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Abstract – In this paper, it is shown that any oblique illu-
mination shape-from-shading problem under perspective 
projection for Lambertian reflection and a single distant 
light source can be converted to an equivalent frontal illu-
mination problem by a simple nonlinear intensity transfor-
mation which is equivalent to a rectification in stereo vision. 
Remarkably, it involves no approximation of depth. The 
method is evaluated on perspective shape-from-shading in-
volving wide range of oblique angles. 
 

Index Terms – Shape from Shading, Perspective Projec-
tion, Oblique illumination, Rectification. 
 

I. INTRODUCTION 

Shape from shading is an inverse process to determine 
the depth map D from its intensity image I based on the 
fact that there is a relation between D and I, i.e. I = F(D). 
Due to the difficultly of this problem, typically four as-
sumptions are made in the past: (R1) Lambertian model; 
(R2) single light source placed at the infinity; (R3) ortho-
graphic projection and (R4) frontal illumination. For re-
cent surveys, see Zhang et al. [1] and Durou et al [2].  

Recently, several SfS algorithms relaxed the assump-
tion of orthographic projection (R3) to a more realistic 
model (perspective projection). Yuen et al. [3] proposed 
perspective SfS with the Fast Marching method of [4]. 
This work is applied on images under frontal illumination. 
Another approach is reported by Courteille et al. [5], who 
considered the Eikonal equation obtained under frontal 
illumination and perspective projection. They used prior 
shape information to solve the equation. 

The assumption of frontal illumination is too restrictive 
in realistic photographic conditions. As the light source 
direction is parallel to the viewpoint, either the light beam 
is occluded by the camera or the image of the light source 
is projected onto the image plane. Tankus et al. [6] sug-
gest the use of an iterative solution of the perspective SfS 
problem under oblique illumination using the ortho-
graphic Fast Marching method of [4] as the initial solu-
tion. The experimental result under oblique illumination is 
not satisfactory. A detailed comparison of this method 
and the method of [3] (but under frontal illumination 
only) can be found in [3].   

Prados and Faugeras [7] develop an iterative viscosity 
solution framework and a generic Hamiltonian that can 
handle orthographic as well as perspective projection un-
der frontal or oblique illumination. Another interesting 
work is Prados and Faugeras [8], who show that the SFS 
problem has a unique solution and the unknown singular 
value point height problem is non-existent if the light 
source is placed at the center of projection and a distance 
attenuation term is included using the viscosity solution 
framework.  

  In this paper, we detach the problem of oblique illu-
mination from that of perspective SfS, and present a solu-
tion to tackle the problem of oblique illumination. The 
proposed algorithm simplifies the problem from the 
oblique illumination case to the frontal illumination case 
by a coordinate system (CS) transformation, which pro-
vides a convenient method to solve a more realistic per-
spective SfS problem without approximation of depth. 

Recently, Prados and Soatto [9] propose an extension 
of fast marching method that can deal with non-positive 
costs and orthographic as well as perspective projection 
under oblique illumination.  One potential advantage of 
the fast marching formalism over the viscosity theory 
formalism is that the former is one-pass, whereas the lat-
ter is iterative (see [9] for preliminary numerical compari-
son).  

This paper shows that the original, simpler fast march-
ing with positive costs for perspective projection that ap-
plies for frontal illumination [3] is good enough for 
oblique illumination as well, albeit with rectification er-
rors.  Also, by our transformation, any new better numeri-
cal method (not necessarily fast marching or level sets, or 
viscosity) discovered in the future that works under fron-
tal illumination can now also works under oblique illumi-
nation using our transformation (but subject to Lamber-
tian and single far light source assumption). 

This paper is organized as follows. Section II discusses 
an image transformation from the viewpoint CS to the 
light-source CS. Section III proposes a perspective SfS 
with oblique illumination algorithm based on the image 
coordinate transformation. In section IV, two sets of ex-
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periments illustrate the performance of the proposed algo-
rithm. A conclusion is drawn in section V. 
 

II. IMAGE TRANSFORMATION 

Oblique light source SfS is the case that the light source 
direction is different from the viewing direction(s). The 
shading image in this case is: 
 

1 3 2 2

( , , 1)
( , ) ( , 0, )

1
x y

x y

z z
I u v l l

z z

−
= ⋅ = ⋅

+ +
l n

 (1) 

where zx and zy are the surface gradients along the x- and 
y-axis for pixel (u, v) respectively, and l is the unit vector 
of light source direction represented by two oblique an-
gles l = [α, β], i.e. l1 = cosαcosβ, l2 = cosαsinβ and l3 = -
sinα. To simplify the problem without loss of generality, 
β is chosen as 0, such that l2 = 0 and the shading image is 
then given by 
 

1 3( , ) ( , 0, )I u v l l= ⋅n  (2) 

As Eq. (2) is not an Eikonal equation, some additional 
information is required to estimate a monotonic approxi-
mation to this term and an appropriate update rule. 

In the case of orthographic projection, Kimmel and 
Sethian [4] adopted the suggestion of Lee and Rosenfeld 
[10] in which early SfS algorithms are improved by the 
light source coordinates. Kimmel and Sethian viewed the 
reflectance map as an ‘almost’ Eikonal equation. Together 
with the approximation of z from its neighbor on the co-
ordinate transformation, the equation can be solved. In 
this paper, the idea of coordinate transformation of 
[4],[10] is employed on the perspective model with 
oblique illumination. An image is transformed to the one 
viewed at the direction of light source (figure 1) by means 
of which the problem can be simplified as perspective SfS 
under frontal illumination. 

Different from the orthographic projection case in [4], 
the coordinate transformation does not involve any ap-
proximation of z. So a more accurate result can be ob-
tained. The details of the image transformation are dis-
cussed in the following: 

Given that I(u, v) and D(u, v) are intensity and depth of 
the pixel [u, v] respectively, the corresponding 3D coordi-
nate P in viewpoint CS is: 
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On the other hand, the same point at the light-source 
CS is simply 
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where it is projected onto [u’, v’] of the transformed im-
age plane H’ under the perspective projection. 
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Figure 1 – Image Transformation. 

In general, the focal length f may be different. Here we 
have used the same f for simplicity. 

Since the intensity is invariant to the viewing coordi-
nate system under the Lambertian model (i.e. depends 
only on the surface normal and illumination direction), 
the intensity of the pixel [u, v] at the image plane H is 
equivalent to the intensity of [u’, v’] at the image plane 
H’, i.e. I(u, v) = I’(u’, v’), which is independent of D. 

Note that technically, the above transformation is 
equivalent to a rectification step in stereo [11], in which 
the projected image is rectified to a virtual camera whose 
axis is in the illumination direction. However, the trans-
formation is novel and has not been reported in the shape 
from shading literature to the best of our knowledge. 
 

III. THE PROPOSED ALGORITHM 

To tackle the problem of oblique illumination, we apply 
the proposed transformation to estimate the shading im-
age If (the image viewed at the illumination direction) as 
I’. However, as the forward transformation from (u, v) to 
(u’, v’) does not uniformly cover all pixels at I’, we apply 
a Sfs method at (u’, v’) and calculate the one to one in-
verse projective transformation (homography) from (u’, 
v’) to (u, v) and then takes the intensity I(u, v).  This is 
exactly the pixel order scanning technique of texture 
mapping in computer graphics [12], which overcomes the 
inadequacy of the texture scanning. This re-sampling may 
cause aliasing errors [11],[12], which is commonly over-
come in computer graphics by anti-aliasing. In this paper, 
a Sum of Gaussian (SOG) (or Gaussian Mixture Model 
(GMM)) surface interpolation is used as the anti-aliasing 
technique. This is generally considered a better surface 
interpolation technique than bi-cubic interpolation. Other 
anti-aliasing techniques may also be used.   

Figure 2 shows an example of the proposed image 
transformation. Given a rendered image of the Mozart 
with oblique angles α = 30° and β = 0° (figure 2a), the 
corresponding transformed image I’ is shown at figure 2b. 



 
9

After recovering the depth map D’(u’, v’) of I’(u’, v’) 
by any frontal illumination perspective SfS algorithms, 
the depth map D(u, v) of the given image I(u, v) can be 
obtained by a geometric rotation. Similar to the image 
transformation, the GMM surface interpolation is per-
formed to map from D’ to D. 
 

IV. EXPERIMENTS 

In this section, we first exemplify the proposed image 
transformation. Then we apply the proposed method to 
solve the perspective SfS problem under oblique illumina-
tion. Three standard synthetic models (see for example [3] 
for construction details):  Sphere, Four Mountains and 
Mozart are used for the test. The total depths and the ren-
dering parameters (focal lengths and offsets) of the mod-
els are listed at Table I 
 
A. Accuracy of the proposed illumination transforma-

tion 

Suppose that a depth map D is rendered to form the im-
age I with illumination direction l = [α, 0], the proposed 
transformation aims at estimating the image If directly 
from I and α. On the other hand, it can be exactly ob-
tained from a sequence of projection and geometric trans-
formations. Figure 2b shows the desired If of figure 2a 
and figure 2c is the If estimated by the proposed trans-
form. 

In this experiment, the accuracy of the proposed illumi-
nation transformation is studied by comparing the similar-
ity (root mean square (rms) intensity difference) between 
I’ and If of three models (The range of I’ and If are [0, 1].) 
Table II lists the similarities with α varied from 10° to 
70°. The scenario for Mozart at 70o is not measured be-
cause at this large oblique angle, much is occluded and 
the image degenerates into several disconnected regions. 
As the oblique angle α increases, the distribution of the 
transformed pixels is sparser and the performance of the 
GMM surface interpolation is degraded slightly. Overall, 
the result shows that the errors due to the transformation 
are small even at large oblique angles. 
 
B. Perspective Fast Marching Method under Oblique 

Illumination 

This experiment shows the applicability of the pro-
posed algorithm to extend the perspective SfS from fron-
tal to oblique illumination. For each model, two oblique 
angle sets: [30°, 30°] and [40°, 120°] are used to render 
the images (figure 3). The perspective Fast Marching 
method of [3] is employed to recover the depth map of I’. 
Other perspective SfS algorithms may also be used. The 
local minima are defined as the singular points and their 
depths are given [3],[6]. Meanwhile, the results are com-

pared with those reconstructed by the method of Tankus 
et al. [6]. 
 

 
(a) 

  
(b) (c) 

Figure 2 – Performance measurement of the proposed illumination trans-
formation. (a) Input Mozart (b) Mozart viewed at the direction parallel 

to the light source (Ground truth) (c) Mozart viewed at the direction 
parallel to the light source (Estimated). 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 3 – The test images: (a) Sphere for P = [30°, 30°], (b) Sphere for 
P = [40°, 120°], (c) Four mountains for P = [30°, 30°], (d) Four moun-

tains for P = [40°, 120°], (e) Mozart for P = [30°, 30°] and (f) Mozart for 
P = [40°, 120°]. 

 

TABLE I – TOTAL DEPTHS AND RENDERING PARAMETERS OF THE MOD-
ELS. 

 Total depth Focal length Offset 
Sphere 30 60 200 
Four mountains 42 70 200 
Mozart 95 65 200 
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TABLE II – ERRORS OF THE PROPOSED ILLUMINATION TRANSFORMATION 

 Sphere Four mountains Mozart 
[10°, 0°] 0.002886 0.005228 0.019778 
[30°, 0°] 0.004718 0.00537 0.021992 
[50°, 0°] 0.005848 0.01286 0.031079 
[70°, 0°] 0.007915 0.016544 - 
 

TABLE III – SURFACE ERRORS AT K = 50% AND 75%. 

Oblique 
angles 

Sphere 
Four moun-

tains 
Mozart 

[30°, 30°] 
1.182 (6.67) 
1.791 (8.11) 

1.682 (21.52) 
2.698 (23.47) 

1.037 (9.09) 
2.012 (12.818) 

[40°, 120°] 
1.015 (6.81) 
1.359 (8.31) 

1.516 (19.62) 
2.347 (22.36) 

1.125 (10.7) 
2.381 (13.21) 

 
Figure 4 - 6 show that the proposed algorithm success-

fully recovers the depth maps of the perspective images 
with oblique illumination.  

Quantitative comparison is a more tricky affair. Due to 
the discontinuities around the silhouettes of the tested 
models, it is expected that huge errors occur at that re-
gions. Therefore, instead of rms depth error, the kth me-
dian absolute depth errors are used to measure the per-
formance of the proposed algorithm. Table III lists the 
surface errors at k = 50% and 75%. The values inside the 
brackets show the surface errors obtained by [6]. 

Seen from the table, the median errors of Mozart, Four 
mountains and Sphere are approximately equal as α is 
increased from 30o to 40o. In the worst case, the ratio of 
median error to total depth is only 4.3%. By comparing 
with [6], the proposed method estimates a significantly 
more accurate depth map under oblique illumination. 

 

V. CONCLUSIONS 

 This paper proposes a robust algorithm to the problem 
of oblique illumination in perspective SfS. Instead of ap-
proximating the depths, the proposed algorithm estimates 
the intensities of sub-pixels by which a more accurate 
approximation is resulted. The algorithm transforms a 
shaded image from the viewpoint coordinate system (CS) 
to the illumination CS. Afterwards the resultant depth 
map can be obtained by applying any existing perspective 
SfS method on frontal illumination to the transformed 
image. The first experiment in section 4 shows the accu-
rate estimation of the image viewed at the illumination 
direction obtained by the proposed transformation. The 
second experiment further illustrates the performance of 
the proposed transformation and the high adaptability to 
perspective SfS under oblique illumination. Previously, 
[3] has shown that it outperforms [6] under frontal illumi-
nation.  Using the proposed transformation, it is shown 
that [3] outperforms [6] also in the case of oblique illumi-

nation.  Since the transformation is one step and simple, it 
involves a negligble additional computational overhead to 
[3]. 

The proposed transformation is equivalent to the well 
known rectification step in stereo vision, but its observa-
tion and application in this context in SfS is novel to the 
best of our knowledge.  

Currently, the transformation proposed is only valid for 
the pure Lambertian model and a single light source at 
infinity.  Future work is required to extend it to other 
models [7],[8]. 

 
(a) 

 
(b) 

Figure 4 – reconstructed Sphere for the oblique angles (a) [30°, 30°] and 
(b) [40°, 120°]. 

 
(a) 
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(b) 

Figure 5 – The reconstructed Four Mountains for the oblique angles (a) 
[30°, 30°] and (b) [40°, 120°]. 

 
(a) 

 
(b) 

Figure 6 – The reconstructed Mozart for the oblique angles (a) [30°, 30°] 
and (b) [40°, 120° 
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