

(11) EP 2 507 263 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:07.09.2016 Bulletin 2016/36

(21) Application number: 10834154.6

(22) Date of filing: 06.12.2010

(51) Int CI.:

C07K 16/28^(2006.01)
C12N 15/13^(2006.01)
A61K 39/395^(2006.01)

C12N 5/18 (2006.01) A61K 39/00 (2006.01)

(86) International application number:

PCT/CN2010/001963

(87) International publication number: WO 2011/066721 (09.06.2011 Gazette 2011/23)

(54) ANTI-IGF-IR ANTIBODIES AND USES THEREOF

ANTI-IGF-IR-ANTIKÖRPER UND IHRE VERWENDUNGEN ANTICORPS ANTI-IGF-IR ET LEURS UTILISATIONS

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB

GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR

(30) Priority: 04.12.2009 US 266681 P

(43) Date of publication of application: 10.10.2012 Bulletin 2012/41

(73) Proprietor: The University of Hong Kong Hong Kong (CN)

(72) Inventor: **ZHANG**, **Meiyun Hong Kong (HK)**

(74) Representative: Epping - Hermann - Fischer Patentanwaltsgesellschaft mbH Schloßschmidstraße 5 80639 München (DE)

(56) References cited:

WO-A2-2007/012614 CN-A- 101 014 625

 MEI-YUN ZHANG ET AL: "Characterization of a chimeric monoclonal antibody against the insulin-like growth factor-I receptor", MABS, vol. 1, no. 5, 1 September 2009 (2009-09-01), pages 475-480, XP055058186, ISSN: 1942-0862, DOI: 10.4161/mabs.1.5.9580

 FENG L. ET AL: 'Expression and clinic significance of IGF-IR in Breast Cancer tissue' JOURNAL OF MEDICAL FORUM vol. 29, no. 5, March 2008, pages 8 - 10, XP008160352

 SUN, LIYAN ET AL: 'Advancement in research on insulin-like growth factor in cancer metastasis' INTERNATIONAL JOURNAL OF INTERNAL MEDICINE vol. 35, no. 6, June 2008, pages 329 -336, XP008160320

> 2 507 263 B1

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

CROSS-REFERENCE TO A RELATED APPLICATION

⁵ **[0001]** This application claims the benefit of U.S. provisional application Serial No. 61/266,681, filed December 4, 2009.

TECHNICAL FIELD

[0002] This disclosure pertains generally to potent neutralizing monoclonal antibodies against IGF-IR, and methods of using the same for cancer therapy.

BACKGROUND OF THE INVENTION

[0003] The insulin-like growth factors (IGFs) signaling system has been shown to play important roles in neoplasia.

Insulin-receptors (IR) belong to the IGF signaling network. IGF receptor type 1 (IGF-IR) and its ligands (IGFI and II) are over-expressed in many types of solid and hematopoietic malignancies, including prostate cancer, breast cancer, liver cancer, and colon cancer, etc. There is substantial experimental and clinical evidence that targeting IGF-IR is a promising therapeutic strategy against cancer.

[0004] Strategies for down-regulating the IGF signaling system include reducing ligand bioavailability and inhibiting receptor function. Inhibition of IGF receptor function can be achieved using receptor-specific antibodies or small molecule tyrosine kinase inhibitors. A human-mouse chimeric antibody against the insulin-like growth factor-I receptor is described in Zhang et al. (mAbs, 1, 2009, 475-480). Desired IGF-IR-specific neutralizing antibodies can not only inhibit IGF-IR function, but also block the IGF-IR-mediated signaling pathway. There is a need to develop IGF-IR-specific antibodies that can inhibit cell-surface IGF-IR and block the binding of IGF-IR ligands to IGF-IR, thereby inhibiting ligand-induced receptor phosphorylation and the downstream signaling. IGF-IR-specific antibodies without cross-reactivity with IR are particularly desired.

BRIEF SUMMARY OF THE INVENTION

[0005] The subject invention provides antibodies and binding fragments thereof that specifically bind to human insulin-like growth factor 1 receptor (also known as human IGF receptor type 1). In one embodiment, the subject invention provides an antibody that binds to the extracellular domain of human IGF-IR, and thereby blocks the binding of both IGF-I and -II to IGF-IR and inhibits both IGF-I and IGF-II induced phosphorylation of IGF-IR and the downstream signaling, which lead to cancer cell proliferation and metastasis. These and other advantages of the invention, as well as additional inventive features, will be apparent from the description of the invention provided herein.

[0006] In one embodiment, the subject invention provides an isolated antibody (H10), or a binding fragment thereof, comprising an amino acid sequence H10 V_H (SEQ ID NO: 1) and H10 V_L (SEQ ID NO: 2), wherein the antibody specifically binds to an epitope of IGF-IR.

[0007] The subject invention also includes pharmaceutical compositions comprising the antibody of the subject invention or a binding fragment thereof, and a medical use of the antibody in treating a tumor or cancer.

[0008] Additionally, the subject invention provides an isolated nucleic acid molecule encoding the antibody of the subject invention, or a binding fragment thereof, comprising a nucleic acid sequence selected from H10 V_H DNA (SEQ ID NO: 5), H10 V_L (SEQ ID NO: 6), H10 H3 (SEQ ID NO: 7), H10 L3 (SEQ ID NO: 8), or a combination thereof, wherein the nucleic acid molecule is optionally in a form of a vector, wherein the nucleic acid molecule or vector is optionally contained within a host cell, wherein the antibody or binding fragment thereof specifically binds to an epitope of IGF-IR. The disclosure also provides pharmaceutical compositions containing the nucleic acid molecules, and a medical use of the nucleic acid molecules in treating a tumor or cancer.

[0009] To the accomplishment of the foregoing and related ends, the invention comprises the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative aspects and implementations of the invention. These are indicative of, however, a few of the various ways in which the principles of the invention may be employed. Other objects, advantages, and novel features of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010]

Figure 1 illustrates amino acid sequences of various regions of the H10 antibody and nucleic acid sequences encoding these amino acid sequences. The amino acid sequences are presented from N-terminus to C-terminus (from upper left to lower right of the Figure) in accordance with convention. Sequences of HCDR1-3 and LCDR1-3 are underlined.

Figure 2 is a graph that illustrates an exemplified procedure of humanizing mouse monoclonal antibody Fab m590. H: human; m: mouse.

Figure 3 illustrates the binding of H10 to cell-associated IGF-IR on breast cancer MCF-7 cells in flow cytometry.

BRIEF DESCRIPTION OF THE SEQUENCES

[0011]

5

10

15

20

25

30

35

SEQ ID NO: 1 is an amino acid sequence of a V_H region of the H10 antibody of the subject invention.

SEQ ID NO: 2 is an amino acid sequence of a V_L region of the H10 antibody of the subject invention.

SEQ ID NO: 3 is an amino acid sequence of an H3 region (CDR3 of a V_H region) of the H10 antibody of the subject invention.

SEQ ID NO: 4 is an amino acid sequence of an L3 region (CDR3 of a V_L region) of the H10 antibody of the subject invention.

SEQ ID NO: 5 is a nucleic acid sequence of a V_H region of the H10 antibody of the subject invention.

SEQ ID NO: 6 is a nucleic acid sequence of a V_L region of the H10 antibody of the subject invention.

SEQ ID NO: 7 is a nucleic acid sequence of an H3 region (CDR3 of a V_H region) of the H10 antibody of the subject invention.

SEQ ID NO: 8 is a nucleic acid sequence of an L3 region (CDR3 of a V_L region) of the H10 antibody of the subject invention.

SEQ ID NO: 9 is an amino acid sequence of CDR1 of a V_H region of the H10 antibody of the subject invention.

SEQ ID NO: 10 is an amino acid sequence of CDR2 of a V_H region of the H10 antibody of the subject invention.

SEQ ID NO: 11 is an amino acid sequence of CDR1 of a V_L region of the H10 antibody of the subject invention.

SEQ ID NO: 12 is a nucleic acid sequence of CDR1 of a V_H region of the H10 antibody of the subject invention.

SEQ ID NO: 13 is a nucleic acid sequence of CDR2 of a V_H region of the H10 antibody of the subject invention.

SEQ ID NO: 14 is a nucleic acid sequence of CDR1 of a V_L region of the H10 antibody of the subject invention.

SEQ ID NO: 15 is an amino acid sequence of the human insulin-like growth factor 1 receptor (hIGF-IR) used according to the subject invention.

DETAILED DISCLOSURE OF THE INVENTION

[0012] The subject invention provides antibodies, or binding fragments thereof, that specifically bind to an epitope of the type 1 insulin-like growth factor receptor (IGF-IR). The disclosure more specifically provides antibodies, or binding fragments thereof, that bind to the extracellular domain of IGF-IR. Additionally, the disclosure provides epitopes that are recognized by the polypeptides (e.g., antibodies or binding fragments thereof) described herein, which epitopes can be used, in an embodiment in the development of cancer vaccine immunogens for the treatment of cancer.

[0013] The anti-IGF-IR antibodies can be used for cancer therapy, as well as to detect IGF-IR in an animal, including without limitation a human. The anti-IGF-IR antibodies of the subject invention can also be used to detect IGF-IR in a test sample. The test sample can be a tissue sample, a biopsy sample, and the like.

[0014] In one embodiment, the anti-IGF-IR antibody specifically binds to human insulin-like growth factor I receptor (also known as human insulin-like growth factor receptor type 1 (IGF-IR)). In a specific embodiment, the human IGF-IR has an amino acid sequence of SEQ ID NO: 15 (GenBank Accession No. P08069; GI: 124240). In an embodiment, the anti-IGF-IR antibody of the subject invention specifically binds to human IGF-IR expressed on cancer cells, such as for example, SKOV-3 and MCF-7 cells. In an embodiment, the anti-IGF-IR antibody of the subject invention specifically binds to human IGF-IR expressed on IGF-IR stably transfected Hela cells.

[0015] The term "binding specificity," "specificity," "specifically reacts," or "specifically interacts," as used herein, refers to the ability of an antibody or other agent to detectably bind an epitope presented on an antigen, such as an epitope of IGF-IR, while having relatively little detectable reactivity with other proteins or structures. Specificity can be relatively determined by binding or competitive assays, using e.g., Biacore instruments. Specificity can be exhibited by, e.g., an about 10:1, about 20:1, about 50:1, about 100:1, about 10,000:1 or greater ratio of affinity/avidity in binding to the specific antigen versus nonspecific binding to other irrelevant molecules.

[0016] In one embodiment, the disclosure provides an isolated polypeptide (e.g., antibody, or a binding fragment thereof), comprising the amino acid sequence selected from H10 V_H (SEQ ID NO: 1), H10 V_L (SEQ ID NO: 2), H10 H3 (CDR3 of a V_H region) (SEQ ID NO: 3), H10 L3 (CDR3 of a V_L region) (SEQ ID NO: 4), or a combination thereof, wherein

the polypeptide binds to an epitope of IGF-IR ectodomain. The polypeptide can comprise sequences selected from (a) the amino acid sequences of SEQ ID NO: 1 and SEQ ID NO: 2; (b) the amino acid sequences of SEQ ID NO: 3 and SEQ ID NO: 4; (c) the amino acid sequences of SEQ ID NO: 1 and SEQ ID NO: 4; or (d) the amino acid sequences of SEQ ID NO: 2 and SEQ ID NO: 3.

[0017] In an embodiment, CDR1 of a V_H region of the anti-IGF-IR antibody comprises SEQ ID NO: 9. In an embodiment, CDR2 of a V_H region of the anti-IGF-IR antibody comprises SEQ ID NO: 10. In an embodiment, CDR3 of a V_H region of the anti-IGF-IR antibody comprises SEQ ID NO: 3. In a specific embodiment, a V_H region of the anti-IGF-IR antibody comprises SEQ ID NO: 1. In an embodiment, CDR1 of a V_L region of the anti-IGF-IR antibody comprises SEQ ID NO: 11. In an embodiment, CDR2 of a V_L region of the anti-IGF-IR antibody comprises SEQ ID NO: 4. In a specific embodiment, a V_L region of the anti-IGF-IR antibody comprises SEQ ID NO: 2.

[0018] The disclosure also provides an isolated nucleic acid molecule encoding a polypeptide, or a binding fragment thereof, comprising H10 V_H DNA (SEQ ID NO: 5), H10 VL DNA (SEQ ID NO: 6), H10 H3 DNA (SEQ ID NO: 7), H10 L3 DNA (SEQ ID NO: 8), or a combination thereof, wherein the nucleic acid molecule is optionally in the form of a vector, wherein the nucleic acid molecule or vector is optionally contained within a host cell. In certain embodiments, the nucleic acid molecule can encode a polypeptide comprising (a) the amino acid sequences of SEQ ID NO: 1 and SEQ ID NO: 2; (b) the amino acid sequences of SEQ ID NO: 3 and SEQ ID NO: 4; (c) the amino acid sequences of SEQ ID NO: 1 and SEQ ID NO: 4; or (d) the amino acid sequences of SEQ ID NO: 2 and SEQ ID NO: 3.

[0019] In an embodiment, CDR1 of a V_H region of the anti-IGF-IR antibody is encoded by a sequence comprising SEQ ID NO: 13. In an embodiment, CDR2 of a V_H region of the anti-IGF-IR antibody is encoded by a sequence comprising SEQ ID NO: 13. In an embodiment, CDR3 of a V_H region of the anti-IGF-IR antibody is encoded by a sequence comprising SEQ ID NO: 7. In a specific embodiment, a V_H region of the anti-IGF-IR antibody is encoded by a sequence comprising SEQ ID NO: 5. In an embodiment, CDR1 of a V_L region of the anti-IGF-IR antibody is encoded by a sequence comprising SEQ ID NO: 14. In an embodiment, CDR2 of a V_L region of the anti-IGF-IR antibody is encoded by a sequence comprising 5'ggcacgtcc 3'. In an embodiment, CDR3 of a V_L region of the anti-IGF-IR antibody is encoded by a sequence comprising SEQ ID NO: 8. In a specific embodiment, a V_L region of the anti-IGF-IR antibody is encoded by a sequence comprising SEQ ID NO: 6. The polypeptide can be any suitable polypeptide. For example, in one embodiment, the polypeptide is an antibody. Antibodies include both polyclonal and monoclonal antibodies. In addition to intact immunoglobulin molecules, also included are fragments or polymers of those immunoglobulin molecules, and human or humanized versions of immunoglobulin molecules or fragments thereof, as long as the molecules maintain the ability to bind with an epitope of the IGF-IR. The antibodies can be tested for their desired activity using the *in vitro* assays described herein, or by analogous methods, after which their *in vivo* therapeutic and/or diagnostic activities can be confirmed and quantified according to known clinical testing methods.

30

[0020] In another embodiment, the polypeptide is a monoclonal antibody or a binding fragment thereof. A monoclonal antibody refers to an antibody where individual antibodies within a population are identical.

[0021] The term "polypeptide" encompasses native or artificial proteins, protein fragments and polypeptide analogs of a protein sequence. A polypeptide may be monomeric or polymeric. The term "isolated polypeptide" is a polypeptide that by virtue of its origin or source of derivation (1) is not associated with naturally associated components that accompany it in its native state, (2) is substantially free of other proteins from the same species (3) is expressed by a cell of a species different from where the protein naturally originates, or (4) does not occur in nature. A polypeptide that is chemically synthesized or synthesized in a cellular system different from the cell from which it naturally originates is also considered "isolated" from its naturally associated components. A polypeptide can also be rendered substantially free of naturally associated components by isolation, using purification techniques well known in the art.

[0022] The monoclonal antibodies can be made using any procedure known in the art. For example, monoclonal antibodies of the invention can be prepared using hybridoma methods, such as those described by Kohler et al., Nature, 256, 495-497 (1975).

[0023] The monoclonal antibodies also can be made by recombinant DNA methods, such as those described in U.S. Patent 4,816,567.

[0024] DNA encoding the disclosed monoclonal antibodies can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). Libraries of antibodies or active antibody fragments can also be generated and screened using phage display techniques, e.g., as described in U.S. Patent 5,804,440 and U.S. Patent 6,096,441.

[0025] *In vitro* methods are also suitable for preparing monovalent antibodies. Digestion of antibodies to produce fragments thereof, particularly, Fab fragments, can be accomplished using routine techniques known in the art. For instance, digestion can be performed using papain. Examples of papain digestion are described in International Patent Application WO 94/29348 and U.S. Patent 4,342,566.

[0026] Papain digestion of antibodies typically produces two identical antigen-binding fragments - Fab fragments and a residual Fc fragment. Each Fab fragment has a single antigen binding site. Pepsin treatment yields a fragment that

has two antigen combining sites and is still capable of cross-linking antigen.

30

[0027] The disclosure encompasses chimeric antibodies and hybrid antibodies, with dual or multiple antigen or epitope specificities, single chain antibodies and fragments, such as, Fab', F(ab')2, Fab, scFv, and the like, including hybrid fragments. Such antibodies and fragments can be made by techniques known in the art and can be screened for specificity and activity according to general methods for producing antibodies and screening antibodies for specificity and activity (see, e.g., Harlow and Lane. Antibodies, A Laboratory Manual. Cold Spring Harbor Publications, New York, (1988).

[0028] The disclosure also encompasses human antibodies and/or humanized antibodies. Many non-human antibodies (e.g., those derived from mice, rats, or rabbits) are naturally antigenic in humans and, thus, can give rise to undesirable immune responses when administered to humans. Therefore, the use of human or humanized antibodies in the methods described herein serves to lessen the chance that an antibody administered to a human will evoke an undesirable immune response.

[0029] The human antibodies and humanized antibodies described herein can be prepared by any known technique. Examples of techniques for human monoclonal antibody production include those described by Boerner et al., J. Immunol., 147(1), 86-95 (1991).

[0030] Human antibodies described herein (and fragments thereof) can also be produced using phage display libraries (see, e.g., Marks et al., J. Mol. Biol., 222, 581-597 (1991)).

[0031] The human antibodies described herein can also be obtained from transgenic animals. For example, transgenic mutant mice that are capable of producing a full repertoire of human antibodies in response to immunization have been described (see, e.g., Jakobovits et al., PNAS, 90, 2551-255 (1993); and Jakobovits et al., Nature, 362, 255-258 (1993)).

[0032] Methods for humanizing non-human antibodies are known in the art. For example, humanized antibodies can be generated by substituting rodent complementarity-determining regions (CDRs) or CDR sequences for the corresponding sequences of a human antibody. Detailed procedures are disclosed in Jones et al., Nature, 321, 522-525 (1986); Riechmann et al., Nature, 332, 323-327 (1988); Verhoeyen et al., Science, 239, 1534-1536 (1988).

[0033] Methods that can be used to produce humanized antibodies are also described in U.S. Patent 4,816,567; U.S. Patent 5,565,332; U.S. Patent 5,721,367; U.S. Patent 5,837,243; U.S. Patent 5, 939,598; U.S. Patent 6,130,364; and U.S. Patent 6,180,377.

[0034] The polypeptides, according to the subject invention also encompass bivalent antibodies, as well as fusion molecules and conjugates with other molecules that can enhance the inhibitory effect of the polypeptide. The generation of fusion molecules (e.g., proteins) and conjugates (e.g., through physical or chemical conjugation) is within the ordinary skill in the art and can involve the use of restriction enzyme or recombinant cloning techniques (see, e.g., U. S. Patent 5,31 4,995).

[0035] The fusion molecule (e.g., proteins and nucleic acid molecules) or conjugate can comprise one or more of SEQ ID NOs: 1-8 in combination with any suitable second molecule. For example, the fusion molecule or conjugate can comprise one or more of SEQ ID NOs: 1-8 in combination with a neutralizing scFv antibody fragment or a Fab fragment (e.g., that binds to an epitope of IGF-IR).

[0036] Toxins are poisonous substances that usually are produced by plants, animals, or microorganisms that, in sufficient doses, are lethal. Preferred toxin for use in the fusion molecules or conjugates described herein include Pseudomonas toxin, Diphtheria toxin tetanus toxoid, ricin, cholera toxin, Shiga-like toxin (SL T-I, SL T- II, SL T-10 IIV), L T toxin, C3 toxin, Shiga toxin, pertussis toxin, tetanus toxin, Pseudomonas exotoxin, alorin, saporin, modeccin, and gelanin. The polypeptide (e.g., antibody, or a binding fragment thereof), and the toxin can be linked in several ways. If the hybrid molecule is produced by expression of a fused gene, a peptide bond serves as the link between the toxin and the polypeptide.

[0037] Alternatively, the toxin and the polypeptide can be produced separately and later coupled (e.g., by means of a non-peptide covalent bond). For example, the covalent linkage may take the form of a disulfide bond. In this case, the nucleic acid molecule encoding the polypeptide can optionally contain an extra cysteine codon. The cysteine condon can be positioned so as to not interfere with the binding activity of the molecule. The toxin molecule can be derivatized with a sulfhydryl group reactive with the cysteine of the modified polypeptide. In the case of a peptide toxin, this optionally can be accomplished by inserting DNA encoding a cysteine codon into the nucleic acid molecule encoding the toxin. In another alternative, a sulfhydryl group, either by itself or as part of a cysteine residue, can be introduced into the polypeptide of the subject invention using solid phase polypeptide techniques.

[0038] Moreover, the polypeptides described herein can be combined with other well-known therapies already in use. The combination of the polypeptide described herein and one or more other therapeutic agents can provide a greater therapeutic effect than either agent alone, and preferably generate an additive or a synergistic effect with current treatments. For example, the polypeptide of the invention can be combined with other therapies targeting the IGF-IR, Her2 or other components in the IGF signaling network, including IGF-I, IGF-II, IGF binding proteins, such as anti-Her 2 monoclonal antibody herceptin, anti-IGF-IR monoclonal antibodies CP751,871 (Pfizer), MK-0646 (Pierre-Fabre/Merck), AmG479 (Amgen), IMC-A12 (ImClone), R1507 (Hoffmann LaRoche), robatumumab (Schering-Plough), and cytokine immune enhancement therapy (interleukin (IL)-2, IL-12, CD40L + IL-12, IL-7, and interferons (IFNs)). Such therapies

can be administered in the manner already in use for the known treatment providing a therapeutic effect. The polypeptide of the invention can be a neutralizing antibody against IGF-IR useful for cancer therapy. In an embodiment, the antibody (or binding fragment thereof) of the subject invention inhibits IGF-IR function and inhibits IGF-IR-mediated signaling. The antibody (or binding fragment thereof) of the subject invention has a high affinity for IGF-IR and is specific for IGF-IR. [0039] In an embodiment, the antibody, or binding fragment thereof physically associates with other molecules (e.g., anti-IGF-IR antibodies, anti-Her2 antibodies) to inhibit IGF-IR- and Her2-mediated signaling. In other words, the polypeptide specifically binds, specifically reacts with, or specifically interacts with other target molecules (e.g. IGF-I, -II, IGF binding proteins). In an alternative embodiment, the polypeptide does not substantially physically associate with other

[0040] The epitopes recognized by the polypeptides described herein can be used as cancer vaccine immunogens, as active portions of cancer vaccine immunogens, and as targets for inhibitors of IGF signaling network. For example, the epitopes described herein (or polypeptides comprising the epitopes) can be used as targets to isolate antibodies that, other than those described herein, bind to the epitopes described herein. These antibodies can be used in the treatment and diagnosis of cancer.

[0041] While it is possible to administer (for example, as a vaccine) an epitope (or polypeptide comprising the epitope) that is recognized by the antibodies of the subject invention in a pure or substantially pure form, the epitope can be formulated into a pharmaceutical composition, formulation, or preparation. Accordingly, the disclosure encompasses a composition containing an epitope (or polypeptide comprising the epitope) recognized by the antibody described herein. The composition can further contain one or more pharmaceutically acceptable carriers (as described herein) and, optionally, other therapeutic ingredients. The composition comprising such epitope can be used therapeutically or to otherwise generate an immune response.

[0042] For example, a vaccine is provided to enhance the patient's own immune response to the antigens present due to tumorogenesis. Such vaccine, which acts as an immunogen, optionally can be a partially or substantially purified recombinant polypeptide containing the epitope or an analog thereof. The polypeptide comprising the epitope can be conjugated with one or more lipoproteins, administered in liposomal form, or with an adjuvant. Also encompassed by the disclosure are methods of developing vaccines or immunogenic compositions using the epitopes described herein. [0043] The disclosure is also directed to methods of downregulating IGF-IR and inhibiting IGF-IR-mediated signaling in a mammal. The methods involve administering an effective amount of the polypeptide (e.g. the antibody or a binding fragment thereof that specifically binds to human IGF-IR), nucleic acid molecule that encodes the polypeptide, a vector comprising the nucleic molecule, a cell comprising the nucleic acid molecule and/or vector, or compositions comprising the foregoing, to the mammal, wherein cancer cell growth and cancer metastasis are reduced or inhibited. In one embodiment, the mammal is a human.

30

[0044] In one embodiment, the subject disclosure provides administering to a mammal a polypeptide (e.g. the antibody or a binding fragment thereof that specifically binds to human IGF-IR), a nucleic acid molecule, a vector containing the nucleic acid encoding the polypeptide, or a cell (e.g., a host cell) containing any of the above.

[0045] In one embodiment, the subject disclosure provides a method for treating tumor or cancer, comprising administering to a subject in need of such treatment an effective amount of an isolated antibody, or a binding fragment thereof, to a subject. In another embodiment, the subject invention embodies the administration of nucleic acid molecules, vectors, and host cells of the subject invention for tumor or cancer therapy. In a specific embodiment, the subject invention can be used to treat or ameliorate prostate cancer, breast cancer, liver cancer, and colon cancer.

[0046] The term "treatment" or any grammatical variation thereof (e.g., treat, treating, and treatment etc.), as used herein, includes but is not limited to, ameliorating or alleviating a symptom of a disease or condition, reducing, suppressing, inhibiting, lessening, or affecting the progression, severity, and/or scope of a condition.

[0047] The term "subject," as used herein, describes an organism, including mammals such as primates, to which treatment with the compositions according to the subject invention can be provided. Mammalian species that can benefit from the disclosed methods of treatment include, but are not limited to, apes, chimpanzees, orangutans, humans, monkeys; and domesticated animals such as dogs, cats, horses, cattle, pigs, sheep, goats, chickens, mice, rats, guinea pigs, and hamsters.

[0048] Vectors include, for example, nucleic acid vectors, such as naked DNA and plasmids, and viral vectors, such as retroviral vectors, parvovirus-based vectors (e.g., adenoviral-based vectors and adeno-associated virus (AAV)-based vectors), lentiviral vectors (e.g., Herpes simplex (HSV)-based vectors), and hybrid or chimeric viral vectors, such as an adenoviral backbone with lentiviral components (see, e.g., Zheng et al., Nat. Biotech., 18(2), 176-80 (2000); International Patent Application WO 98/22143; International Patent Application WO 98/46778; and International Patent Application WO 00/17376) and an adenoviral backbone with AAV components (see, e.g., Fisher et al., Hum. Gene Ther., 7, 2079-2087 (1996)).

[0049] Vectors and vector construction are known in the art (see, e.g., Sam brook et al., Molecular Cloning: A Laboratory Manual, 2d edition, Cold Spring Harbor Laboratory, NY (1989); and Ausubel et al., Current Protocols in Molecular Biology, Green Publishing Associates and John Wiley & Sons, New York, N.Y. (1994).

[0050] The vector can contain any suitable promoter and other regulatory sequences (e.g., transcription and translation initiation and termination codons, which are specific to the type of host) to control the expression of the nucleic acid sequence encoding the polypeptide. The promoter can be a native or nonnative promoter operably linked to the nucleic acid molecule described above. The selection of promoters, including various constitutive and regulatable promoters, is within the skill of an ordinary artisan.

[0051] Examples of regulatable promoters include inducible, repressible, and tissue-specific promoters. Specific examples include viral promoters, such as adenoviral promoters and AAV promoters. Additionally, combining the nucleic acid described above with a promoter is within the skill in the art.

[0052] Cells (e.g., isolated host cells) containing the above-described polypeptide or nucleic acid molecule encoding the polypeptide, optionally in the form of a vector, are also provided by the disclosure. Any suitable cell can be used. Examples include host cells, such as *E. coli* (e.g., *E. coli* Tb-1, TG-2, DH5a, XL-Blue MRF' (Stratagene), SA2821, and Y1090), *Bacillus subtilis*, *Salmonella typhimurium*, *Serratia marcescens*, Pseudomonas (e.g., *P. aerugenosa*), *N. grassa*, insect cells (e.g., Sf9, Ea4), yeast (*S. cerevisiae*) cells, and cells derived from a mammal, including human cell lines. Specific examples of suitable eukaryotic host cells include VERO, HeLa, 3T3, Chinese hamster ovary (CHO) cells, W138 BHK, COS-7, and MDCK cells. Alternatively, cells from a mammal, such as a human, to be treated in accordance with the methods described herein can be used as host cells.

[0053] Methods of introducing vectors into isolated host cells and the culture and selection of transformed host cells *in vitro* are known in the art and include the use of calcium chloride-mediated transformation, transduction, conjugation, triparental mating, DEAE, dextran-mediated transfection, infection, membrane fusion with liposomes, high velocity bombardment with DNA-coated microprojectiles, direct microinjection into single cells, and electroporation (see, e.g., Sambrook et al., Molecular Biology: A Laboratory Manual, Cold Spring Harbor Laboratory, NY (1989); Davis et al., Basic Methods in Molecular Biology (1986); and Neumann et al., EMBO J. 1, 841 (1982)

[0054] . In one embodiment, the cell containing the vector or nucleic acid molecule is transcribed and translated efficiently by the cell.

[0055] The nucleic acid molecules, vectors, cells, and polypeptides can be administered to a mammal alone, or in combination with a pharmaceutically acceptable carrier. By pharmaceutically acceptable is meant a material that is not biologically or otherwise undesirable (e.g., the material can be administered to a mammal, along with the nucleic acid, vector, cell, or polypeptide, without causing undesirable biological effects or interacting in a deleterious manner with other components of the pharmaceutical composition in which it is contained). The carrier is selected to minimize the degradation of the agent and to minimize adverse side effects in the mammal. The selection of carrier is well-known to one of ordinary skill in the art.

30

[0056] Suitable carriers and their formulations are described in Remington: The Science and Practice of Pharmacy (19th ed.) ed. A.R. Gennaro, Mack Publishing Company, Easton, PA (1995). Examples of pharmaceutical carriers include sterile water, saline, Ringer's solution, dextrose solution, and buffered solutions at physiological pH.

[0057] Typically, an appropriate amount of a pharmaceutically acceptable salt is used in the formulation to render the formulation isotonic. In one embodiment, the pH of the solution is from about 5 to about 8 (e.g., about 5.5, about 6, about 6.5, about 7, about 7.5, and ranges including any of these amounts therebetween), although pHs outside this range can be employed. In another embodiment, the pH is about 7 to about 7.5.

[0058] The pharmaceutical composition of the subject invention can also include sustained-release preparations, such as semipermeable matrices of solid hydrophobic polymers containing the polypeptide, which matrices are in the form of shaped articles (e.g., films, liposomes, or microparticles). It will be apparent to those persons skilled in the art that certain carriers may be more preferable depending upon, for instance, the route of administration and the concentration of composition being administered.

[0059] Examples of compositions (e.g., pharmaceutical compositions) containing the nucleic acid molecule, vector, cell, or polypeptide can include carriers, thickeners, diluents, buffers, preservatives, surface active agents and the like. The compositions can also include one or more active ingredients, such as anti-IGF-I, -II antibodies, chemotherapy drugs, and the like. The compositions described herein can be approved for use by the U.S. FDA or the equivalent in other countries. The composition (e.g., pharmaceutical composition) containing the nucleic acid molecule, vector, cell, or polypeptide can be administered in any suitable manner depending on whether local or systemic treatment is desired, and on the area to be treated.

[0060] If the composition is to be administered parenterally, the administration is generally by injection. Injectables can be prepared in conventional forms, either as liquid solutions or suspensions, solid forms suitable for being prepared as a solution or suspension prior to injection, or as emulsions. Additionally, parental administration can involve the preparation of a slow-release or sustained-release system, such that a constant dosage is maintained (see, e.g., U.S. Patent 3,610,795).

[0061] Preparations for parenteral administration include sterile aqueous or nonaqueous solutions, suspensions, and emulsions. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate. Aqueous carriers include water, alcoholic/aqueous solutions,

emulsions or suspensions, including saline and buffered media. Parenteral vehicles include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's, or fixed oils. Intravenous vehicles include fluid and nutrient replenishers, electrolyte replenishers (such as those based on Ringer's dextrose), and the like. Preservatives and other additives also can be present such as, for example, antimicrobials, antioxidants, chelating agents, and inert gases and the like.

[0062] The compositions can be in a form of acid- or base- addition salts, obtainable by reaction with inorganic acids, such as hydrochloric acid, hydrobromic acid, perchloric acid, nitric acid, thiocyanic acid, sulfuric acid, and phosphoric acid, and organic acids such as formic acid, acetic acid, propionic acid, glycolic acid, lactic acid, pyruvic acid, oxalic acid, malonic acid, succinic acid, maleic acid, and fumaric acid, or by reaction with an inorganic base, such as sodium hydroxide, ammonium hydroxide, potassium hydroxide, and organic bases, such as mono-, di-, trialkyl, and aryl amines and substituted ethanolamines.

[0063] The nucleic acid molecules, vectors, or polypeptides can be administered with a pharmaceutically acceptable carrier and can be delivered to the mammal's cells *in vivo* and/or *ex vivo* by a variety of mechanisms well-known in the art (e.g., uptake of naked DNA, liposome fusion, intramuscular injection of DNA via a gene gun, endocytosis, and the like).

15

30

[0064] The exact amount of the compositions required to treat cancer may vary, depending on the species, age, gender, weight, and general conditions of the mammal, the particular polypeptide, nucleic acid, vector, or cell used, the route of administration, and whether other drugs are included in the regimen. Thus, it is not possible to specify an exact amount for every composition. However, an appropriate, suitable amount can be determined by one of ordinary skill in the art using only routine experimentation given the teachings herein. The dosage ranges for the administration of the compositions are those large enough to produce the desired effect; however, the dosage should not be so large as to cause adverse side effects, such as unwanted cross-reactions, anaphylactic reactions, and the like. Dosage can vary, and can be administered in one or more (e.g., two or more, three or more, four or more, or five or more) doses daily, for one or more days (or any suitable period of time to advance treatment). The composition can be administered immediately upon determination of cancer and continuously or intermittently administered.

[0065] The term "effective amount," as used herein, refers to an amount that is capable of treating or ameliorating a disease or condition or otherwise capable of producing an intended therapeutic effect. In an embodiment, an effective amount is an amount that is useful for treating or ameliorating tumor or cancer. In an embodiment, an effective amount enables an inhibition or reduction of cancer cell growth or metastasis in a subject. Effective dosages and schedules for administering the therapeutic agents and compositions described herein can be determined empirically, and making such determinations is routine to one of ordinary skill in the art.

[0066] The skilled artisan will understand that the dosage of the polypeptides varies, depending upon, for example, the route of administration, the particular polypeptide to be used, other drugs being administered, and the age, condition, gender and seriousness of the disease in the subject as described above. An effective dose of the polypeptide described herein generally ranges between about 1 μ g/kg of body weight and 100 mg/kg of body weight. Examples of such dosage ranges are, e.g., about 1 μ g - 100 μ g/kg, about 100 μ g - 1 mg/kg, about 1 mg/kg - 10 mg/kg, or about 10 mg - 100 mg/kg, once a month, a week, bi-weekly, daily, or two to four times daily.

[0067] Guidance in selecting appropriate doses for anti-IGF-IR antibodies, such as the polypeptides described herein, is found in the literature on therapeutic uses of antibodies (see, e.g., Handbook of Monoclonal Antibodies, Ferrone et al., eds., Noges Publications, Park Ridge, N.J., (1985); and Smith et al., Antibodies in Human Diagnosis and Therapy, Haber et al., eds., Raven Press, New York (1977).

[0068] A typical daily dosage of the polypeptide used might range from about 1 μ g/kg to up to about 100 mg/kg of body weight or more per day, depending on the factors mentioned above. For example, the range can be from about 100 mg to about 1 g per dose. Nucleic acids, vectors, and host cells should be administered so as to result in comparable levels of production of polypeptides.

[0069] The disclosure also includes kits comprising the polypeptides, nucleic acid molecules, vectors, cells, epitopes, or compositions of the foregoing. The kits can include a separate container containing a suitable carrier, diluent, or excipient. The kits also can include an adjuvant, cytokine, antiviral agent, immunoassay reagents, PCR reagents, radiolabels, and the like. Additionally, the kits can include instructions for mixing or combining ingredients and/or administration.

[0070] The disclosure also provides a method of detecting IGF-IR in a mammal comprising contacting a sample obtained from the mammal with the polypeptide described herein. If an antigen is present in the mammal, to which the polypeptide can bind, a complex forms between the polypeptide and the antigen. Detection of the complex indicates the presence of elevated IGF-IR in the mammal.

[0071] The sample from the mammal can be of any suitable sample to detect the presence of IGF-IR. The complex can be detected by any suitable manner. The polypeptides described herein are utilizable as labeled molecules employed in radioimmunoassay (RIA) or enzyme immunoassay (EIA), particularly enzyme linked immunosorbent assay (ELISA), by introducing thereto radioactive substances such as 1125, 1131, H3 (tritium), C14, and the like; various enzyme reagents such as peroxidase (POX), chymotripsinogen, procarboxypeptidase, glyceraldehyde-3-phosphate dehydroge-

nase, amylase, phosphorylase, D-Nase, P-Nase, i3-galactosidase, glucose-6-phosphate dehydrogenase, ornithine decarboxylase, and the like. The radioactive substance can be introduced in a conventional manner. For example, the introduction of radioactive iodine, 1125, can be carried out by the oxidative ionization method using chloramine T (see, e.g., Hunter et al., Nature, 194, 495-496 (1962)) or by using the Bolten-Hunter reagent (1125-iodinated p-hydroxyphenyl propionic acid N-hydroxy-succinimide ester).

[0072] The label for use in the method can be any suitable label known in the art, such as biotinylated proteins or peptides.

EXAMPLE

10

15

25

5

Binding of H10 to cell-associated IGF-IR on breast cancer MCF-7 cells in flow cytometry

[0073] MCF-7 cells expressing IGF-IR were incubated with PBS buffer containing 1% FBS (filled curve) or with 10 μ g/ml of recombinant H10 (empty curve) at 4°C for lh. The bound antibodies were detected using phycoerythrin conjugated to goat anti-human IgG, F(ab')2 (1:500) (ImmunoJackson). A FACSArray plate reader (BD biosciences) was used for fluorescence-activated cell sorting (FACS) and FlowJo software for data interpretation. The result is shown in figure 3.

SEQUENCE LISTING

20 [0074]

<110> University of Hong Kong Zhang, Mei-Yun
<120> ANTI-IGF-IR ANTIBODIES AND USES THEREOF

<130> UHK.153X

<150> 61/266,681 <151> 2009-12-14

30

<160> 15

<170> PatentIn version 3.5

35 <210> 1

<211> 124

<212> PRT

<213> Artificial Sequence

40 <220>

<223> amino acid sequence of a VH region of the H10 antibody

<400> 1

45

50

55

		Glu 1	Val	Gln	Leu	Leu 5	Glu	Ser	Gly	Ala	Glu 10	Val	Lys	Arg	Pro	Gly 15	Ser
5		Ser	Val	Arg	Val 20	Ser	Cys	Gln	Val	Ser 25	Gly	Tyr	Ser	Phe	Thr 30	Ala	Туг
10		Tyr	Val	Ser 35	Trp	Val	Arg	Gln	Thr 40	Pro	Gly	His	Gly	Leu 45	Glu	Trp	Met
15		Gly	Gly 50	Ile	Asn	Pro	Asp	Asn 55	Gly	Gly	Asn	Asn	Tyr 60	Ala	Gln	Lys	Phe
		His 65	Gly	Arg	Val	Thr	Phe 70	Ile	Ala	Asp	Glu	Ser 75	Thr	Arg	Thr	Val	His 80
20		Met	Glu	Leu	Arg	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Phe 95	Суз
25		Ala	Lys	Ser	Thr 100	Ser	Tyr	Asp	Tyr	Asp 105	Gly	Tyr	Trp	Tyr	Phe 110	Asp	Val
30		Trp	Gly	Gln 115	Gly	Thr	Ala	Val	Thr 120	Val	Phe	Ser	Ser				
30	<210> 2 <211> 1 <212> F <213> A	07 PRT	l Seai	Jence													
35	<220> <223> a				ce of a	ı VL re	gion c	of the I	1 10 ar	ntibody	y						
40	<400> 2	2															
45																	
50																	
55																	

		Glu 1	Leu	Gln	Met	Thr 5	Gln	Ser	Pro	Ser	Ser 10	Val	Ser	Ala	Ser	Val 15	Gly
5		Asp	Arg	Val	Thr 20	Ile	Thr	Cys	Arg	Ala 25	Ser	Ser	Ser	Val	Ser 30	Tyr	Leu
10		Ala	Trp	Tyr 35	Gln	Gln	Lys	Pro	Gly 40	Lys	Ala	Pro	Lys	Leu 45	Leu	Ile	Asn
15		Gly	Thr 50	Ser	Ser	Leu	Gln	Ser 55	Gly	Val	Pro	Ser	Arg 60	Phe	Ser	Gly	Ser
		Gly 65	Ser	Gly	Thr	Asp	Phe 70	Thr	Leu	Thr	Ile	Ser 75	Ser	Leu	Gln	Pro	Glu 80
20		Asp	Phe	Ala	Thr	Tyr 85	Tyr	Cys	Gln	Gln	Arg 90	Ser	Ser	Tyr	Pro	Phe 95	Thr
25		Phe	Gly	Gly	Gly 100	Thr	Lys	Val	Glu	Ile 105	Lys	Arg					
30	<210> 3 <211> 1 <212> P <213> A	6 PRT	l Sequ	ience													
	<220> <223> a	mino a	acid se	equend	ce of a	n H3 ı	region	of the	H10 a	antibo	dy						
35	<400> 3																
		Ala 1	Lys	Ser	Thr	Ser 5	Tyr	Asp	Tyr	Asp	Gly 10	Tyr	Trp	Tyr	Phe	Asp 15	Val
40	<210> 4 <211> 9 <212> P <213> A	PRT	l Sequ	ıence													
45	<220> <223> a	mino a	acid se	equenc	ce of a	n L3 r	egion	of the	H10 a	ntiboo	ly						
	<400> 4																
50					G] 1	.n Gl	ln Ai	rg S∈	er Se	er Ty	yr Pi	co Pl	ne Th	nr			
55	<210> 5 <211> 3 <212> D <213> A	72)NA	l Sequ	ience													
	<220>																

	<223> nucleic acid sequence of a VH region of the H10 antibody	
	<400> 5	
5	gaggtgcagc tgctcgagtc tggggctgag gtgaagaggc ctgggtcctc ggtgagagtc	60
	teetgecaag tttetggtta eteatteaet geetaetaeg teagttgggt gegaeagaee	120
10	cctggacacg ggcttgagtg gatgggaggg attaatcctg acaatggtgg taacaactac	180
	gcacagaagt ttcacggccg agtgacattt atcgccgacg agtccacgag gacagtccac	240
	atggaactgc gcagcctgag atctgaggac acggccgtct atttttgtgc aaagtcaacc	300
15	tcctatgatt acgacggtta ctggtacttc gatgtctggg gccaagggac cgcggtcacc	360
	gtcttctcct ca	372
20	<210> 6 <211> 321 <212> DNA <213> Artificial Sequence	
25	<220> <223> nucleic acid sequence of a VL region of the H10 antibody	
	<400> 6	
30	gagetecaga tgacecagte tecatettee gtgtetgeat etgteggaga cagagteace	60
	atcacttgtc gggcgagttc aagtgtaagt tacttagcct ggtatcagca gaaaccaggg	120
	aaagccccta agctcctgat caatggcacg tccagtttgc aaagtggggt cccatcaagg	180
35	ttcagcggca gtggatctgg gacagatttc actctcacca tcagcagcct gcagcctgaa	240
	gattttgcga cttactattg tcagcaaagg agtagttacc cattcacgtt cggcggaggg	300
40	accaaggtgg agatcaaacg a	321
	<210> 7 <211> 48 <212> DNA <213> Artificial Sequence	
45	<220> <223> nucleic acid sequence of an H3 region of the H10 antibody	
50	<400> 7 gcaaagtcaa cctcctatga ttacgacggt tactggtact tcgatgtc 48	
	<210> 8 <211> 27 <212> DNA	
55	<213> Artificial Sequence	

<223> nucleic acid sequence of an L3 region of the H10 antibody

```
<400> 8
         cagcaaagga gtagttaccc attcacg 27
         <210>9
5
         <211> 8
         <212> PRT
         <213> Artificial Sequence
         <220>
10
         <223> amino acid sequence of CDR1 of a VH region of the H10 antibody
         <400> 9
                                       Gly Tyr Ser Phe Thr Ala Tyr Tyr
15
                                                            5
         <210> 10
         <211> 6
         <212> PRT
20
         <213> Artificial Sequence
         <220>
         <223> amino acid sequence of CDR2 of a VH region of the H10 antibody
25
         <400> 10
                                            Ile Asn Pro Asp Asn Gly
30
         <210> 11
         <211> 6
         <212> PRT
         <213> Artificial Sequence
35
         <220>
         <223> amino acid sequence of CDR1 of a VL region of the H10 antibody
         <400> 11
40
                                            Ser Ser Val Ser Tyr Leu
                                                                 5
         <210> 12
         <211> 24
45
         <212> DNA
         <213> Artificial Sequence
         <220>
         <223> nucleic acid sequence of CDR1 of a VH region of the H10 antibody
50
         <400> 12
         ggttactcat tcactgccta ctac 24
         <210> 13
55
         <211> 13
         <212> DNA
         <213> Artificial Sequence
```

	<220> <223> nucleic acid sequence of CDR2 of a VH region of the H10 antibody																
5	<400> ² attaatco		13														
10	<210> 7 <211> 7 <212> [<213> 7	15 DNA	l Sequ	ıence													
	<220> <223> r	nucleic	acid s	sequer	nce of	CDR1	of a ∖	/L reg	ion of	the H1	0 anti	body					
15	<400> 14 tcaagtgtaa gttac 15																
20	<210> 15 <211> 1367 <212> PRT <213> Homo sapiens																
	<400> 15																
25		Met 1	Lys	Ser	Gly	Ser 5	Gly	Gly	Gly	Ser	Pro 10	Thr	Ser	Leu	Trp	Gly 15	Leu
30		Leu	Phe	Leu	Ser 20	Ala	Ala	Leu	Ser	Leu 25	Trp	Pro	Thr	Ser	Gly 30	Glu	Ile
35		Cys	Gly	Pro 35	Gly	Ile	Asp	Ile	Arg 40	Asn	Asp	Tyr	Gln	Gln 45	Leu	Lys	Arg
33		Leu	Glu 50	Asn	Cys	Thr	Val	Ile 55	Glu	Gly	Tyr	Leu	His 60	Ile	Leu	Leu	Ile
40		Ser 65	Lys	Ala	Glu	Asp	Tyr 70	Arg	Ser	Tyr	Arg	Phe 75	Pro	Lys	Leu	Thr	Val 80
45		Ile	Thr	Glu	Tyr	Leu 85	Leu	Leu	Phe	Arg	Val 90	Ala	Gly	Leu	Glu	Ser 95	Leu
50		Gly	Asp	Leu	Phe 100	Pro	Asn	Leu	Thr	Val 105	Ile	Arg	Gly	Trp	Lys 110	Leu	Phe
50		Tyr	Asn	Tyr 115	Ala	Leu	Val	Ile	Phe 120	Glu	Met	Thr	Asn	Leu 125	Lys	Asp	Ile
55		Gly	Leu 130	Tyr	Asn	Leu	Arg	Asn 135	Ile	Thr	Arg	Gly	Ala 140	Ile	Arg	Ile	Glu

	Lys 145	Asn	Ala	Asp	Leu	Cys 150	Tyr	Leu	Ser	Thr	Val 155	Asp	Trp	Ser	Leu	Ile 160
5	Leu	Asp	Ala	Val	Ser 165	Asn	Asn	Tyr	Ile	Val 170	Gly	Asn	Lys	Pro	Pro 175	Lys
10	Glu	Cys	Gly	Asp 180	Leu	Cys	Pro	Gly	Thr 185	Met	Glu	Glu	Lys	Pro 190	Met	Cys
	Glu	Lys	Thr 195	Thr	Ile	Asn	Asn	Glu 200	Tyr	Asn	Tyr	Arg	Cys 205	Trp	Thr	Thr
15	Asn	A rg 210	Cys	Gln	Lys	Met	Cys 215	Pro	Ser	Thr	Cys	Gly 220	Lys	Arg	Ala	Cys
20	Thr 225	Glu	Asn	Asn	Glu	Cys 230	Cys	His	Pro	Glu	Cys 235	Leu	Gly	Ser	Cys	Ser 240
25	Ala	Pro	Asp	Asn	Asp 245	Thr	Ala	Cys	Val	Ala 250	Cys	Arg	His	Tyr	Tyr 255	Tyr
	Ala	Gly	Val	Cys 260	Val	Pro	Ala	Cys	Pro 265	Pro	Asn	Thr	Tyr	Arg 270	Phe	Glu
30	Gly	Trp	Arg 275	Cys	Val	Asp	Arg	Asp 280	Phe	Cys	Ala	Asn	Ile 285	Leu	Ser	Ala
35	Glu	Ser 290	Ser	Asp	Ser	Glu	Gly 295	Phe	Val	Ile	His	Asp 300	Gly	Glu	Cys	Met
	Gln 305	Glu	Cys	Pro	Ser	Gly 310	Phe	Ile	Arg	Asn	Gly 315	Ser	Gln	Ser	Met	Tyr 320
40	Cys	Ile	Pro	Cys	G1u 325	Gly	Pro	Cys	Pro	Lys 330	Val	Cys	Glu	Glu	Glu 335	Lys
45	Lys	Thr	Lys	Thr 340	Ile	Asp	Ser	Val	Thr 345	Ser	Ala	Gln	Met	Leu 350	Gln	Gly
50	Cys	Thr	Ile 355	Phe	Lys	Gly	Asn	Leu 360	Leu	Ile	Asn	Ile	Arg 365	Arg	Gly	Asn
	Asn	Ile 370	Ala	Ser	Glu	Leu	Glu 375	Asn	Phe	Met	Gly	Leu 380	Ile	Glu	Val	Val
55	Thr 385	Gly	Tyr	Val	Lys	Ile 390	Arg	His	Ser	His	Ala 395	Leu	Val	Ser	Leu	Ser 400

	Phe	Leu	Lys	Asn	Leu 405	Arg	Leu	Ile	Leu	Gly 410	Glu	Glu	Gln	Leu	Glu 415	Gly
5	Asn	Tyr	Ser	Phe 420	Tyr	Val	Leu	Asp	Asn 425	Gln	Asn	Leu	Gln	Gln 430	Leu	Trp
10	Asp	Trp	Asp 435	His	Arg	Asn	Leu	Thr 440	Ile	Lys	Ala	Gly	Lys 445	Met	Tyr	Phe
45	Ala	Phe 450	Asn	Pro	Lys	Leu	Cys 455	Val	Ser	Glu	Ile	Tyr 460	Arg	Met	Glu	Glu
15	Val 465	Thr	Gly	Thr	Lys	Gly 470	Arg	Gln	Ser	Lys	Gly 475	Asp	Ile	Asn	Thr	Arg 480
20	Asn	Asn	Gly	Glu	Arg 485	Ala	Ser	Cys	Glu	Ser 490	Asp	Val	Leu	His	Phe 495	Thr
25	Ser	Thr	Thr	Thr 500	Ser	Lys	Asn	Arg	Ile 505	Ile	Ile	Thr	Trp	His 510	Arg	Tyr
	Arg	Pro	Pro 515	Asp	Tyr	Arg	Asp	Leu 520	Ile	Ser	Phe	Thr	Val 525	Tyr	Tyr	Lys
30	Glu	A la 530	Pro	Phe	Lys	Asn	Val 535	Thr	Glu	Tyr	Asp	Gly 540	Gln	Asp	Ala	Cys
35	Gly 545	Ser	Asn	Ser	Trp	Asn 550	Met	Val	Asp	Val	Asp 555	Leu	Pro	Pro	Asn	Lys 560
40	Asp	Val	Glu	Pro	Gly 565	Ile	Leu	Leu	His	Gly 570	Leu	Lys	Pro	Trp	Thr 575	Gln
	Tyr	Ala	Val	Tyr 580	Val	Lys	Ala	Val	Thr 585	Leu	Thr	Met	Val	Glu 590	Asn	Asp
45	His	Ile	Arg 595	Gly	Ala	Lys	Ser	Glu 600	Ile	Leu	Tyr	Ile	Arg 605	Thr	Asn	Ala
50	Ser	Val 610	Pro	Ser	Ile	Pro	Leu 615	Asp	Val	Leu	Ser	Ala 620	Ser	Asn	Ser	Ser
	Ser 625	Gln	Leu	Ile	Val	Lys 630	Trp	Asn	Pro	Pro	Ser 635	Leu	Pro	Asn	Gly	Asn 640
55	Leu	Ser	Tyr	Tyr	Ile 645	Val	Arg	Trp	Gln	Arg 650	Gln	Pro	Gln	Asp	Gly 655	Tyr

	Leu	Tyr	Arg	His 660	Asn	Tyr	Cys	Ser	Lys 665	Asp	Lys	Ile	Pro	Ile 670	Arg	Lys
5	Tyr	Ala	Asp 675	Gly	Thr	Ile	Asp	Ile 680	Glu	Glu	Val	Thr	Glu 685	Asn	Pro	Lys
10	Thr	Glu 690	Val	Cys	Gly	Gly	Glu 695	Lys	Gly	Pro	Cys	Cys 700	Ala	Cys	Pro	Lys
	Thr 705	Glu	Ala	Glu	Lys	Gln 710	Ala	Glu	Lys	Glu	Glu 715	Ala	Glu	Tyr	Arg	Lys 720
15	Val	Phe	Glu	Asn	Phe 725	Leu	His	Asn	Ser	Ile 730	Phe	Val	Pro	Arg	Pro 735	Glu
20	Arg	Lys	Arg	Arg 740	Asp	Val	Met	Gln	Val 745	Ala	Asn	Thr	Thr	Met 750	Ser	Ser
25	Arg	Ser	A rg 755	Asn	Thr	Thr	Ala	A la 760	Asp	Thr	Tyr	Asn	Ile 765	Thr	Asp	Pro
	Glu	Glu 770	Leu	Glu	Thr	Glu	Tyr 775	Pro	Phe	Phe	Glu	Ser 780	Arg	Val	Asp	Asn
30	Lys 785	Glu	Arg	Thr	Val	Ile 790	Ser	Asn	Leu	Arg	Pro 795	Phe	Thr	Leu	Tyr	Arg 800
35	Ile	Asp	Ile	His	Ser 805	Cys	Asn	His	Glu	Ala 810	Glu	Lys	Leu	Gly	Cys 815	Ser
40	Ala	Ser	Asn	Phe 820	Val	Phe	Ala	Arg	Thr 825	Met	Pro	Ala	Glu	Gly 830	Ala	Asp
	Asp	Ile	Pro 835	Gly	Pro	Val	Thr	Trp 840	Glu	Pro	Arg	Pro	Glu 845	Asn	Ser	Ile
45	Phe	Leu 850	Lys	Trp	Pro	Glu	Pro 855	Glu	Asn	Pro	Asn	Gly 860	Leu	Ile	Leu	Met
50	Tyr 865	Glu	Ile	Lys	Tyr	Gly 870	Ser	Gln	Val	Glu	Asp 875	Gln	Arg	Glu	Суз	Val 880
55	Ser	Arg	Gln	Glu	Tyr 885	Arg	Lys	Tyr	Gly	Gly 890	Ala	Lys	Leu	Asn	Arg 895	Leu
55	Asn	Pro	Gly	Asn	Tyr	Thr	Ala	Arg	Ile	Gln	Ala	Thr	Ser	Leu	Ser	Gly

	900	905	910
5	Asn Gly Ser Trp Thr Asp P: 915		ln Ala Lys Thr 25
10	Gly Tyr Glu Asn Phe Ile H 930 9	is Leu Ile Ile Ala Leu Pr 35 940	ro Val Ala Val
	Leu Leu Ile Val Gly Gly Le 945 950	eu Val Ile Met Leu Tyr Va 955	al Phe His Arg 960
15	Lys Arg Asn Asn Ser Arg Lo 965	eu Gly Asn Gly Val Leu Ty 970	yr Ala Ser Val 975
20	Asn Pro Glu Tyr Phe Ser A 980	la Ala Asp Val Tyr Val Pi 985	ro Asp Glu Trp 990
	Glu Val Ala Arg Glu Lys I 995	_	Leu Gly Gln Gly 1005
25	Ser Phe Gly Met Val Tyr (Glu Gly Val Ala Lys Gly 1015 1020	
30	Asp Glu Pro Glu Thr Arg 1	Val Ala Ile Lys Thr Val 1030 103	
35	Ala Ser Met Arg Glu Arg : 1040	Ile Glu Phe Leu Asn Glu 1045 1050	
	Met Lys Glu Phe Asn Cys 1 1055	His His Val Val Arg Leu 1060 1065	_
40	Val Ser Gln Gly Gln Pro 1 1070	Thr Leu Val Ile Met Glu 1075 1080	
45	Arg Gly Asp Leu Lys Ser 1	Tyr Leu Arg Ser Leu Arg 1090 1099	
50	Glu Asn Asn Pro Val Leu i 1100	Ala Pro Pro Ser Leu Ser 1105 1110	_
	Gln Met Ala Gly Glu Ile i 1115	Ala Asp Gly Met Ala Tyr 1120 1129	
55	Asn Lys Phe Val His Arg i	Asp Leu Ala Ala Arg Asn 1135 1140	=

	Ala	Glu 1145	Asp	Phe	Thr	Val	Lys 1150		Gly	Asp	Phe	Gly 1155	Met	Thr	Arg
5	Asp	Ile 1160	_	Glu	Thr	Asp	Tyr 1165	_	Arg	Lys	Gly	Gly 1170	Lys	Gly	Leu
10	Leu	Pro 1175	Val	Arg	Trp	Met	Ser 1180	Pro	Glu	Ser	Leu	Lys 1185	Asp	Gly	Val
15	Phe	Thr 1190	Thr	Tyr	Ser	Asp	Val 1195	Trp	Ser	Phe	Gly	Val 1200	Val	Leu	Trp
	Glu	Ile 1205	Ala	Thr	Leu	Ala	Glu 1210	Gln	Pro	Tyr	Gln	Gly 1215	Leu	Ser	Asn
20	Glu	Gln 1220	Val	Leu	Arg	Phe	Val 1225	Met	Glu	Gly	Gly	Leu 1230	Leu	Asp	Lys
25	Pro	Asp 1235	Asn	Cys	Pro	Asp	Met 1240	Leu	Phe	Glu	Leu	Met 1245	Arg	Met	Cys
30	Trp	Gln 1250	Tyr	Asn	Pro	Lys	Met 1255	Arg	Pro	Ser	Phe	Leu 1260	Glu	Ile	Ile
	Ser	Ser 1265	Ile	Lys	Glu	Glu	Met 1270	Glu	Pro	Gly	Phe	Arg 1275	Glu	Val	Ser
35	Phe	Tyr 1280	Tyr	Ser	Glu	Glu	Asn 1285	Lys	Leu	Pro	Glu	Pro 1290	Glu	Glu	Leu
40	Asp	Leu 1295	Glu	Pro	Glu	Asn	Met 1300	Glu	Ser	Val	Pro	Leu 1305	Asp	Pro	Ser
45	Ala	Ser 1310	Ser	Ser	Ser	Leu	Pro 1315	Leu	Pro	Asp	Arg	His 1320	Ser	Gly	His
	Lys	Ala 1325	Glu	Asn	Gly	Pro	Gly 1330	Pro	Gly	Val	Leu	Val 1335	Leu	Arg	Ala
50	Ser	Phe 1340	Asp	Glu	Arg	Gln	Pro 1345	Tyr	Ala	His	Met	Asn 1350	Gly	Gly	Arg
55	Lys	Asn 1355	Glu	Arg	Ala	Leu	Pro 1360	Leu	Pro	Gln	Ser	Ser 1365	Thr	Cys	

Claims

5

15

35

40

- An isolated humanized antibody or a binding fragment thereof that specifically binds to human insulin-like growth factor I receptor (IGF-IR), wherein a V_H region which comprises SEQ ID NO: 1 and wherein a V_L region which comprises SEQ ID NO: 2.
- 2. The isolated humanized antibody or a binding fragment thereof according to claim 1, which specifically binds to human IGF-IR expressed on cancer cells.
- 3. The isolated humanized antibody or a binding fragment thereof according to one of the claims 1-2, which specifically binds to the extracellular domain of human IGF-IR.
 - **4.** The isolated humanized antibody or a binding fragment thereof according to one of the claims 1-3, which is a monoclonal antibody.
 - 5. The isolated humanized antibody or a binding fragment thereof according to one of the claims 1-4, which comprises an Fab, Fab', F(ab')₂, or scFv.
- **6.** A pharmaceutical composition comprising an isolated humanized antibody or a binding fragment thereof according to any of the preceding claims and a pharmaceutically acceptable carrier.
 - **7.** A nucleic acid molecule encoding an isolated humanized antibody or a binding fragment thereof according to any one of the claims 1-5.
- 25 8. The nucleic acid molecule according to claim 7, which comprises a nucleic acid sequence selected from the group consisting of SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, and 5'ggcacgtcc 3'.
- **9.** A pharmaceutical composition comprising a nucleic acid molecule according to one of the claims 7 or 8 and a pharmaceutically acceptable carrier.
 - **10.** An isolated humanized antibody or a binding fragment thereof as defined by any one of the claims 1-5 for use in treating a tumor or cancer, comprising administering to a subject in need of such treatment an effective amount of said isolated antibody or binding fragment thereof.
 - 11. The isolated humanized antibody or a binding fragment thereof for use of claim 10, wherein the subject is a human.
 - **12.** The isolated humanized antibody or a binding fragment thereof for use of claim 10 or 11, wherein the tumor or cancer is prostate cancer, breast cancer, liver cancer, or colon cancer.
 - **13.** An isolated nucleic acid molecule as defined by claim 7 or 8 for use in treating a tumor or cancer, comprising administering to a subject in need of such treatment an effective amount of said isolated nucleic acid molecule.
- **14.** The isolated nucleic acid molecule for use of claim 13, wherein the tumor or cancer is prostate cancer, breast cancer, liver cancer, or colon cancer.

Patentansprüche

- Isolierter humanisierter Antikörper oder eines seiner Bindungsfragmente, das insbesondere an einen humanen insulinartigen Wachstumsfaktor 1-Rezeptor (IGF-IR) bindet, wobei eine V_H-Region SEQ ID NO:1 und wobei eine V_L-Region SEQ ID NO:2 aufweist.
- 2. Isolierter humanisierter Antikörper oder eines seiner Bindungsfragmente nach Anspruch 1, das insbesondere an humanen, auf Krebszellen expressierten IGF-IR bindet.
 - 3. Isolierter humanisierter Antikörper oder eines seiner Bindungsfragmente nach einem der Ansprüche 1-2, das insbesondere an die extrazelluläre Domäne von humanem IGF-IR bindet.

- **4.** Isolierter humanisierter Antikörper oder eines seiner Bindungsfragmente nach einem der Ansprüche 1-3, welcher ein monoklonaler Antikörper ist.
- Isolierter humanisierter Antikörper oder eines seiner Bindungsfragmente nach einem der Ansprüche 1-4, welcher ein Fab, Fab', F(ab')2 oder scFv aufweist.
 - **6.** Pharmazeutische Zusammensetzung aufweisend einen isolierten humanisierten Antikörper oder eines seiner Bindungsfragmente nach einem der vorstehenden Ansprüche und einen pharmazeutisch akzeptablen Träger.
- 7. Nukleinsäurenmolekül, das einen isolierten humanisierten Antikörper oder eines seiner Bindungsfragmente nach einem der Ansprüche 1-5 kodiert.
 - 8. Nukleinsäurenmolekül nach Anspruch 7, das eine Nukleinsäuresequenz aufweist, die ausgewählt ist aus der Gruppe bestehend aus SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14 und 5' ggcacgtcc 3'.
 - **9.** Pharmazeutische Zusammensetzung, die ein Nukleinsäurenmolekül gemäß einem der Ansprüche 7 oder 8 und einen pharmazeutisch akzeptablen Träger aufweist.
- 10. Isolierter humanisierter Antikörper oder eines seiner Bindungsfragmente wie in einem der Ansprüche 1-5 definiert zur Verwendung bei der Behandlung von Krebs oder eines Tumors, aufweisend Verabreichen einer wirksamen Menge des besagten isolierten Antikörpers oder eines seiner Bindungsfragmente an ein Subjekt, das eine solche Behandlung benötigt.
- 25 11. Isolierter humanisierter Antikörper oder eines seiner Bindungsfragmente zur Verwendung nach Anspruch 10, wobei das Subjekt ein Mensch ist.
 - **12.** Isolierter humanisierter Antikörper oder eines seiner Bindungsfragmente zur Verwendung nach Anspruch 10 oder 11, wobei der Tumor oder Krebs Prostatakrebs, Brustkrebs, Leberkrebs oder Darmkrebs ist.
 - 13. Isoliertes Nukleinsäurenmolekül nach Anspruch 7 oder 8 zur Verwendung bei der Behandlung von Krebs oder eines Tumors, aufweisend das Verabreichen einer wirksamen Menge des besagten isolierten Nukleinsärenmoleküls an ein Subjekt, das eine solche Behandlung benötigt.
- 35 14. Isoliertes Nukleinsäuremolekül zur Verwendung nach Anspruch 13, wobei der Tumor oder Krebs Prostatakrebs, Brustkrebs, Leberkrebs oder Darmkrebs ist.

Revendications

40

5

15

30

50

- Anticorps humanisé isolé ou fragment de liaison de celui-ci qui se lie spécifiquement au récepteur de facteur de croissance insulinomimétique I humain (IGF-IR), dans lequel une région V_H comprend la SEQ ID NO : 1, et dans lequel une région V_I comprend la SEQ ID NO : 2.
- **2.** Anticorps humanisé isolé ou fragment de liaison de celui-ci selon la revendication 1, qui se lie spécifiquement à l'IGF-IR humain exprimé sur des cellules cancéreuses.
 - 3. Anticorps humanisé isolé ou fragment de liaison de celui-ci selon la revendication 1 ou 2, qui se lie spécifiquement au domaine extracellulaire de l'IGF-IR humain.
 - **4.** Anticorps humanisé isolé ou fragment de liaison de celui-ci selon l'une quelconque des revendications 1 à 3, qui est un anticorps monoclonal.
- 5. Anticorps humanisé isolé ou fragment de liaison de celui-ci selon l'une quelconque des revendications 1 à 4, lequel comprend Fab, Fab', F(ab')₂ ou scFv.
 - **6.** Composition pharmaceutique comprenant un anticorps humanisé isolé ou fragment de liaison de celui-ci selon l'une quelconque des revendications précédentes et un porteur acceptable sur le plan pharmaceutique.

- 7. Molécule d'acide nucléique codant un anticorps humanisé isolé ou fragment de liaison de celui-ci selon l'une quelconque des revendications 1 à 5.
- 8. Molécule d'acide nucléique selon la revendication 7, laquelle comprend une séquence d'acide nucléique sélectionnée parmi le groupe consistant en SEQ ID NO : 5, SEQ ID NO : 6, SEQ ID NO : 7, SEQ ID NO : 8, SEQ ID NO : 12, SEQ ID NO : 13, SEQ ID NO : 14 et 5'ggcacgtcc3'.
 - **9.** Composition pharmaceutique, comprenant une molécule d'acide nucléique selon la revendication 7 ou 8 et un porteur acceptable sur le plan pharmaceutique.
 - 10. Anticorps humanisé isolé ou fragment de liaison de celui-ci selon l'une quelconque des revendications 1 à 5, destiné à être utilisé dans le traitement d'une tumeur ou d'un cancer, comprenant l'administration à un sujet nécessitant un traitement de ce type d'une quantité efficace dudit anticorps humanisé isolé ou fragment de liaison de celui-ci.
- 15 **11.** Anticorps humanisé isolé ou fragment de liaison de celui-ci pour l'utilisation selon la revendication 10, dans lequel le sujet est humain.
 - 12. Anticorps humanisé isolé ou fragment de liaison de celui-ci destiné à une utilisation selon la revendication 10 ou 11, dans lequel la tumeur ou le cancer est un cancer de la prostate, un cancer du sein, un cancer du foie ou un cancer du côlon.
 - 13. Molécule d'acide nucléique isolée selon la revendication 7 ou 8, destinée à être utilisée dans le traitement d'une tumeur ou d'un cancer, comprenant l'administration à un sujet nécessitant un traitement de ce type d'une quantité efficace de ladite molécule d'acide nucléique isolée.
 - **14.** Molécule d'acide nucléique isolée destiné à une utilisation selon la revendication 13, dans laquelle la tumeur ou le cancer est un cancer de la prostate, un cancer du sein, un cancer du foie ou un cancer du côlon.

22

55

5

10

20

25

30

35

40

45

50

Figure 1

H10 VH (SEQ ID No: 1):

EVQLLESGAEVKRPGSSVRVSCQVS<u>GYSFTAYY</u>VSWVRQTPGHGLEWMGG<u>INPDNG</u> GNNYAQKFHGRVTFIADESTRTVHMELRSLRSEDTAVYFC<u>AKSTSYDYDGYWYFDV</u>W GQGTAVTVFSS

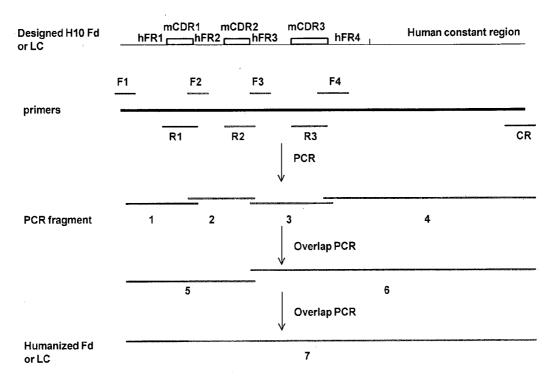
H10 VL (SEQ ID NO: 2):

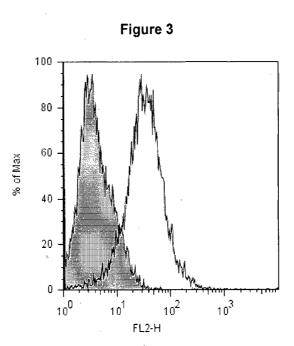
ELQMTQSPSSVSASVGDRVTITCRAS<u>SSVSY</u>LAWYQQKPGKAPKLLIN<u>GTS</u>SLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQRSSYPFTFGGGTKVEIKR

H10 H3 (SEQ ID No: 3): AKSTSYDYDGYWYFDV

H10 L3 (SEQ ID NO: 4): QQRSSYPFT

H10 VH DNA (SEQ ID NO: 5):


H10 VL DNA (SEQ ID NO: 6):


gagetecagatgacecagtetecatetteegtgtetgeatetgteggagacagagteaceateaettgtegggegagt<u>teaagtgaagttaeettgtegggegagtteaagtgaagteeettgateaatggeaetteegggaaagteeettgateaatggeaettgaagttgeaaagtteaettgggacagattteaeteteaeattageageetgaagatttgegaettaetattgteageagagagtagttaeeeatteaegtteggeggagggaeeaaggtggagateaaacga</u>

H10 H3 DNA (SEQ ID NO: 7): gcaaagtcaacctcctatgattacgacggttactggtacttcgatgtc

H10 L3 DNA (SEQ ID NO: 8): cagcaaaggagtagttacccattcacg

Filled curve: 2nd antibody control Empty curve: 10 µg/ml of recombinant H10

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 61266681 A [0001]
- US 4816567 A [0023] [0033]
- US 5804440 A [0024]
- US 6096441 A [0024]
- WO 9429348 A [0025]
- US 4342566 A [0025]
- US 5565332 A [0033]
- US 5721367 A [0033]
- US 5837243 A [0033]

- US 5939598 A [0033]
- US 6130364 A [0033]
- US 6180377 B [0033]
- US 5314995 A [0034]
- WO 9822143 A [0048]
- WO 9846778 A [0048]
- WO 0017376 A [0048]
- US 3610795 A [0060]
- WO 61266681 A [0074]

Non-patent literature cited in the description

- ZHANG et al. mAbs, 2009, vol. 1, 475-480 [0004]
- KOHLER et al. Nature, 1975, vol. 256, 495-497
 [0022]
- HARLOW; LANE. Antibodies, A Laboratory Manual.
 Cold Spring Harbor Publications, 1988 [0027]
- **BOERNER et al.** *J. Immunol.*, 1991, vol. 147 (1), 86-95 [0029]
- MARKS et al. J. Mol. Biol., 1991, vol. 222, 581-597
 [0030]
- JAKOBOVITS et al. PNAS, 1993, vol. 90, 2551-255 [0031]
- JAKOBOVITS et al. Nature, 1993, vol. 362, 255-258
 [0031]
- **JONES et al.** *Nature*, 1986, vol. 321, 522-525 **[0032]**
- RIECHMANN et al. *Nature*, 1988, vol. 332, 323-327 [0032]
- VERHOEYEN et al. Science, 1988, vol. 239, 1534-1536 [0032]
- ZHENG et al. Nat. Biotech., 2000, vol. 18 (2), 176-80 [0048]

- FISHER et al. Hum. Gene Ther., 1996, vol. 7, 2079-2087 [0048]
- SAM BROOK et al. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, 1989 [0049]
- AUSUBEL et al. Current Protocols in Molecular Biology. Green Publishing Associates and John Wiley & Sons, 1994 [0049]
- SAMBROOK et al. Molecular Biology: A Laboratory Manual. Cold Spring Harbor Laboratory, 1989 [0053]
- DAVIS et al. Basic Methods in Molecular Biology, 1986 [0053]
- **NEUMANN et al.** *EMBO J.*, 1982, vol. 1, 841 **[0053]**
- Remington: The Science and Practice of Pharmacy.
 Mack Publishing Company, 1995 [0056]
- Handbook of Monoclonal Antibodies. Noges Publications, 1985 [0067]
- SMITH et al. Antibodies in Human Diagnosis and Therap. Raven Press, 1977 [0067]
- HUNTER et al. Nature, 1962, vol. 194, 495-496
 [0071]