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Elucidating the molecular basis of hepatocellular carcinoma (HCC) is crucial to developing targeted diagnostics
and therapies for this deadly disease. The landscape of somatic genomic rearrangements (GRs), which can lead
to oncogenic gene fusions, remains poorly characterized in HCC. We have predicted 4314 GRs including large-
scale insertions, deletions, inversions and translocations based on thewhole-genome sequencing data for 88 pri-
maryHCC tumor/non-tumor tissues.We identified chromothripsis in 5HCC genomes (5.7%) recurrently affecting
chromosomal arms 1q and 8q. Albumin (ALB) was found to harbor GRs, deactivating mutations and deletions in
10% of cohort. Integrative analysis identified a pattern of paired intra-chromosomal translocations flanking focal
amplifications and asymmetrical patterns of copy number variation flanking breakpoints of translocations.
Furthermore, we predicted 260 gene fusions which frequently result in aberrant over-expression of the 3′
genes in tumors and validated 18 gene fusions, including recurrent fusion (2/88) of ABCB11 and LRP2.

© 2014 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

Hepatocellular carcinoma (HCC) is the major histological subtype of
liver cancer, the third leading cause of cancer mortality worldwide with
high prevalence in Asia and sub-Saharan Africa. Hepatitis B virus (HBV)
infection is believed to cause the majority of HCCs while other etiologi-
cal factors include hepatitis C viral (HCV) infection, alcoholism and
aflatoxin B1 exposure [1]. Characterization of themolecular pathogene-
sis of HCC could have a major impact on the diagnosis and treatment of
this disease with few effective therapies [2,3]. Significant progress has
beenmade to uncover genetic aberrations in HCCs [4], including identi-
fication of mutations in p53 (TP53) and β-catenin (CTNNB1), amplifica-
tions ofMYC, FGF19 and cyclin D1 (CCND1), over-expression of ErbB and
cMet receptors, and HBV integrations into the TERT and KMT2B gene
loci. Recent next generation sequencing studies [5] have further impli-
cated chromatin remodeling pathway genes such as ARID2, ARID1A
erms of the Creative Commons
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and KMT2C as potential drivers of HCC carcinogenesis. However, the ge-
nomic landscape of somatic genomic rearrangement (GR) remains
poorly characterized in HCC. Somatic genomic rearrangement is
known to induce oncogenic gene fusions such as TMPRSS2-ETS in pros-
tate cancer [6] and EML4-ALK in non-small cell lung cancer [7]. The ad-
vent of whole-genome and transcriptome sequencing provides
opportunities to comprehensively characterize large-scale and complex
genomic variations at single base-pair resolution [8,9]. Here we report a
comprehensive study of somatic genomic rearrangements and gene fu-
sions in HCC based on whole genome sequencing (WGS) of a cohort of
88 tumors and matched normal samples.

2. Materials and methods

2.1. Whole-genome sequencing

Liver tumor andmatched adjacent non-tumor tissueswere collected
with written informed consents from 88 Chinese HCC patients who
received surgical treatments at Hong Kong Queen Mary Hospital as
previously described [10]. Approval for the use of clinical specimens
for research was obtained from Institutional Review Board of the
University of Hong Kong/Hospital Authority Hong Kong West Cluster
(HKU/HA HKW IRB). The vast majority (92%, n = 81) of patients in
ved.
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this cohort were HBV carriers suffering from chronic hepatitis B or cir-
rhosis. WGS libraries of two different insert sizes (170-bp and 800-bp)
were constructed from each sample and sequenced in 2:3 ratio on the
Hiseq 2000 sequencers according to manufacturer's instructions
(Illumina) [10]. The average depth of base pair coveragewas 36X except
for three tumor/normal pairs sequenced at 100X coverage. 90-bp
paired-end reads were aligned to the hg19 reference genome, and so-
matic SNVs were called by SOAPsnv [11]. We used SegSeq [12] to iden-
tify copy number segments. Somatic mutation and CNV predictions
[13], HBV integration site analysis [10] and gene expression profiling
[14] were previously described.

2.2. Somatic GR detection and filtering

We developed a somatic GR detection and annotation pipeline
consisting of four major steps (Supplementary Fig. 1). (1) Raw WGS
reads were aligned to the reference human genome (hg19) by the
Burrows-Wheeler Aligner (BWA) [15]. (2) The alignment outputs
were screened, and soft-clipped sequenceswere extracted and analyzed
using CREST [16], run in tumor and non-tumor samples independently.
(3) GR calls were filtered as germline events if therewas an exactmatch
in the coordinates of the breakpointswithGRs identified in thematched
or any other non-tumor samples. We also filtered GRs with at least one
breakpointmatching a knowngermline event reported inDGV [17], GRs
with breakpoint located within b1 kb from a gap region in genome
assembly and GRs with breakpoint falling into a repeat-masked region.
A GR event was called somatic only if it passes above filtering criteria
and there is sufficient read coverage (≥3) at the genomic region corre-
sponding to each GR breakpoint in the matched non-tumor sample.
(4) RefSeq transcript dataset [18] was used to annotate the remaining
somatic candidates. For each gene, a reference transcript was defined
as the transcript having the longest protein-coding sequence. GR
breakpoints were annotated based on locations relative to the reference
transcript of the affected gene as “intronic”, “exonic”, “intergenic” or
“promoter”, b1 kb upstream of transcription start site.

2.3. Gene fusion annotation

GR events can fuse together sequences from disparate gene loci to
form gene fusions. To define a candidate gene fusion, we required tran-
scriptional directions of the partner genes to agree in fused sequences
(Supplementary Fig. 2). A gene fusion event was classified as “coding”
if both breakpoints reside within the coding regions of affected genes,
“UTR” if one or both breakpoints are located in the UTR or “promoter”
if breakpoint at the 5′ or 3′ gene is located within the promoter region.
Frame conservation status was evaluated for “coding” gene fusions. A
fusion was classified as “frame-shift” if it alters the translation frame
of the 3′ partner gene based on reference transcript for each of the
fusion genes. “Frame-shift” fusion sequences were translated into the
frame that maximally conserves the protein sequence of the 3′ gene.
Alternative Methionine residues that could represent new translation
initiation sites were identified. The protein domain composition in the
fusion product sequence was analyzed using NCBI's conserved domain
database and search tool [19].

2.4. RNA-seq experiment

Total RNA isolated with TRIzol reagent was treated with RNase-free
DNaseI(New England BioLabs) at 37 °C for 10 min. The Dynabeads
mRNA Purification Kit (Life Technologies) was used to isolate mRNA
from the total RNA samples. The mRNA was chemically fragmented by
divalent cations and converted into single-stranded cDNAusing random
hexamer primers and SuperscriptIIreverse transcriptase (Life Technolo-
gies). The second strandwas generated to create double-stranded cDNA
using RNase H (Enzymatics) and DNA polymeraseI. The cDNA product
was purified by Ampure beads XP (Beckman). After converting the
overhangs into blunt ends using T4 DNA polymerase and Klenow DNA
polymerase, an “A” base was added to the 3′ end of the DNA fragments
by the polymerase activity of Klenow fragment. Sequencing adapters
were subsequently ligated to the cDNA fragment ends using T4 DNA
Ligase (Enzymatics). Fragments of ~200 bps were selected by Ampure
beads XP (Beckman) and enriched by 12 cycles of PCR. PCR products
were sequenced by Hiseq 2000 (Illumina) according to manufacturer's
instructions.

2.5. RNA-seq data analysis

Reads that contain adapter sequences, ≥10% unknown bases or
≥ 50% low quality bases (quality score ≤5) were removed before anal-
ysis. Filtered reads are mapped to reference genome (hg19) using
SOAP2 [11] (http://soap.genomics.org.cn/). For the 90-bp reads, ≤5
mismatches are allowed in the alignment. The gene expression level is
calculated using the RPKMmethod [20]:

RPKM ¼ 106C
NL
103

C: number of reads uniquely aligned to gene of interest; N: number of
reads uniquely aligned to all genes; L: gene length in bps. To assess
RNA-seq support for gene fusion predictions, we performed read cover-
age analysis on gene fusions identified in 9 samples with RNA-seq data
available. Each exon of the fusion gene was divided into 100-bp win-
dows, and the RPKM values for each window were calculated. For
cases where an exon was split by a GR breakpoint, 100-bp windows
were derived for each exon segment independently. The RNA-seq read
coverage flanking the GR breakpoint as well as coverage in tumors vs.
matched non-tumors was compared to identify anomalous expression
patterns indicative of gene fusion.

2.6. GR simulation

We repeated the following process for 1000 iterations to generate
simulated GR events using the set of 4314 somatic GRs as seed, keeping
the number of events per sample constant for each iteration. First, chro-
mosome and coordinates of the observed GR breakpointswere random-
ized. For inter-chromosomal events, both breakpoints are randomized.
For intra-chromosomal events, only one of the breakpoints was
randomized, and the other breakpoint was kept in the same distance
as observed with a correction applied to fit within the chromosome.
The mitochondrial (MT) chromosome was excluded from this step.
SimulatedGRswere annotated in the sameway as described previously.

2.7. Integrative analysis of GR and CNV patterns

Predicted CNV segments were filtered of segments shorter than
500 bps. We define “breakpoint juxtaposition” as an event where a GR
breakpoint falls within 100 bps of the start or end coordinates of a
CNV segment. The percentage of GR breakpoints were calculated for
each GR type and shown in Fig. 5a. Both CNV segments upstream and
downstreamof theGR breakpointwere counted to calculate the relative
distribution of copy gain/loss statuses for CNVs juxtaposed with a spe-
cific GR type.

The copy number profile of the 200-kb region flanking translocation
breakpoints on both sides was derived from read coverage (cov) of
tumor and matched non-tumor samples. The “mpileup” utility from
the samtools package [21] was used to fetch the coverage in 100-bp
windows, and the copy number (CN) for each window is calculated as
the following.

CN ¼ 2� covtumor

covnon−tumor

� �

http://soap.genomics.org.cn/)


Table 1
Genes with significant GR prevalence.

Gene Gene_description Chrom Length # DEL # DUP # ITX # CTX # FUSION # GR P-value FDR

ALB Albumin 4 17158 1 1 0 1 1 3 2.92E−05 0.020976545
CEBPB CCAAT/enhancer binding protein (C/EBP), beta 20 1837 1 0 1 0 0 2 3.01E−05 0.020976545
CACNG8 calcium channel, voltage-dependent, gamma subunit 8 19 27180 1 1 1 0 1 3 0.0001048 0.04873851
MCL1 myeloid cell leukemia sequence 1 (BCL2-related) 1 5188 1 0 0 1 1 2 0.0002064 0.050505452
CYP1A1 cytochrome P450, family 1, subfamily A, polypeptide 1 15 5995 1 1 0 0 2 2 0.00022 0.050505452
EMILIN3 elastin microfibril interfacer 3 20 6893 1 1 0 0 0 2 0.0002896 0.050505452
HAPLN4 hyaluronan and proteoglycan link protein 4 19 7145 1 0 1 0 0 2 0.0002896 0.050505452
C11orf87 chromosome 11 open reading frame 87 11 7048 0 0 1 1 0 2 0.0002896 0.050505452
MYADML2 myeloid-associated differentiation marker-like 2 17 7589 0 1 1 0 0 2 0.0003765 0.057541797
MERTK c-mer proto-oncogene tyrosine kinase 2 130755 2 2 0 0 1 4 0.0004125 0.057541797
AXIN1 axin 1 16 65237 2 0 0 1 1 3 0.0007382 0.093613504
HRASLS2 HRAS-like suppressor 2 11 10614 0 1 0 1 1 2 0.0008319 0.096705353
ATG9B ATG9 autophagy related 9 homolog B (S. cerevisiae) 7 12290 1 1 0 0 0 2 0.000912 0.09786322

Significantly affected genes based on the number of GR events affecting gene coding regions. Shown in table are the numbers of tumors harboring GR events in different categories.
# FUSION: the number of tumors where a gene is fused with another gene as a result of GR. # GR: the total number of tumors where a gene is affected by various GR events.
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The copy number value for each window is then smoothed by aver-
aging over 10 consecutivewindows and then normalized by dividing by
the mean CN across the 200-kb region.

For DUP and DEL events called by CREST, the read sequences
flanking the breakpoint must both align to the reference genome in
the same strand orientation. Reads supporting ITX events always align
to the opposite strands (+/− or−/+) whereas the strand orientations
for reads supporting CTX eventsmay be the same (+/+,−/−) or oppo-
site (+/−, −/+). For DUP, DEL and CTX breakpoints with the same
strand orientations, the 5′ breakpoint is simply shown at the left side
and the 3′ breakpoint at the right side. The windows are numbered in
the 5′ to 3′ direction. For CTX breakpoints with opposite strand orienta-
tions, we reverse the window ordering for the breakpoint on the nega-
tive strand (Supplementary Fig. 3a). For ITX breakpoints, if the strand
Duplication (DUP)

Reference

Tumor

sequence read

read alignment5’ bp 3’ bp

Intra-chromosomal
Translocation (ITX)

Inversion (INV)

Fig. 1. Genomic rearrangement patterns. Five types of genomic rearrangement patterns are id
correspond to insertions as defined by CREST.
orientations are (−/+) then we reverse the order of the windows
around the 5′ breakpoint; if the strand orientations are (+/−) then
we reverse the order of thewindows around the 3′ breakpoint (Supple-
mentary Fig. 3b).

2.8. Analysis of gene-level GR prevalence

GR prevalence (GR) at gene level is defined as the number of tumors
where GR breakpoints directly affect the gene coding region. As expect-
ed, we observed that gene-level GR prevalence is strongly correlated
with genomic length of a gene (data not shown). To assess the statistical
significance of recurrently affected genes taking gene length into con-
sideration, we compared observed prevalence with background rates
derived using the simulated GR sets. First, the observed and simulated
Deletion (DEL)

Inter-chromosomal
Translocation (CTX)

Chromosome BChromosome A

entified by CREST based on genomic alignment of soft-clipped reads. Duplications (DUP)
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Fig. 2. Chromothripsis in HCC genomes. (a) Circos plots illustrating the chromosome and genome-wide patterns of alterations for 117 T, one of the tumors affected by chromothripsis.
Chromosome ideograms are shown in the outer-most ring of the circos plot. The inner rings show indel events where blue color represents insertions and red color represents deletions,
somatic mutations, copy number variations where blue represents deletions and red represents amplification, gene expression change where purple represents up-regulation and green
represents down-regulation and HBV integration sites. In the ring center, black lines indicate inter-chromosomal translocation, and red lines indicate intra-chromosomal translocations.
(b) Chromothripsis creates a mosaic of genomic fragments. Red arrows indicate positions of 5′ and 3′ PCR primers. Colored bar above annotates the locus origins and lengths of
various segments comprised in the sequence produced by PCR-sequencing. The PCR-enclosed region is zoomed out to show the seven separate gene loci involved in rearrange-
ment. Numbers in boxes indicate inferred translocation events. Dotted lines link genomic fragments to mapped loci in the reference genome, and arrowed lines indicate inferred
patterns of translocations.
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GR prevalence for all protein-coding genes were calculated for individ-
ual iterations of simulatedGRdata sets. Geneswere then divided into 50
groups based on genomic length. The length range for each group was
determined to allow ~500 genes in each group except for three groups
with longer genomic lengths (N250 kb) where there are fewer genes.
For each gene with observed prevalence of k and each iteration i,
we counted the number of genes x with simulated GR prevalence ≥ k
in the same length group with n genes. Summarizing the calculated
proportions across 1000 iterations, we calculated p-value using the fol-
lowing formula.

p sv≥kjGð Þ ¼

X1000
i¼1

xi
ni

1000

To estimate the false discovery rate (FDR), the p-valueswere adjusted
using the Benjamini–Hochberg method, and significantly affected genes
were selected if FDR ≤10%.

To investigate biochemical pathways differentially expressed as a re-
sult of ALB genomic alterations, we compared gene expression profiles
in 9 ALB-altered vs. 79 un-altered cases using GSEA v2.07 [22] and the
MSigDB canonical pathway gene sets [23].
2.9. Integrative analysis of GR and gene expression

Expression array data on 88 HCC tumor/non-tumor samples was
previously published [14]. Gene-level expression value was derived by
taking the mean of RMA normalized probe intensities. Expression
change associated with each GR event is calculated as log2 fold-
change of gene expression in the affected tumor relative to expression
in thematched non-tumor. GR events are compared in groups classified
by GR types, gene fusion types or chromothripsis statuses. A gene or
gene fusion is affected by chromothripsis if the tumor genome exhibits
the chromothripsis pattern in the chromosomal arm containing the
gene affected.
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Fig. 3. ALB alterations may disrupt albumin production. (a) Bar chart shows the tumor/non-tum
ment plots for 6 canonical pathways significantly down-regulated in ALB-altered vs. unaltered
2.10. Analysis of sample-level GR prevalence

GR prevalence at the sample-level is calculated as the total number
of GRs identified in individual tumors. Tumor characteristics were de-
rived from mutation and CNV predictions based on WGS data [13].
CIN score was calculated as follows:

CIN ¼ 100
Xn
i¼1

Ci−2j jLi=2
Xn
i¼1

Li

 !

C: copy number value of a copy number segment; L: length of a copy
number segment; n: number of copy number segments. Statistical sig-
nificance (p-value) of the association was determined by one-way
ANOVA or Cochran–Armitage trend test (# categories N2), whichever
is smaller.

2.11. Experimental validation of gene fusions

To validate predicted gene fusions in genomic DNA, we carried out
PCR to capture the variation region flanking the breakpoints and per-
formed Sanger sequencing. PCR primer pairswith expected lengths rang-
ing from 150 bps to 1500 bps were designed, and the longer span was
intended to avoid potentially complex variations near the breakpoints
(Supplementary Table 1). After PCR was carried out on a GeneAmp PCR
System9700 thermal cycler (Life Technologies), productswere recovered
usingMinElute PCR PurificationKit (QIAGEN). If therewasmore than one
band due to unspecific amplification, gel cutting was performed. Subse-
quently, we sequenced all the products by Applied Biosystems 3730×
DNA analyzers (Life Technologies).

To validate predicted gene fusions in RNA, we performed reverse
transcription polymerase chain reaction (RT-PCR) using fusion-specific
primer pairs flanking the fusion sites (Supplementary Table 2). RNA
was extracted from frozen tumors and adjacent non-tumor tissues
from 5 HCC cases (i.e. 11 T, 22 T, 23 T, 43 T and 81 T). Reverse transcrip-
tion and PCR were then performed as described [10] using paired
or expression change across tumors colored by ALB alteration statuses. (b) GSEA enrich-
cases. Genes are ranked based on significance of differential expression.
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primers in Table 1. PCR was run for 30–35 cycles under the following
condition: 94 °C for 30 s, 58–60 °C for 30 s and 72 °C for 30 s. The
resulting PCR products were resolved on 1.8% agarose gel to reveal the
presence of fusion genes. For all PCRproducts, DNA sequencingwasper-
formed to validate whether those sequences correspond to predicted
sequences of the fusion genes.
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3.1. Overview and distribution analysis

We had performed whole genome sequencing on 88 HCC tumors
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of 36X per base pair for 85 tumor/non-tumor pairs and 100X for 3 pairs.
Analyses of somatic mutations, copy number changes and HBV integra-
tion events have been described elsewhere [10]. In this study, we devel-
oped a pipeline based on CREST [16] to detect and annotate somatic GR
patterns at single-nucleotide resolution (Supplementary Fig. 1). We
predicted a total of 4314 somatic GR events including 1293 duplications
(DUP), 1566 deletions (DEL), 892 intra-chromosomal translocation
(ITX), 554 inter-chromosomal translocation (CTX) and 9 inversion
(INV) events (Fig. 1, Supplementary Table 3). The required support
evidence for ITX consists of read alignments to the reference genome
that exhibit a “fold-back inversion” pattern [24] believed to implicate
breakage-fusion-bridge (BFB) [25] as a potential causal mechanism
(Fig. 1). We also identified 260 gene fusion events in 58 tumors with
an average of 4.5 events per tumor (Supplementary Table 4). There are
154 coding fusion events where both breakpoints reside in protein-
coding regions and 106 UTR fusions where one or both breakpoints
reside in UTRs. There is an additional 9 promoter fusions where one of
the fusion breakpoints is located within a promoter region. Using PCR-
sequencing, we experimentally validated 12 of the 16 in-frame coding
fusions (75%) resulting from intra- and inter-chromosomal transloca-
tions (Supplementary Table 5, Supplementary Fig. 4).

The majority of GRs (58.7%; 2,532/4,314) affect coding regions of
2031 genes with breakpoints disrupting either exons or introns. Simu-
lated GRs over 1000 iterations were generated by randomizing GR
breakpoints while maintaining the same number of GRs and sample
associations (see Methods). We observed that 33% (2852/8628) of
somatic GR breakpoints are located in introns and 2.3% (200/8628) in
exons, compared to an average of 26.4 ± 0.46% and 1.7 ± 0.14% for
simulated GR breakpoints (Supplementary Fig. 5). The significant
enrichment of GR breakpoints in gene coding regions suggests that
active transcription may increase the accessibility of chromatin struc-
tures to genomic rearrangement, consistentwith earlier report of signif-
icant correlation between open chromatin marks and sites of somatic
rearrangement in breast and prostate cancer cells [26]. In addition,
11.3% (260/2,295) of gene-affecting rearrangements result in gene
fusions involving 428 distinct genes. On average, only 7.6 ± 0.55% of
simulated GR events result in gene fusions, indicating a statistically
significant selection bias for GRs to induce gene fusions (binomial test:
p ≤ 1e − 6). Nearly half (45.8%; 119/260) of gene fusions result from
duplications whereas the remainder results from ITX (20.4%), deletion
(18.5%) and CTX (15.4%). Given that duplications only account for 30%
(1,293/4,314) of GR events, there appears to be an enrichment bias for
duplication-induced gene fusions (one-tailed binomial test: p b 1e− 6).

3.2. Chromothripsis in HCC genomes

Chromothripsis refers to a single cellular crisis where a chromosome
is shattered and reassembled by DNA repair mechanism, resulting in a
large number of rearrangements clustered in a chromosomal region
[27]. Defining a chromothripsis event if there are N30 rearrangements
and N10 translocations in a single chromosomal arm [28], we identified
5 HCC tumors (5.7%) harboring chromothripsis that affect chromosome
1q (117T, 206T), chromosome 8q (39T, 64T) and chromosome 5p
(172T) (Fig. 2a, Supplementary Fig. 6). PCR-sequencing of genomic
DNA from tumor 117T revealed a mosaic patchwork of eight genomic
“shards”, ranging in lengths from 90 to 388 bps, derived from 8 distinct
loci spanning a 72.9-Mb region on chromosome 1q (Fig. 2b). This find-
ing matched a reported hallmark of chromothripsis where many
shattered DNA fragments from a circumscribed genomic region are
stitched together in a haphazard fashion. Further, we saw that chromo-
some 1q arm from 117T harbors a large number of intra-chromosomal
translocation events that colocalize with copy number amplifications in
the same region (Fig. 2a). In fact, all three chromothripsis-affected chro-
mosomal arms harbor frequent amplifications in both chromothripsis-
affected and unaffected tumors (Supplementary Fig. 7). The highest fre-
quencies of chromosomal arm-level amplifications across the cohort
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were exhibited by chromosome 1q (46.5%), chromosome 8q (43.2%)
and chromosome5p (17%) (Supplementary Fig. 8). Hence, chromosom-
al instability and chromothripsis appeared to have converged to impact
the same chromosomal regions in HCC. While chromothripsis may be a
passenger effect of arm-level amplification, it could contribute to HCC
oncogenesis by creating gene fusions and activating aberrant gene ex-
pressions. Four of the five tumors affected by chromothripsis harbor
TP53 alterations (3 mutated, 1 deleted), consistent with recent reports
linking TP53mutations to chromothripsis in pediatric medulloblastoma
and acute myeloid leukemia [29].
a

b

ITX (EVENT3298)

45T

CCND1

FGF1
ITX (EVENT1766)

ITX (EVENT1767)

198T

c

ITX (EVENT4365)

90T

Fig. 5. GR pattern characteristic of focal amplification. IGV snapshots and drawings illustratin
45 T (a), 198 T (b) and 90 T (c). (d) Diagram illustrating the hypothesis that two successive tra
in (d) are hand-drawn.
3.3. Significantly affected genes

To identify cancer genes selected for functional alterations by GRs,
we assessed statistical significance of GR prevalence affecting individual
genes using simulated GRs and normalizing against genomic length,
a variable strongly correlated with GR prevalence (see Methods).
Table 1 shows 13 genes with significant GR prevalence (FDR≤10%), in-
cluding known cancer genes such as CEBPB,MCL1 and AXIN1. The most
significantly affected gene is ALB which encodes serum albumin, the
most abundant plasma protein synthesized exclusively by hepatocytes.
65
copies

CCND1
FGF19

ITX (EVENT3299)

9

ITX (EVENT1772)

16
copies
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FGF19

ITX (EVENT4368) ITX (EVENT4369)

12
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g characteristic GR patterns for high-level, focal amplifications of CCND1/FGF19 locus in
nslocations give rise to double-minute mediated focal amplification. Copy number profiles



1st ITX 2nd ITXBreakage-fusion-
bridge

Looping out

Double-minute
formation

Amplification

Copy
Number

1

2

3

d

Fig. 5 (continued).

198 J. Fernandez-Banet et al. / Genomics 103 (2014) 189–203
In addition, ALB harbors loss-of-function mutations and deletions in
6 additional tumors, totaling a genomic alteration frequency of 10.2%
(9/88). Recurrent deletions andmutations in ALB have also been identi-
fied by genome sequencing in 4.8% (7/147) of another HBV-associated
HCC cohort [30]. Moreover, ALB gene expression appears to be down-
regulated in affected tumors (Fig. 3a). ALB-altered tumors exhibit
shorter overall survival of 39.4 ± 31.3 months vs. 60.5 ± 34.2 months
for the remaining cases, and worse progression-free survival of 21 ±
21.7 vs. 43.4 ± 38.4 months. GSEA analysis [22] further reveals that
the most significantly down-regulated pathways in ALB-altered vs.
unaltered tumors function in protein translation, protein transport,
gene expression andmitochondrial ATP synthesis (Fig. 3b; Supplemen-
tary Table 6). These evidences taken together suggest that genomic
alterations of ALB have functional impact, perhaps to disrupt cellular
production of albumin and reallocate cellular resources for oncogenic
activities.

3.4. Integrative analysis of GR and CNV patterns

Study of somatic CNV in cancer genomes provides a powerful
approach to identify key genes with causal roles in oncogenesis [31].
Juxtaposition of genomic breakpoint positions between CNVs and so-
matic rearrangement such as translocations [32] and deletions [33]
have been reported. Defining “breakpoint juxtaposition” as close prox-
imity (≤100 bps apart) in genomic coordinates between aGRbreakpoint
and a CNV boundary, we found that 19.9% of observed GRs have juxta-
posed breakpoints compared to an average of 1.5 ± 0.12% from the sim-
ulated GR data, a 14-fold enrichment (Fig. 4a). While there are roughly
equal proportions of copy gain (8.3%) and copy loss regions (8.6%), we
observe a strong bias for duplications to be juxtaposed with copy gain
regions and deletions to be juxtaposed with copy loss regions (Fig. 4a).
This pattern is intuitive as it reflects the causal relationships between
large-scale insertion/deletion and copy gains/losses.What is unexpected
is the frequent juxtaposition of inter- and intra-chromosomal transloca-
tions with CNVs, in particular the copy gain regions.

To further explore associations between rearrangement and copy
number changes, we computed copy number profiles for genomic
regions flanking the breakpoints of different GR types (Figs. 4b–e). We
were surprised to see a distinctive pattern for translocations where
the 5′ side of the 5′ breakpoint and the 3′ side of the 3′ breakpoint
exhibit copy gains and the 3′ side of the 5′ breakpoint and the 5′ of
the 3′ breakpoint exhibit copy losses (Figs. 4d–e). Further, this pattern
appears to be specific to unbalanced translocations (Figs. 4f–g). Previ-
ously, integrative analysis of gene fusions identified from transcriptome
with copy number data has suggested a “breakpoint principle”whereby
fused sequences resulting from gene fusion would increase in copies
whereas regions excluded from fusion would lose copies [34]. As gene
fusions are caused by different types of genomic rearrangements, our
findings of asymmetrical CNV patterns flanking GR breakpoints extend
the breakpoint principle as a characteristic for all rearrangements, not
only those involved in gene fusions (Figs. 4b–e). CNV patterns flanking
ITX breakpoints might be attributable to breakage-fusion-bridge (BFB)
cycles [25], expected to result in a duplicated region with increased
copy number at one side of the translocation, a translocation region
neutral in copy number and a deleted region on the opposite side.
While it is less obvious how inter-chromosomal translocations could
create a distinctive CNV pattern, one possible explanation is that
double-stranded breakage associated with translocation could have
promoted formation of partial or extra-chromosomal structures that
result in the observed copy number differences.

The focal amplicon on chromosome 11q11.3 containing CCND1 and
FGF19 has been shown to be an oncogenic driver of HCC [35]. In our
cohort, we identified high-level, focal amplification of the CCND1/
FGF19 locus in 3 tumors with copy numbers ranging from 12 to 65.
We were intrigued to find that in all three cases (45T, 198T and 90T)
the focally amplified regions are flanked by two intra-chromosomal
translocations with breakpoints juxtaposed to amplicon boundaries
(Figs. 5a–c). This pattern suggests that two successive translocations
had created extra-chromosomal double-minutes containing the onco-
genes that had undergone amplification (Fig. 5d). Two of the most
prominent focal amplifications in this cohort, each having ~20 copies
in amplitude,were located on chromosomal 19p in tumor 43 T. Interest-
ingly, two amplicons are separated by an 8.2-Mb ITX translocation with
breakpoints juxtaposed to the 5′ boundary of the 17-kb amplicon
upstream and the 5′ boundary of the 929-kb amplicon downstream
(Supplementary Fig. 9). At one end, the 17-kb amplicon overlaps with
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the 3′ terminal exon of the INSR gene and its 3′ breakpoint is juxtaposed
with the experimentally validated CTX translocation between INSR and
LGR5 on chromosome12. The LGR5 locus is copy number neutral. On the
other end, the 929-kb amplicon is breakpoint juxtaposed to a second
ITX at the 3′ side. Since focal amplification at such high levels is unlikely
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Amongst protein-coding genes located in the focally amplified region,
BRD4, a bromodomain and extra-terminal (BET) family member impli-
cated in oncogenesis [36], is highly over-expressed in 43 T and therefore
a potential driver of the focal amplification (Supplementary Fig. 9b).

3.5. Gene fusion

Studies of oncogenic gene fusions have revealed that aberrant appo-
sition of regulatory elements of one highly expressed gene to a proto-
oncogene leads to outlier over-expression pattern and activation of
the oncogene [37]. To assess the impact on gene expression by gene
fusion and genomic rearrangement, we used themicroarray expression
data [14] to compare expression changes of GR-affected genes in tumors
vs. matched non-tumors across GR types and gene fusion statuses
(Fig. 6a). As expected, fully and partially duplicated genes exhibit higher
expression than genes subject to full or partial deletions. Surprisingly,
genes affected by intra- and inter-chromosomal translocations but
not involved in gene fusions seem to be down-regulated as a whole.
The expression array adopted a 3′ biased probe design as 78.9% of ex-
pression array probes (2643/3351) were mapped to the 3′ side of the
breakpoints in the fusion genes. Hence, expression measured for the
3′ fusion genes tend to reflect expression of the fusion transcripts.
We saw a striking up-regulation of 3′ fusion genes relative to other
GR-affected genes (Fig. 6a).Moreover, in-frame fusions showhigher ex-
pression than frame-shift fusions, possibly due to NMD of fusion tran-
scripts with truncated open reading frames [38]. Further classifying
fusion genes based on causal GR types, we see duplication inducing
the highest tumor over-expression of 3′ fusion genes (Fig. 6b). In
general, 5′ genes involved in fusions show higher expression levels in
non-tumors than 3′ fusion genes. Further, higher levels of 5′ gene
expression in non-tumors relative to 3′ partner genes correlate with
greater up-regulation of 3′ partner genes in tumors (Fig. 6c). Hence,
up-regulation of 3′ fusion genes in tumors due to translocation of stron-
ger promoters from 5′ partner genes appears to be common, indicating
that some of the gene fusions identified may be oncogenic events in
HCC.

Gene fusion of ABCB11-LRP2was identified in two cases (11 T, 81 T),
both resulting from duplication with one in-frame (11 T) and one out-
of-frame (81 T). The in-frame fusion in 11 T fuses the 5′ portion of
ABCB11 (1–794 a.a.) to the 3′ portion of LRP2 (1877–4732 a.a.) contain-
ing truncated extracellular domains (Fig. 7a). Normalized expression
levels from RNA-seq (Fig. 7b) and expression array (Fig. 7c) both indi-
cate that LRP2 expressions in tumors harboring gene fusions are
among the highest in the entire cohort. Similar outlier expression
patterns were observed for multiple cases where gene fusion appears
to induce tumor over-expression of 3′ genes (Supplementary Fig. 10).
Whole transcriptome sequencing (RNA-seq) was performed on 9 of
the tumor/non-tumor pairs. We computed RNA-seq coverage profiles
for the 11 T tumor/non-tumor samples (see Methods) and found
that LRP2 is expressed only in the tumor. Moreover, there is aberrant
expression of only the exons present in the fusion product, consistent
with predicted location of the fusion breakpoint (Fig. 7a). Similar cover-
age profiles were seen for two other fusions found in 11 T—TM4SF4-
KCNIP3 and EHBP1-NKD2 (Supplementary Fig. 11). We then performed
RT-PCR followed by Sanger sequencing and validated ABCB11-LRP2
fusions (Fig. 7d) along with 4 other gene fusions in tumor andmatched
non-tumor RNA samples: TM4SF4-KCNIP3 (11 T), EHBP1-NKD2 (11 T),
ABHD2-ACAN (22 T) and PCCA-HS6ST3 (23 T) (Supplementary Fig. 12;
Supplementary Table 2).

None of the fusion genes are known oncogenes although several
show emerging evidences of functional roles in carcinogenesis.
ABCB11 encodes an ABC transporter known as bile salt export pump
(BSEP), responsible for the transport of cholate conjugates fromhepato-
cytes to the bile. Germline loss-of-function mutations in ABCB11 cause
progressive familial intrahepatic cholestasis and elevate risk of HCC in
childhood [39]. LRP2 encodes megalin, a multiligand binding LDL-
receptor normally expressed in epithelial cells of thyroid and kidney
that functions to mediate endocytosis and transcytosis [40]. It has
been shown that megalin is up-regulated in response to chemotherapy
and oxidative stress in cancer cells [41–43]. Moreover, a recent study
shows that clusterin, a megalin ligand, induces expression of megalin
and activates survival through phosphatidylinositol 3-kinase/Akt path-
way in prostate cancer cells [44]. In our HCC cohort, LRP2 is over-
expressed in tumors relative to non-tumors (Fig. 7c) and mutated
in 5.7% (5/88) of cases [13]. LRP2 is also frequently mutated in multiple
cancers—16% of colon and rectum adenocarcinoma (34/212) [45], 19.7%
of lung squamous cell carcinoma (35/178) [46] and 9.3% of bladder can-
cer (9/97) [47]. HS6ST3 encodes heparan sulfate 6-O-sulfotransferase 3
that mediates 6-O sulfation of heparin sulfate (HS) required for interac-
tion with a variety of growth factors and implicated in proliferation, in-
vasion, migration and other diverse processes. HS sulfotransferases
have been linked to tumorigenesis in prostate and pancreatic cancers
[48,49]; therefore, tumor aberrant expression of HS6ST3 induced by
fusion may play an oncogenic role in HCC. NKD2 encodes naked cuticle
homolog 2 (Drosophila), a negative regulator of Wnt receptor signaling
through interaction with Dishevelled family members [50]. ACAN
encodes aggrecan, a member of the chondroitin sulfate proteoglycan
(CSPG) family and an integral part of the extracellular matrix in
cartilagenous tissue. Ectopic expression of aggrecan, along with
other CSPGs, has been reported in rat HCC tissues and suspected to
result from epithelial mesenchymal transition (EMT) [51]. KCNIP3
encodes calsenilin, a member of the family of voltage-gated potassi-
um (Kv) channel-interacting proteins. Calsenilin has been shown to
regulate presenilin 1/γ-secretase-mediated N-cadherin ε-cleavage
and β-catenin signaling [52]. Additional experimental characterization
will be required to reveal the functional implication of ABCB11-LRP2
and other fusions identified from our study.

4. Conclusions

Our study is the largest-scale whole-genome characterization of ge-
nomic rearrangements inHCC to date and provides a comprehensive set
of somatic genomic rearrangement and gene fusion predictions, includ-
ing ABCB11-LRP2, the first reported recurrent gene fusion in HCC. Our
work revealed a complex landscape of genomic rearrangements in
HCC, underscoring this deadly disease as a genomic disorder. Moreover,
our finding that chromothripsis and chromosomal instability recurrent-
ly affect chromosomal arms 1q and 8q to create gene amplifications
suggests that chromothripsis may contribute to hepatocarcinogenesis.
Our finding of frequent loss-of-function alterations in ALB suggests a
potential role in cancer for albumin not previously described where
the wild-type protein production is disrupted to reallocate cellular
resources for oncogenesis. Integrative analyses have revealed character-
istic patterns of genomic rearrangement associated with focal amplifica-
tions and asymmetrical CNV patterns flanking breakpoints of genomic
rearrangement, shedding light on the potential causal mechanisms.
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Genomic rearrangement is known to produce gene fusions that drive
oncogenesis and often define molecular subtypes of cancers targeted
for therapeutic intervention [53,54]. We found that gene fusions fre-
quently result in up-regulation of 3′ genes in HCC and may therefore
drive hepatocarcinogenesis through dysregulation of oncogenic expres-
sion. Our findings taken together suggest that genomic rearrangement
is a primordial mechanism giving rise to copy number changes, gene
fusions and aberrant gene expressions subsequently selected to promote
carcinogenesis.

5. Database linking

The whole-genome sequencing data supporting the results of this
article is available in the European Genome-phenome Archive (EGA)
[accession: ERP001196]. Microarray data supporting the results of this
article is available in Gene Expression Omnibus (GEO) [accession:
GSE25097].
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