbitrary 
and may be easy for the firms to manipulate the ranking through unaudited data filings.  Firms can 
choose to improve the dimension that requires minimal outlays and degrade the dimension which is more 
costly. In contrast, the weights are not pre-assigned in the DEA models or SFA models. They are 
generated though the linear programming optimization or maximum likelihood estimation. Second, most 
indicators in the SUNASS scheme lack input-output causative relationships. Only the managerial 
efficiency category considers the cost issue. This approach is inconsistent with the basic definition of 
productivity. Therefore, the benchmarking scheme in Peru is basically output-oriented and does not 
incorporate inputs in a comprehensive manner.  

To illustrate this point more clearly, we first calculate six basic output/input ratios for the year 1998 
sample: volume billed/OPEX, customer number/OPEX, volume billed/ labor, customer number/labor, 
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volume billed/connections, customer number/connections. We then pick up several points which have the 
biggest ranking gap between the SUNASS and other techniques and compare these points to the sample12.  
Consider Case 1 (EMAPA PASCO S.A.): its rankings under SUNASS, Corton’s regression, CCR, BCC, 
Super, Distance function are 44, 1, 1, 1, 6, 14 respectively. At first glance, we can find that its service 
coverage is 59 percent, and its service continuity is only 3 hours; both numbers are substantially lower 
than the sample mean (75.9 percent, 14.2 hours). These are part of the reason for its lowest ranking in the 
SUNASS scheme. However, if we dig a little bit deeper and check its six basic output/input ratio, we 
would find that it has the highest volume billed/OPEX (3.42) and customer number/OPEX (0.065) ratios 
(the sample means are 1.317, 0.023 respectively). Its other ratios are close to the sample mean. This 
pattern explains why the firm is on the efficiency frontier in the DEA models. In this case, the 
Super-efficiency model and distance function model seem to incorporate the two aspects better—yielding 
a reasonable ranking.  

Case 2 provides another example: firm EMAPA COP. Its rankings under SUNASS, CCR, BCC, 
Super, Distance function are 41, 1, 1, 9, 4 respectively. Its service coverage is 47 percent, and its service 
continuity is 11 hours, which partially explain its low ranking under the SUNASS scheme. However, if 
we check its six basic output/input ratios, we would find that it has the highest volume billed/connection 
and customer number/connection ratios which places it on (or close to) the efficiency frontiers under the 
DEA and SFA models. Case 3 is firm SEDACAJ S.A., whose rankings under SUNASS, CCR, BCC, 
Super, Distance function are 2, 37, 37, 34, 33 respectively. Its service coverage is 85 percent, and its 
service continuity is 20 hours; both of which are significantly higher than the sample mean. These 
partially explain its high ranking under the SUNASS scheme. If we check its six basic output ratios, its 
Volume billed/OPEX, Volume billed/labor, Volume billed/connection, customer number/OPEX, customer 
number/labor and customer number/connection are 0.832, 33965, 330.51, 0.0114, 467.58 and 4.55 
respectively, while the sample mean of these six ratios are 1.31, 49430, 287.6, 0.0235, 850.2 and 4.86 
respectively. Thus, five indicators are significantly lower than the sample mean. Therefore, its rankings in 
the frontier models are lower than the median. The above examples show that lack of input-output 
relation in the SUNASS scheme is one of the main reasons for the inconsistency. In addition, the current 
SUNASS scheme does not take some other factors such as economies of scale into account. 

The result of the regression cost function model proposed by Corton (2003) is somewhat correlated 
to the DEA models but not correlated to the distance function, which shows the importance of choosing 
an appropriate model and considering multivariate dimensions. Consistent to what we found in Table 6, 
the comprehensive parametric and non-parametric evaluation models are statistically significantly 
correlated to each other. The correlation between BCC and CCR models is 0.643, which is significant at 
the 0.01 level. The correlation between BCC and Super-efficiency model is 0.946, and the correlation 
between CCR and Super-efficiency model is 0.731, both significant at the 0.01 level. The stochastic 
frontier distance function model is positively correlated to all the three DEA models, all significant at 
p=0.01 level. The correlation between distance function and BCC, CCR, and Super-efficiency models are 

                                                        
12  This methodology is somewhat inaccurate in the sense of considering the multiple inputs and outputs 
simultaneously and drawing the whole picture. However, it provides an intuitive explanation regarding the source of 
the difference between the SUNASS approach and frontier techniques.  
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0.443, 0.696, 0.416 respectively, which indicates a moderate consistency between parametric and 
non-parametric models.13 

If consistency in overall rankings is not met, a third level of consistency involves identifying best and 
worst performers. As Estache et al. (2004) point out for implementing regulatory policy it is more 
important to identify the rough ordering of firms rather than obtaining precise measures of efficiency. We 
compare the results of different techniques in terms of how they identify the best and the worst quartile 
(ten firms in each). The results are shown in Table 7. The upper triangle contains the fraction of firms 
classified in the upper quartile for each pair of techniques. The lower triangle shows the same for the 
lower quartile. The 1998 ranking is used for comparison. 

 
Table 7: Consistency in Identifying Best and Worst Performers  

(Upper and Lower Triangles, respectively) 

Approach SUNASS Regression BCC CCR Super 
SFA 

Distance 
SUNASS 1.00  0.00 0.50 0.20 0.40 0.10 

Regression 0.10 1.00 0.60 0.40 0.40 0.30 

BCC 0.20 0.40 1.00  1.00 1.00 0.60 

CCR 0.10 0.40 0.70 1.00  0.60 0.50 

Super 0.20 0.30 1.00 0.70 1.00 0.40 

SFA Distance 0.30 0.30 0.50 0.80 0.50 1.00  
 

The results show that there is little consistency (10-30%) between the SUNASS ranking and DEA 
analysis and SFA methods in identifying the worst companies and a little bit more consistency in 
identifying the best firms (10%-50%). Corton’s regression model has some consistency (30%-40%) with 
the comprehensive frontier models (the DEA models and the SFA distance function model) in identifying 
the worst companies, and it has more consistency (30-60%) with the comprehensive models (the DEA 
models and the SFA distance function model) in identifying the best companies. The consistency between 
the comprehensive evaluation models is higher. The SFA distance function model has 50-80 percent 
consistency with the DEA models in identifying the worst performance companies and 40-60 percent in 
identifying the best. The consistency among the three DEA models in identifying the best and worst 
companies ranges from 70-100 percent.  

As Estache et al. (2004) note, the advantage of knowing if the different approaches are consistent in 
identifying “best” or “worst” firms is that, even if the ranking consistency test fails, a “mild” form of 

                                                        
13 Since there are non-negligible discrepancies across different measures of efficiency, a comprehensive measure 
might be useful to regulators in the benchmarking studies. Coelli and Perelman (1999) have suggested combining 
the results from alternative modeling exercises by using the geometric means of the performance scores for each 
data point in order to mitigate potential bias of specific methods. This idea is borrowed from the time-series 
forecasting literature where many authors assert that the mean of the predictions from various models will often 
outperform any one particular predictive model.  
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benchmarking regulation can be relied on. This is similar to what the water regulator for England and 
Wales does when OFWAT publishes the efficiency rankings in the media to increase public pressure on 
the regulated companies.   

Regulators can have some confidence in company classifications that involve similar rankings under 
different models. In addition, they will need to pay more attention to those with divergent rankings under 
the various models (illustrated by the three examples we mentioned in explaining the difference between 
SUNASS and frontier rankings.) 
 
 
6. Conclusions 

 
Since efficiency evaluation plays such an important role in incentive regulation, analysts and 

regulators need to exercise great care when selecting ranking techniques from among parametric and 
non-parametric evaluation models. First, regulatory objectives need to be prioritized, to determine what 
policymakers view as important. Regulators might want to focus only on cost minimization. In this case, 
they can choose from among the regression model, COLS (corrected ordinary least squares), SFA 
production (cost) function model, or single-output DEA models. If regulators want to incorporate other 
outputs into the analysis, including quality of service, they can choose to use a synthetic evaluation 
system (like the one utilized by SUNASS), DEA models or SFA input (output) distance function models. 
The present study shows that the consistency of the efficiency measurement within a specific group of 
models is high in the case of Peruvian water utilities.14  

Second, analysts need to be aware of the advantages and limitations of different models in order to 
select the most appropriate ones for conducting benchmarking studies. As noted, SUNASS assigned an 
equal weight of 1 to all nine indicators: an output oriented approach that does not consider inputs in a 
comprehensive way. That commission’s logical next step might be to formally prioritize the multiple 
dimensions of performance, so that rankings better target those areas of greatest importance.15 The 
regression model focuses on the cost efficiency of a company, but fails to consider other important factors 
such as quality of service and coverage of service. Nor does it consider the effect of random shock or 
statistical noise. In addition, an inherent problem of regression analysis is that it requires specification of 
functional form, which risks fitting in an inappropriate function. Furthermore, simple regression analysis 
is limited to only one dependent variable, which might not depict the real world in a sophisticated way.  

 

                                                        
14 The policy implications of previous studies that have used only one methodology to evaluate relative efficiency 
would be strengthened by utilizing the types of sensitivity tests described here.  Recent studies of other sectors 
include European banking (Casu and Molyneux, 2003), museums (Bishop and Brand, 2003), Korean container 
terminals (Cullinane and Song, 2003), Swiss hospitals (Steinmann and Zweifl, 2003), and the Greek agricultural 
sector (Rezitis, Tsiboukas, and Tsoukalas, 2002).  
15 Lynch, Buzas, and Berg (1994) use hierarchical conjoint analysis to derive weights for dimensions of telephone 
service quality. The methodology is applicable to water as well—for example, by giving different weights to system 
expansion and to improvements in service continuity.   
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DEA models do not have these particular limitations. DEA does not require the specification of a 
functional form to be fitted, nor does it need to impose weight to the factors. DEA allows for multiple 
outputs and inputs. In addition, DEA analysis can give us more information than the ranking. It can also 
be used to evaluate returns to scale and can set the goal for inefficient companies regarding how much 
they should improve to get on the efficient frontier. However, DEA models have their own imperfections.  

The outcome of DEA analysis is sensitive to the selection of the variables for inputs and outputs and 
to the application of different DEA methods. DEA has been developed in a non-statistical framework, so 
hypothesis testing is problematic (though bootstrapping techniques have been applied to DEA). In 
addition, DEA does not account for possible noise. SFA is arguably a better method. It accounts for the 
effect of the random shocks and statistical noise and can accommodate multiple inputs and outputs by 
using the distance function. However, it too has potential problems; in particular, the standard SFA 
method uses a specific assumption on the residual skewness to separate inefficiency from measurement 
errors. Additional techniques are also available, such as TFA (thick frontier approach) and DFA 
(distribution-free approach) (Berger and Humphrey 1991; Berger 1993). All these methodologies have 
their advantages and disadvantages.  

A third point is that regulators can select two to three appropriate techniques to construct models and 
then conduct multi-level consistency tests to compare the outcomes of different methods to determine 
whether serious inconsistencies emerge. If the analyst uses panel data, regulators should also check 
whether these efficiency measures are consistent over time. If the consistency tests are satisfied, the 
regulator can choose one of the techniques with some degree of confidence, or the average ranking could 
be used. If the tests do not support consistency, regulators should be very cautious about applying 
financial rewards or penalties based on rankings, since some utilities are likely to challenge the 
implementation of incentives as reflecting arbitrary procedures.  The results for Peru presented here do 
not invalidate the performance rankings obtained by the regulator, since those rankings are based on more 
dimensions of utility performance. However, they point out the potential pitfalls of current SUNASS 
ranking schemes.  
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