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Abstract-This article points out the limitations of 
vectoral input pattern on density estimation and 
Bayesian classification. A continuous Bayesian classifier 
is proposed to tackle these limitations. The classifier 
accepts signal as input pattern; thus the problem of 
optimal description length selection is avoided. The 
algorithm is evaluated on signal clustering and 
distribution classification. 
 
 

I. INTRODUCTION 

A Bayesian classifier can be viewed as a 4-tuple <C, F, 
X, Pc,F>, where C is a finite set of class labels and F = [f1, 
f2, …, fn] is a finite set of class feature, X = ΠRi with Ri 
defining the set of possible observations of fi, i.e. fi ∈ Ri, 
and Pc,F denotes the probability of observation F ∈ X given 
class label c ∈ C. The objective of Bayesian classifier is to 
correctly predict the class label of any given feature vector 
in F ∈ X. Denoting by P(c) the prior distribution of class 
labels, its posterior distribution is computed by Bayes rule: 
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Recently, numerous articles reported modifications on 
Bayesian classifier. H. Li et al. in [ 14 ] formulated the 
classifier as a partially observable Markov decision 
process, which is responsible for selecting the feature. As a 
result, the cost of observing features is minimized while the 
classification performance is maximized. Z. Shi et al. in [ 
15 ] presented a mapping of attribute set according to the 
information geometry and Fisher score, in order to relax the 
condition independence assumption. Larsen R. [ 16 ] 
described extensions of 2D contextual classification 
algorithm to 3D based on the simultaneous distribution of a 
pixel and its nearest neighbors. Yaniv and Boaz [ 17 ] 
smoothed the density by a spline, thus enabling simple 
implementation of the Bayesian classifier without 
sacrificing the classification accuracy. Balaji et al. [ 18 ] 
adopted a Bayesian approach to simultaneously learn both 
an optimal nonlinear classifier and a subset of predictor 
variables. It uses heavy-tailed priors to promote sparsity in 
the utilization of both basis functions and features. 
Examples of Bayesian classifier based applications include 

the following: scene classification with a visual grammar    
[ 19 ], biometric recognition [ 20 ], image segmentation [ 
21 ] [ 22 ], appearance based tracking [ 23 ] and foot 
pressure lesions [ 24 ]. 

The posterior distributions of Bayesian classifier are 
normally estimated by a set of training samples: a pair of 
Cause and Effect. The form of training sample is 
application dependent and different applications have 
different representations. Causes normally appear as 
continuous signals containing huge amount of redundant 
information. In order to simplify the training process, they 
are quantized as vectors; namely vectoral Causes (feature 
vector). For example, Cause is represented as a high 
resolution grid (image or depth map) in object recognition. 
A 128 by 128 image forms a 16384-dimensional feature 
vector under raster scanning order, in which the 
corresponding network involves the determination of 
several thousands weights. Down-sampling and prior-
knowledge-based feature extraction [ 10 ] [ 11 ] are 
common methods to reduce the dimension of Cause 
(simplify the network topology). 

The description length of a feature vector is predefined 
and non-adjustable during training and prediction phases. 
Since the size of an accurate description changes from 
application to application and from Cause to Cause, fixed-
length description is always insufficient to represent all 
possible Causes of an application. A high-dimension 
feature provides a detailed description of a Cause but leads 
to a complicated network with poor generalization ability. 
On the other hand, a low-resolution feature gives an 
inaccurate Cause description but a more generalized 
network. The determination of the optimal description 
length remains a challenging problem. Despite that 
Minimum Description Length (MDL) [ 5 ] [ 6 ] is a 
promising guideline to select the size of feature; MDL can 
only return the optimal length among the training set. The 
length may not be true to the testing set and the problem of 
description length is not solved. 

Sometimes Cause is described as a parametric 
distribution or simply as a set of scattered point. Unlike the 
grid-form Cause whose order can be represented by the 
raster scanning order, the point set Cause cannot be 
converted to a vector directly. Meanwhile, neither feature 
extraction nor down sampling is applicable to it. Though 
that any distribution can be modeled as a Gaussian mixture 
model (GMM) by the EM algorithm [ 7 ], the problem of 
description length still persists in the parametric 
distribution Cause. 
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Motivated by the limitations of vectoral Cause, this 
article proposes a novel Bayesian classifier called Bayesian 
signal classifier (BSC), which performs a classification on 
the continuous domain. In BSC, Cause is represented as a 
continuous function f(x) where x ∈ ℜn. It is proven in [ 8 ] [ 
9 ] that any real function can be approximated as a GMM 
by giving sufficient number of samples. This leads to a 
unified expression of BSC when all functional Causes are 
modeled as GMMs. Chow and Lee [ 12 ] showed that 
GMM can highly compress the energy of grid-form data. 
This infers a simpler topology of BSC by comparing with 
those of vectoral Causes In addition; continuous Cause 
avoids the description length selection problem as no 
quantization is involved. Since BSC does not involve the 
concept “feature”, the quality of feature extraction need not 
be considered in the performance measurement of BSC. 
The EM algorithm makes BSC also valid in the pattern 
recognition of scattered-point (distribution) form Cause. 

Though Cause appears as a continuous signal in the real 
world, it is commonly discretized as a scattered point set by 
sensors like cameras and microphone. Thus, a regression is 
necessary to convert the received samples back to a 
continuous form. Unlike feature extraction and down-
sampling that reduce pattern input dimension, regression 
performs a nearly lossless conversion of pattern input 
representation. 

The most relevant work to this article is the Volterra 
series expansion model. It was firstly introduced by Vito 
Volterra [ 2 ] in 1959. Volterra series describe the output 
y(t) of a nonlinear system of x(t) as the sum of the responses 
of a 1st order, 2nd order, 3rd order operators and so on: 
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Every operator is described in time or frequency domain 
with a transfer function called the Volterra kernel. A 
Volterra representation can be regarded either as a black 
box or a circuit level description. Black box Volterra 
presentation with memory effects is described by Le Gallou 
et al. [ 13 ]. Though a reasonably good correlation between 
modeled and measured memory is reported, the Volterra 
description is empirical and must be characterized at the 
desired operating point. 

Zyla and Figueiredo [ 3 ] extended the idea of Volterra 
series to predict the output of a given continuous function. 
Since [ 3 ] does not specify the form of the input function, 
the formulation is an application dependent framework. In 
addition, it may lead to an undetermined model formulation 
as the integration of certain functions has no analytic 
solution. Even the model of Zyla and Figueiredo is derived 
in continuous domain, Panagiotopoulos et al. [ 4 ] rewrote it 
in discrete time so as to simplify the complicated expression 
of functional weights.  

By comparing with the model of Zyla and Figueiredo, the 
proposition of BSC is motivated by different reasons. 
Firstly, the model of Zyla and Figueiredo is derived from 

the Volterra series that mainly works on nonlinear circuit 
analysis. Though the concept of continuous input has been 
proposed in [ 3 ], the actual implementation in [ 4 ] still 
keeps in discrete domain for simplicity. Secondly, [ 3 ] 
performs regression while the proposed model targets on 
pattern classification. 

The rest of this article is organized as follows: In Section 
II, we define a similarity measure between two functions. 
By approximating the integration of a Gaussian function as 
a sigmoid function, the analytical expression of the 
functional similarities is formulated.  A signal clustering 
algorithm is presented in Section III. In section IV, we 
propose a signal density estimation method and hence a 
signal Bayesian classifier is constructed. Section V 
demonstrates the performance of signal clustering and BSC 
by two sets of simulations including signal clustering and 
signal classification. A conclusion is drawn in Section VI. 
 
 

II. FROM VECTOR TO FUNCTION 

A. Functional Distance 

Similarity plays an important role in density estimation 
and classification, and the Euclidean distance is the 
common measurement. In this section, the Euclidean 
distance is extended to continuous domain, namely 
functional distance, which is a methodology for measuring 
similarity between functions. The two functions g(x) and 
f(x) are represented as GMMs (Eq. ( 1 ) and Eq. ( 2 ) 
respectively) in the following derivation. 
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where {wi}, {mi} are the kernel weights, {βj} and {µj} are 
the kernel mean vectors, {αj

2} and {σi
2} are the kernel 

variances, A and B are the kernel biases and x ∈ X = Πi[X-
k, 

X+
k] ⊂ ℜn. 
The similarity between two functions f(x) and g(x), 

namely functional distance ||f(x) – g(x)||X, is defined as the 
integration of the squared difference over the range X: 
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As we represent any function as a Gaussian mixture model, 
in addition to that the product of two Gaussian functions 
remains Gaussian, eq. ( 3 ), the functional distance can be 
simplified as an integration of a GMM: 
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B. Approximation of Gaussian function integration 

Since the functional distance involves Gaussian function 
integration which has no analytical solution, we propose to 
approximate it as a sigmoid function: 
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To illustrate the accuracy of the approximation, we study 
the difference between the approximation and the 
integration derived by numerical method VT (the trapezoidal 
rule is employed in this section). As the interval is divided 
into 105 divisions, the precision of VT is sufficient to 
represent the actual integration. Fig. 1(a) shows the 
approximation of a 1D Gaussian integration by the 
proposed expression where σ ∈ [0.1, 5], M ∈ [-4, 4], a = 
Mσ and b = -4σ. Fig. 1(b) shows the absolute differences 
between the approximations of the proposed expression and 
the trapezoidal rule. The differences are kept at a low level 
(max. difference is less than 0.25). 

  
(a) (b) 

Fig. 1. The integration of Gaussian function (a) by the proposed method 
and (c) the corresponding error. 

 
III. SIGNAL CLUSTERING 

The k-means algorithm is a common clustering method 
which clusters patterns based on attributes into k partitions. 
Its objective is to determine the k means of data generated 
from gaussian distributions. In this section, the k-means 
algorithm is extended to continuous domain for clustering 
signal sets. Different from the conventional representation, 
the cluster; namely functional cluster mean µ(x); describes 
the averaged signal within it. Suppose that T is a signal set 
consisting of m signals {fi(x)}i∈[1,m] where x ∈ X ⊂ ℜn. The 
proposed algorithm aims at partitioning T into k signal 
clusters such that the total intra-cluster variance E is 
minimized: 
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The details of the algorithm are summarized as in the 
following: 
 
1. The functional cluster means µi

(1)(x) for i ∈ [1, k] is 
initialized as fj(x). The superscript (i) represents the 
value at the ith iteration. The fj(x) is randomly selected 
and all µi

(1)(x) are distinct, i.e. µi
(1)(x) ≠ µj

(1)(x) for i ≠ j. 
2. Compute the signal set Ui = {gi,a(x)} ⊂ T for the tth 

cluster. fj(x) is an element of Ui if: 
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3. The signal cluster means are updated as: 

∑
=

+ =
n

a
ai

t
i g

1
,

)1( )()( xxµ  

4. Repeat step 2 until all signal cluster means remain 
unchanged in two consecutive iterations, i.e. µi

(t+1)(x) = 
µj

(t)(x) for all i. 
 

IV. SIGNAL DENSITY ESTIMATION 

Many problems in computer vision involve obtaining the 
probability density function (p.d.f.) describing an observed 
random quantity. In general, the forms of the underlying 
density functions are not known and one can model it as a 
Gaussian mixture model: 
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where µj(x), σj
2 and αj are the mean vector, variance and 

weight of the jth kernel respectively. The Expectation-
Maximization (EM) algorithm is a common algorithm to 
determine the maximum likelyhood parameters of a mixture 
of k Gaussian kernels in the feature space. We briefly 
describe the basic steps of the extension of EM algorithm 
for Gaussian mixture model of a signal set. The distribution 
of a random signal f(x) is a mixture of k Gaussian kernels if 
its density function is: 
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where the parameter set θ = {µj(x), Ωj, αj > 0}j∈[1, k]. Given 
the current estimation of the parameter set θ, each iteration t 
of the extended EM algorithm re-estimates the parameter 
set according to the following steps: 
 
Expectation step: 
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for j ∈ [1, k] and i ∈ [1, n]. The term w(t)
i,j is the posterior 

probability that the signal fi(x) was sampled from the jth 
component of the mixture distribution. 
 
Maximization step: 
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where Wj
(t) = ∑iwi,j

(t). The parameter set θ of the density 
function is initialized by the signal clustering algorithm in 
section 3. 

Thus the signal density estimation algorithm extends the 
Bayesian classifier to handle continuous signal, the 
corresponding classifier is named Bayesian Signal 
Classifier (BSC). BSC determines the class label of a 
continuous signal f(x) based on its density given that f(x) 



belongs be ci. According to the Bayesian theorem, the 
probability that f(x) belongs to cf ∈ C is: 
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where C = {Ci} is the set of class labels. The p.d.f.s on the 
right hand side of ( 9 ) are formulated based on the signal 
training set T = [{fi(x) | ci}]. Thus, the input signal g(x) is 
classified as class label cb where 
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V. SIMULATION RESULTS 

A. Simulation 1 – Signal Clustering 

In this simulation, the performance of the signal 
clustering algorithm is evaluated in the following: Suppose 
that there are three function sets: 
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where x ∈ [0, 1], w ∈ [0.5, 1], σ = [0.1, 0.2], µ ∈ [0.35, 
0.75], m ∈ [0.25, 0.375], a ∈ [1.6, 2] and q = [0.5, 2.5]. We 
denote by an operator G(.) as a GMM representation of a 
given function f(x), i.e. G(f(x)), which is the regressive 
function of the point set {[0 | f(0)], [0.05 | f(0.05)], …, [1 | 
f(1)]} obtained by support vector machine [ 1 ]. The given 
function is described by 100 points in which G(.) can fully 
represent f(x) in the form of GMM. The sample signal set T 
to be clustered is defined as: 

T = {ri(x)}i∈[1, 10] ∪ {hi(x)}i∈[1, 10] ∪ {zi(x)}i∈[1, 10] 

where ri(x) ∈ G(F1), hi(x) ∈ G(F2) and zi(x) ∈ G(F3). The 
values of w, σ2, µ and q are randomly selected within the 
corresponding ranges under uniform distribution. Totally 30 
signal patterns are clustered in this simulation. The number 
of signal clusters k is chosen as 3 and the clusters are 
namely k1, k2 and k3. Fig. 2 shows the signal subsets of each 
cluster. In order to illustrate the generalization of the 
clusters, three testing signal sets: E1 ⊂ G(F1), E2 ⊂ G(F2) 
and E3 ⊂ G(F3) are generated and partitioned by the clusters 
ki. Every testing set consists of 100 signals where the signal 
parameters are chosen randomly. We define Ki as the subset 
of each testing set that belongs to ki. Table I lists the 
clustering results of the three testing sets. 
 

TABLE I 
SIZES OF THE SIGNAL SUBSETS K1, K2 AND K3 

 K1 K2 K3 
E1 97 1 2 
E2 1 98 1 
E3 3 1 96 

Seen from the table, each of the three clusters {ki} is 
supported by a nearly distinct function set (i.e. the cluster 
impurity is less than 5%). 

We define nk as the number of kernels (optimal 
description length) of a signal pattern. Table II lists the 
distributions of nk of T, E1, E2 and E3 in this simulation. 
Seen from the table, the values of nk are different from 
patterns to patterns and hence from training set to testing 
set.  Thus, it is expected that the conventional clustering 
algorithm is failed in this simulation. Moreover, it shows 
that the proposed clustering algorithm avoids the problem 
of optimal description length selection. 

TABLE II 
DISTRIBUTIONS OF nk IN T, E1, E2 AND E3 IN THE SIMULATION 1 

nk 1-3 4-7 8-10 
T 9 11 10 
E1 100 0 0 
E2 0 22 78 
E3 0 89 11 

 
B. Simulation 2 – Distribution Classification 

In this simulation, the performance of BSC is presented 
for a problem in distribution classification. Given a finite 
set of unknown distributions D = {pi(x)} where pi(x) is 
represented by a class label ci, distribution classification 
aims at finding the correct class label (unknown 
distribution) of a given point set S = {[x1,i, x2,i]}. The four 
distributions in this simulation are shown in Fig. 3. The 
details of distribution pattern generation for training and 
testing are presented in the following: 
 
Algorithm 1: Pattern generation of simulation 2 

1. Select the class label c of the current Cause randomly 
from the class label set C = {C1, C2, C3, C4}. 

2. Choose the size n ∈ [20, 50] of a point set S randomly. 
3. Generate a point set S = {[xi,1, xi,2] ∈ [0, 1]2}i∈[1, n] based 

on the p.d.f. p(x) ∈ D of c. 
4. Compute the empirical p.d.f. f(x) of S by the EM 

algorithm [25] involving MDL. The number of kernels 
of  f(x) is optimal in term of MDL score. 

5. The current signal sample is defined as [f(x) | c]. 
 
The training set T = {[fi(x) | ci]} consists of 100 signal 
samples. The BSC of T is constructed after estimating the 
density functions P(f(x) | ci) and the prior probabilities P(ci) 
for i ∈ [1, 4]. The P(ci) is extracted from the class labels in 
T, i.e. P(ci) = ni / 100 where ni is the number of patterns 
with class label ci. The patterns of testing set E = {[fj(x) | 
cj]} are also generated by the Algorithm 1.  In order to 
illustrate the generalization of the classifier, noises are 
embedded to S at the step 3 of Algorithm 1, S ← S + {[ηi,x, 
ηi,y]}i∈[1,n] where ηi,x and ηi,y are zero mean Gaussian 
random variable with variance v2. For each value of v, 100 
patterns are used to evaluate the trained BSC. 



Table III lists the accuracy A of the classifier on 
classifying the testing set E with different values of v. Seen 
from the table, the accuracy of the BSC keeps at high level 
(above 80%) even the standard deviation of the Gaussian 
noise is up to 7% of the range of xi. 

TABLE III 
ACCURACY A OF THE DISTRIBUTION CLASSIFIER 

 Standard deviation of noise v ( ×10-2) 
 5 6 7 8 9 

A 94.3% 91.4% 81.9% 77.5% 63.4% 

 
Table IV lists the distributions of nk of T and E in this 

simulation. Similar to the previous simulation, no unique nk 
can be concluded that the existing algorithms are failed to 
classify the pattern set E. 

TABLE IV 
DISTRIBUTIONS OF nk IN T AND E IN THE SIMULATION 2 

nk 5-10 11-15 16-20 
T 29 45 36 

E (v = 0.05) 27 47 36 
E (v = 0.06) 26 46 38 
E (v = 0.07) 26 47 37 
E (v = 0.08) 25 49 36 
E (v = 0.09) 25 48 37 

 

VI. CONCLUSION 

In the field of pattern recognition, classifiers are 
developed based on the existence of the relations between 
Causes and Effects. Bayesian classifier constructs this 
relation from a set of posterior distributions supported by 
historical Cause and Effect pairs, namely training samples. 
Causes are usually in the form of continuous functions or 
sets of scattered points. To simplify the training process, 
Cause is commonly represented as a vector after 
quantization or feature extraction. However, these 
simplifications lead to a sequence of the neural network 
limitations. During the quantization, description length (the 
size of quantized vector) plays an important role to the 
network complexity and accuracy. A long description forms 
a complicated and accurate network while a short 
description provides a simple but inaccurate network. 
Furthermore, as the scattered-point-form Cause involves no 
ordering, none of the quantization methods is applicable. 
Though point distribution can be represented by GMM 
through the EM algorithm, the problem of description 
length selection still exists. 

Driven by the limitations of vectoral Causes, we propose 
a novel Bayesian classifier called Bayesian signal classifier 
(BSC) that determines the class label of a given continuous 
signal. This feature makes a more accurate description to 
the relation between Cause and Effect. As a result, BSC 
avoids the following problems: 1) the selection of optimal 
description length and 2) inaccurate classification of 
scattered-points input pattern. In this article, two 

algorithms: signal clustering and signal density estimation 
are presented for the constructing of the posterior 
distribution. Different from the model of Zyla and 
Figueiredo [ 3 ], BSC performs pattern classification but not 
regression. In addition, BSC has advantage over [ 3 ] in 
model expression: All real functions are represented as 
Gaussian Mixture Model (GMM) in which an exact 
solution is computed. In addition, the GMM representation 
is immune from the problem of undefined function 
integration occurred in [ 3 ]. The simulation results show 
that both the signal clustering algorithm and BSC perform 
well on overcoming the description length selection 
problem and the limitation of distribution classification of 
vectoral Cause. 
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(a) (b) (c) 

Fig. 2. Clustered signals of T in (a) k1 (b) k2 and (c) k3. 
 
 

    
(a) (b) (c) (d) 

Fig. 3. Density functions pi(x) of (a) C1 (b) C2 (c) C3 and (d) C4 

 


