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We explore theoretically the single-photon transport in a single-mode waveguide that is coupled to a hybrid
atom-optomechanical system in a strong optomechanical coupling regime. Using a full quantum real-space
approach, transmission and reflection coefficients of the propagating single-photon in the waveguide are obtained.
The influences of atom-cavity detuning and the dissipation of atom on the transport are also studied. Intriguingly,
the obtained spectral features can reveal the strong light-matter interaction in this hybrid system.
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I. INTRODUCTION

Recently, research of controllable single-photon transport
in low-dimensional systems has attracted growing interest
because of its significant importance in quantum control,
including quantum information processing. Usually this kind
of manipulation is achieved by strongly coupling a propagating
single photon in the waveguide to a local quantum system
[1-3]. A desired single-photon control process results from
an interference between the directly transmitted photon and
the photon re-emitted by the emitter. Specifically, such a
waveguide-emitter system can be realized by a photonic
nanowire with an embedded quantum dot [4], surface plasmons
coupled to a single two-level emitter [5], a superconducting
transmission line coupled to a superconducting artificial atom
[6], or a single-mode waveguide coupled to a cavity interacting
with a two-level atom [7-10].

As is known, a new type of optomechanical cavity was
also developed to couple photons and phonons via radiation
pressure. Significant research interest in this frontier of
optomechanics is motivated by its potential applications in
ultrasensitive measurements, quantum information process-
ing, and implementation of novel quantum phenomena at
macroscopic scales [11-13]. Typically, if an optomechanical
system works in the single-photon strong-coupling regime,
the radiation pressure from a single photon can even produce
observable effects. Specifically, a single-photon coupling
strength larger than the cavity decay rate may define the regime
where coherent optomechanical interaction takes place; and
a coupling strength larger than the frequency of mechanical
resonator means that multiphonon processes take place in
the interactions. Although the single-photon strong-coupling
regime has not yet been reached except for analogous cold
atom experiments [14—16]. But recent experiments based on
superconducting devices [17], optomechanical crystal cavity
[18,19], and spoke-anchored toroidal optical microcavity
[20] have already shown huge progress. This progress also
inspired a series of theoretical investigations, including photon
blockade [21-23] and photon-induced tunneling [24], single-
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photon cooling [25], optomechanically induced transparency
in the single-photon strong-coupling regime [26], and op-
tomechanical instability [27]. Typically, in most quantum
optomechanical devices, the cavity is side or direct coupled to
a waveguide [13]. Thus in the single-photon regime, optome-
chanical systems, rather than traditional quantum emitters,
may enable us to control the propagating single-photon in the
waveguide. Moreover, the single-photon transmission spectra
can be used to probe and characterize the strong-coupling
regime [28,29]. We also note that, although the regime of
single-photon strong optomechanical coupling is still difficult
for experimental realization, some recent works have studied
the nonlinear effects in the relatively weak optomechanical
coupling regime [30-32].

In this paper, we explore theoretically the single-photon
transport in a single-mode waveguide coupled to a hybrid
atom-optomechanical system in the single-photon strong-
coupling regime. Recently, a related scheme was proposed to
achieve the strong coupling between the center-of-mass motion
of a single trapped atom and the motion of a membrane [33].
Here we wish to indicate that the hybrid atom-optomechanical
system considered in this work is realized by coupling an
optomechanical cavity to the atomic internal degrees of
freedom (the center-of-mass motion of atom is neglected).
Notably, a weak continuous-wave laser scattering problem in
this hybrid atom-optomechanical system was perturbatively
treated in a recent study by assuming the weak optomechanical
coupling [34]. Here, we employ a full quantum-mechanical
approach [1,2,29] to study the transmission and reflection
properties of the propagating photon in the waveguide. In our
treatment, we focus on the strong optomechanical coupling
regime, where multiple phonons are involved in the scattering.
Moreover, the transport of a nonmonochromatic incident
photon in the form of a wave packet is studied. Our results
also show that the single-photon transmission and reflection
spectra can be used to probe and characterize the strong
optomechanical and atom-light interactions. Finally, we solve
the response of this system to a single photon instead of a
continuous drive, for controllable single-photon transport is of
central importance in the future quantum devices [1,2].

The paper is organized as follows. In Sec. II, we introduce
our model for describing the single-photon transport. Then, in
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FIG. 1. (Color online) Schematic plot of a coupling system
considered here. An optomechanical cavity interacting with a two-
level atom is coupled to a single-mode waveguide, in which single
photons propagate along the arrow direction. (a) Side-coupled cases.
(b) Direct coupled cases.

Sec. III, we look into the single-photon transport properties
in detail. The influences of detuning and dissipation are also
addressed. Finally, further discussions and conclusions are
given in Sec. IV.

II. HAMILTONIAN AND THE SOLUTIONS

We consider a hybrid atom-optomechanical system (i.e., a
single two-level atom coupled to an optomechanical cavity) to
be coupled to a single-mode waveguide. With well-developed
techniques for confining a single atom in a usual optical cavity
[35], it seems achievable in the near future to couple atoms with
optomechanical cavities. Usually, the atom-optomechanical
system can either side-coupled or directly coupled to a waveg-
uide, which is schematically illustrated in Figs. 1(a) and 1(b).
In this paper, we focus on the single-photon transport problem
of the side-coupling case, for one can straightforwardly map
the reflection amplitude of the side-coupled case into the
transmission amplitude of the direct-coupled cases [2]. We
assume a linear dispersion relation of the waveguide optical
mode. In addition, we take narrow bandwidth approximation
and decompose the optical field propagating in the waveguide
into two distinct contributions with right- and left-moving
modes. Finally, the Markov approximation and rotating-wave
approximation are assumed. Consequently, the effective
Hamiltonian of this system may be written as (& = 1)

H = /dxa;(x) (—ivg%> ag(x)

+ /dxai(x) <ivg8ix> ar(x)

Wy . i
+ 701 —ivile)alela + wec'c
+Qb'b — gocTe(b + b1 + A(cot + cTo7)
+V / de(x)(aIQ(x)c + aR()c)cT + aZ(x)c + aL(x)cT).
(1)
The first and second lines denote the waveguide optical mode,
where v, is the group velocity of the photons and a}e (x) (az (x))
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is a bosonic operator creating a right-going (left-going) photon
at x. The third and fourth lines describe the isolated atom-
optomechanical system, where ¢! (") is the photon (phonon)
creation operator and ¢ " (o ) is the atomic raising (lowering)
operator generating transition between ground state and exited
state: 07|g)y = |€)u, 07 |€)s = |g)a [36]. w, is the atomic
transition frequency, w, is the cavity resonance frequency, <2
is the mechanical frequency, g is the single-photon coupling
strength of the radiation pressure between the cavity and the
mirror, and A is the coupling strength between the cavity and
the atom. The fifth line represents the coupling between the
waveguide and the atom-optomechanical system, where V is
the coupling strength between the cavity and the waveguide.
The according cavity-waveguide’s decay rate can be defined
as T'=V?/v,. Note that in our treatment, an imaginary
term is included to model the spontaneous emission of the
atom at the rate y,, due to coupling to the reservoir [2]. In
addition, we assume that the majority of the decayed light
from the cavity is guided into waveguide modes, i.e., “strong
coupling” exists between the cavity and the waveguide [37].
Thus the decay rate « of the cavity into channels other than the
one-dimensional continuum is negligible. We also assume that
the decay rate y), of the mirror motion is much smaller than
the cavity-waveguide’s decay rate. As a result, I' > «,yy, the
optomechanical decoherence processes can safely be ignored,
and the main dissipative processes leading to loss of photons
are originated from the decay of atom y,. Experimentally, in
both typical cavity QED and solid-state circuit QED systems,
the ratio between the atom (artificial atom) decay rate and the
cavity decay rate is about y,/I" ~ 0.1 [38].

For an input one-photon Fock state, the stationary state of
the system satisfies the eigenequation

Hle) = €le). (2

We assume that, initially, the mirror is in state |ng)p, the
atom is in the ground state, the cavity is empty, and a
single-photon comes from the left with energy v,k with k
as the wave vector of the photon. In this case, the total energy
of the coupled system is € = —w,/2 + vgk +no€2. In the
single-photon subspace, |€) can be expanded as

BEDS / dxpp(x.n)ak(x)|2)|n),

+> / dxpr(x.m)a} (x)|@)[n)
+ ) e @)+ Y faoTl@) ) ()

where | @) = |0),|0).|g), is the vacuum state, with zero photon
in both the waveguide and the cavity and with the atom in
the ground state. |n), represents the number state of the me-
chanical mode. @g 1 (x,n) is the single-photon wave function
in the R/L mode. e, and f, are excitation amplitudes of the
cavity and the atom, respectively. |71}, = exp[%“(bT —Db)]|n)p
is the single-photon displaced number state of the mechanical
oscillator satisfying the eigenequation

[wecTe + QbTh — gocte(b 4+ bH]|1) )
= (e +n2 — &)}, )
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where § = g2/ is the photon-state frequency shift caused by
a single-photon radiation pressure.

By substituting Eq. (3) into Eq. (2), we obtain the following
equations of motion:

8(,0R(.X,ﬂ)

—iUgT + S(X)V Z emUnm
Wq
- <6 + 7 - nQ)(pR(xvn)v (Sa)
d )
ivg$ +8@V Y en U
Wq
e <6 + 7 - nQ)‘pL(-xJ/l)v (Sb)

v f dx3(0)[@r(x,n) + gu(x.m)] + Af

:Z<e+%—wc—m9+5)€mUnm, (SC)

A;emUnm = (e - % —nQ —I—iya)f,,, (5d)

with Uy, = (n | m1),.

Assuming that the mirror is initially prepared in state |ng),
and a single-photon comes from the left with energy vk,
@r(x,n) and ¢ (x,n) should take the form

i Q
pr(x,n) = 9(_x)5nnoel (k+(n07n)a)x

+ 9(x)tnei(k+(n°_n)%)x, (6a)
o1(rm) = O(—x)rye (roomE)x, (6b)

where t, and r,, are the transmission and reflection amplitude,
respectively. Substituting Eqs. (6a) and (6b) into Egs. (5a)—
(5d), the equations for ¢,, r,,, €,, and f, are given by

- ivg(_snno + tn) +V Z €m Unm = 07 (73.)

m

—ivgry +V Y enUnm =0, (7b)

m

1
EV[Snno + tn + rn] + )\fn
=Y (Ac+ (g —mQ+ 8) e Uy, (7¢)
Y enUnm = (A = Dge + (g = mQ+ iva) fu.  (7d)
with Ay = vgk — w¢, Age = wq — we. If L K T, y,, we can
have the series solutions of r,, and ¢,
U U¥ MU U Uy UF
A (n') A (n) Ay (m) A (n”)

n' n'mn”

Ly

n'mn"m'n"

;. ) (82)
I, = (Snno +ry (8b)

WU U Ui Uy U U

m'n non'”"

A () A, (m)A. (") A, (m") A (n")
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with
Ac(m)=Ac+ (g —m)Q+ 8 +il,
Ao(n)=Ac = Aye + (ng — QL+ iya.

The first term in Eq. (8a) represents a single photon directly
scattered by the optomechanical cavity without interacting
with the atom in it. The following terms correspond to the
processes in which the single photon is re-emitted by the
cavity after interacting with the atom (i.e., single-photon
exchange processes between the cavity and the atom). Thus
the reflection amplitude r, is the quantum interference of all
these processes. Equation (8b) shows that the transmission
wave is the superposition of the propagating wave in the
waveguide without entering the cavity and the re-emitted wave
after interaction with the system.

For an arbitrary X, Eqs. (7a)—(7d) can be solved numerically
by choosing the upper limit of  large enough, namely 7, >
no, and solving the attained 4 (ny.x + 1) equations. Note that
r, (t,) represents the amplitude of reflecting (transmitting) a
single-photon with frequency v k — (n — no) 2. Thus the total
single-photon transmission and reflection coefficients should

be given by
T=> Il R=)_|nl ©)

More generally, the mechanical resonator can be initially in
a pure state (e.g., coherent state) Zno Cy, In0);, or a mixed
state (e.g., thermal state) Zno Py, Ino), (nol,,. The according
single-photon transmission and reflection coefficients are

2

r= Y Y G| B =Y Cur
n no n no
for a pure state and

T=>"" Pultnnl,

n no

2
(10)

R=)"% Pulrmal’ (1D
n no

for a mixed state, respectively.

III. SINGLE-PHOTON SCATTERING SPECTRA

A. Single-photon transmission (reflection) coefficient:
Atom cavity in tune and nondissipative case

We first investigate the single-photon transmission and
reflection spectra of an optomechanical cavity containing no
atom. Only the sideband-resolved regime I' « €2 is considered
in this work. We plot the transmission and reflection coefficient
as the functions of the photon-cavity detuning A, for various
values of gy when the mirror is initially prepared in the ground
state |0),, as shown in Fig. 2. When gy = 0, the coherently
interference of the leaked waves out of the cavity and the
propagating modes in the one-dimensional continuum result
in a complete suppression of the transmission for a resonantly
incident photon with A, = 0. When entering the regime with
go ~ 2, where multiphonon processes can take place, the
transmission dips (reflection peaks) appear at A, = —6 + 12
(n=0,1,2--.), exhibiting a global red shift § and obvious
multisidebands. This means that an incident single-photon
with frequency w. — § 4+ n2 can be strongly reflected by the
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FIG. 2. (Color online) Single-photon transmission (reflection)
spectra of a standard optomechanical cavity (i.e., the cavity-atom
coupling strength 1 = 0) for various g¢. The cavity-waveguide decay
rate I' = 0.1€2 is chosen for plotting the spectra.

optomechanical system because of the strong optomechanical
coupling.

To investigate the single-photon transmission and reflection
property of the hybrid atom-optomechanical system, we
first give the eigenenergies and eigenstates of an isolate
atom-optomechanical system. The Hamiltonian of an isolate
atom-optomechanical system can be written as

Hio = Hy+ H; (12)
with
Hy = %UZ +w.cle + QbTb — gochc(b +bh, (13a)

H; = AMco™ + clo). (13b)

In the single-photon subspace, the eigenstates of Hj are
[0)cle)aln), with the eigenenergy €4, = w,/2+nQ and
[1).18)alft), with the eigenenergy €, = —w,/2+ o, +
n<2 — §. In this subspace, exact diagonalization of the Han-
miltonian H, yields the eigenstates

[Y$P) = sin6[1).[g)al@i)s + cosB[0)cle)aln)y,  (14a)
[Y$7) = —cosB1)c[g)alii)y + sin60)cle)aln)y,  (14b)
with the corresponding eigenenergies
. s 1
E® = % +nQ =3+ V(B + P+ A (159)

. 51
E;—>=%+n9—§—§ (Age + 8> + 422, (15b)

I, 2
6 = —tan .
2 Age + 6
We now consider the case that the two-level atom is
in resonance with the cavity, i.e., A, = 0. Here we are
especially interested in the following two-parameter regimes:
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@A>»>Q>T and A > §; (b) L < T, for the single-photon
transmission (reflection) spectrum will show Rabi-splitting
like structure in the case (a) and EIT-like one in the case
(b), respectively. When the atom-cavity coupling strength
satisfies A > 2 > I" and A > §, the eigenstates of the atom-
optomechanical system take the form

1
[Pty ~ —(1)clg)alii)s + 10)cle)aln)s),

(16a)
V2
1
W) ~ 5 Del&dally = 10)cledaln)y).  (16b)
with the corresponding eigenenergies
. 8

Efl+)%%+n§2—§+k, (17a)

EO~ % yna—2 5 (17b)

" 2 2

The energy-level structure in this case is plotted in Fig. 3(a).
When A < T, the eigenstates of the atom-optomechanical
system take the form

) A "
[¥,"7) ~ 10)cle)aln)s + gll)clg)alnn, (18a)
_ N A
V) ~ 1elg)al)s = S10)cle)aln)p,  (18b)
with the eigenenergies
e 22
ES ~ %—l—nQ—i—?, (19a)
() oy Y A
E! %7+n9—8—?. (19b)

The energy-level structure of this case is depicted in Fig. 3(b).

Figures 4 and 5 give the single-photon transmission (reflec-
tion) spectra of the two cases. When the atom-cavity coupling
strength A > € > I and the optmechanical coupling strength
go = 0, the transmission(reflection) spectrum shows vacuum
Rabi splitting [2,7] with the splitting width 2A, as shown in
Fig. 4(a). Figures 4(b)-4(d) show how the moving mirror
modifies the vacuum Rabi spectrum in the strong-coupling
regime with multiphonon processes taking place. When the
coupling strength gy increases to be comparable to the
mechanical frequency €2, the spectra will undergo a red shift
8/2. Additionally, on the right side of each main peak, more
sidebands will appear with interval €2, corresponding to the
energy levels described in Egs. (17a) and (17b).

If A <T, we can get a spectrum that is analogous
to that for electromagnetically induced transparency (EIT)
phenomena [2,39]. Typically, when go =0, the spectrum
exhibits a standard EIT one with a very narrow transmission
window, as shown in Fig. 5(a). When entering the regime
go ~ 2, more EIT structures appear in the sideband regime
[Figs. 5(b)-5(d)]. The transmission maxima are located at
A, =nQ (n=0,1,2-..). Typically, when gy = /mQ (m =
1,2,---),1e., 8 =mQ, we have €y, = €4y = 0:/2 +nQ.
Namely, the eigenstates [0).|e),|n), and [1).|g)aln + m),
of Hy are degenerate. This degeneracy is perturbed by
the relatively weak atom-cavity interaction Hj, resulting in
a pair of near-degenerate states |(Y) and |y.;,) with
eigenenergies w, /2 + nQ £ A?/8, as shown in Fig. 3(b). Thus,
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FIG. 3. (Color online) The energy-level structure of a hybrid atom-optomechanical cavity (limited to the zero- and one-photon subspaces)
in the single-photon strong-coupling regime, where the two-level atom is in resonance with the cavity (i.e., A,. = 0). The atom-cavity coupling
strength satisfies A > Q > I and A > § for (a) and A < I" with go = Q (i.e., § = Q) for (b).

when a single-photon with detuning A, = nQ2(n =0,1,2---)
is injected, destructive quantum interference occurs between
the two possible transition channels |0).|g),|0), — |¥{P) and
[0)c18)al0)p — |1//f;)m), resulting in a complete transmission
of the single photon. This generates an EIT-like structure
at A, =n<Q in the transmission (reflection) spectrum, as
seen in Figs. 5(c) and 5(d). This EIT-like phenomenon is

1.0
@ Y M
0.5} MQ=4,9=0 | . R
18 SR, . R LSO
ey =
0.5} MQ=4,g,/Q=0.4 R
1 8 I PR AT P [ q---3-- ",l‘ ------- po--pe- -
@ WF Wp T
05} /=4, /=08 R
0 SRS N S

FIG. 4. (Color online) Single-photon transmission (reflection)
spectra of the atom-optomechanical system for A > I'. The parame-
tersare A =42, A, =0,y, =0,and I' = 0.1Q.

very similar to cavity-induced transparency [40] and can be
explained in terms of interference effect used in Ref. [34].
Specifically, in our case, when A, =nQ (n =0,1,2--+),
the states |1).|g)q|n +m); cannot be populated because
of destructive quantum interference in the excitation paths,
resulting in direct transmission of the single photon without
absorption. The transmission dips (reflection peaks) located at

(a)
2/Q=0.05, g,=0

() ——
0.5F1/Q=0.05, gO/Q:‘I ________ R
(o) S pe=-g--- p===p” L { """ '?‘ ----- Rt f--g---
1.0 W
(d) —
0.5F1/Q=0.05, gO/Q=1.732 ________ R
. X A i
(o) — Seaepec Alsaee e [ TR (R 1o eoeaeo
4 -3 -2 -1 0 1 2 3 4
Ac/Q

FIG. 5. (Color online) Single-photon transmission (reflection)
spectra of the atom-optomechanical system for A < I'. The parame-
tersare A = 0.05Q2, A, =0,y, =0,and I" = 0.1KQ2.
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FIG. 6. (Color online) Single-photon transmission (reflection) spectra for detuned atom-cavity cases. In (a), (c), and (e), the atom-cavity
detuning is A, = —0.1€2; in (b), (d), and (f), A,. = 0.1€2. The other parameters are A = 0.052, y, =0, and I' = 0.12.

A, =—-IQ (=1,...,m), correspond to the |0).|g),10), —
|I//f;_)l) (I=1,...,m) transition, as shown in Figs. 5(c)

and 5(d).

B. Single-photon transmission (reflection) coefficient:
Effects of atom-cavity detunings and dissipations

We next consider the case of atom cavity to be detuned.
When the optomechanical coupling strength gop = 0, for a
photon on resonance with the atom A, = A, the transmission
amplitude is always 1, as seen from Figs. 6(a) and 6(b), which
was indicated in Ref. [2]. When entering the regime gy ~ €2,
we can see that these maxima will appear at A, = A, + n<2,
corresponding to the [0).]|g),10), — |0).|e)q|n), transitions,
as shown in Figs. 6(c)—-6(f).

We have mentioned in Sec. II that in our case the main
dissipative processes originate from the decay of the atom.
Figure 7 gives the transmission (reflection) spectrum of the
dissipative atom case. If there are no dissipative processes,
the sum of the transmission and reflection coefficients should
satisfy T + R = 1. However, when the atom decay is included,
the leakage of photons into nonwaveguided degrees of freedom
can lead to 7 4+ R < 1, as shown in the gray thin lines in
Fig. 7. Specifically, in the EIT-like cases with relatively small
atom-cavity coupling strength (A ~ I"), the atom dissipation
has a stronger effect on the transmission of a photon with
detuning around A, =nQ (n=0,1,2,---), as shown in
Figs. 7(a), 7(c), and 7(e). On the contrary, in the Rabi-splitting

like cases with strong atom-cavity coupling (A > Q > T'), the
atom dissipation has a stronger effect on the transmission of a
photon at the frequencies of resonant absorption, as shown in
Figs. 7(b), 7(d), and 7(f).

C. The final reservoir occupation spectrum

We have discussed the transmission (reflection) coefficients
of a monochromatic incident photon. Note that for an
optomechanical system in a single-photon strong-coupling
regime, the inelastic scattering should have an influential
effect, resulting in a re-emitted photon with red-blue sideband
frequency. This differs from the case of photon transmitting
(reflecting) from a empty cavity, where the frequency of
the photon remains unchanged after scattering. To see this
point more clearly, we calculate the final reservoir occupation
spectrum [23,28,29], which describes probability density for
finding the single photon with a specific frequency of the
transmission (reflection) fields. Let us consider an incident
photon with a Gaussian-type spectral amplitude a(A.) =
2/md*)'* exp[—(A. — Ag)?/d?], where Ay and d is the
detuning and spectrum width of the photon, respectively.
The according spectral density can be represented as G =
la|?. We plot in Fig. 8 the spectra Sy(A.) and Sg(A.) of
resonantly incident single-photon (i.e., Ay = 0) scattering
when the mirror is initially prepared in the ground state |0);,
with strong optomechanical coupling strength go = 2 and
different atom-cavity coupling strength A. It can be seen from
Fig. 8 that phonon sidebands appear in the spectrum in the
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1.0
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0.5} MQ=0.1,9=0

FIG. 7. (Color online) Single-photon transmission (reflection) spectra for dissipative atom cases (y, = 0.012). In (a), (c), and (e), the
atom-cavity coupling strength is A = 0.1€2; in (b), (d), and (f), A = 4. The other parameters are A, = 0and I' = 0.12.

strong-coupling regime with gy ~ €2. The dips in the spectrum
S7(A.) correspond to the resonant transition from |0).|0),|0),
to the excited states. Thus, after scattering, the probability
density for finding the single photon at these frequencies
decreases. And the peaks in the red sideband indicate that
the re-emitted photon can lose its energy by n<2, leading to the
final state |0).|0),|n), of system and increasing the value of
S7(A,) at these transition frequencies.
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FIG. 8. (Color online) Transmitted (reflected) photon spectra
St(A:) (Sg(A.)). The parameters are Ag =0, d =42, A, =0,
¥, = 0,012, and I" = 0.1Q2. The gray thin curve is the spectral
density G of incident photons.

IV. CONCLUSIONS

In summary, we have explored the single-photon transport
in a single-mode waveguide coupled to a hybrid atom-
optomechanical system in the single-photon strong-coupling
regime, where multiple phonons are involved in the scattering.
These spectra can characterize the mirror-cavity and atom-
cavity couplings. An optomechanical coupling-dependent
frequency shift and more sidebands appear in the transmission
(reflection) spectra when the optical coupling strength in-
creases. For the existence of atomic degrees of freedom, we can
get a Rabi-splitting-like or an EIT-like spectrum, depending on
the atom-cavity coupling strength.

In our calculation, we have assumed a zero temperature
mechanical bath (i.e., the mean thermal excitation number
ng = 0) and further ignored the mechanical decoherence
processes for I' > yy. If the influence of thermal noise
is included, the mechanical oscillator initially prepared in
its ground state will obtain some excited-state populations
through the environment thermal heating. Thus the transmitted
photon can absorb the energy of the phonons, resulting in
additional sidebands in the transmitted photon spectrum. In
addition, the thermal decoherence will lead to dephasing
between the incident and re-emitted field [29].

Finally, we wish to make some further remarks on the possi-
ble experimental realizations of hybrid atom-optomechanical
systems. Such a hybrid system can be possibly realized
by directly combining the well-developed technology of
optomechanical cavities with moving mirror [11-13] and
trapping a single atom in cavity QED [35]. Also, this setup
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may be more easily achieved using an on-chip circuit cavity
electromechanics with a spiral inductor shunted by a parallel-
plate capacitor, an analog of optomechanical cavity in a
microwave domain [17], which can be easily coupled to a
superconducting artificial atom using currently availabe circuit
QED technology [7]. These systems may provide a quantum
interference that allows the coherent transfer of quantum states
between the mechanical oscillator and atoms, opening a door

PHYSICAL REVIEW A 88, 063821 (2013)

for coherent preparation and manipulation of micromechanical
resonators [33].
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