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Abstract–In augmented reality (AR), the lighting 
direction plays an important role to the quality of the 
augmented scene. The corresponding lighting direction 
estimation is a challenging problem as it depends on an 
extra unknown variable – reflectance of the material. In 
this article, we propose to estimate the lighting direction 
by a neural network (NN) which is trained by a sample 
set. Since the empirical reflectance of a captured scene is 
in form of scattered points, we unify the representation 
of reflectance as a two dimensional polynomials. 
Moreover, a novel neural network model is presented to 
construct the mapping from reflectance to lighting 
direction. Contrary to the existing NNs, the proposed 
model accepts surface input pattern in which the 
drawbacks of feature vector are overcome. 
Experimental results of 2000 lighting estimations with 
unknown reflectances are presented to demonstrate the 
performance of the proposed algorithm. 
 
 

I. INTRODUCTION 

Augmented reality (AR) is a field of computer research 
that deals with the combination of real world and computer 
generated data. At present, most AR researches are 
concerned with the use of live video imagery which is 
digitally processed and "augmented" by the addition of 
computer generated graphics. The visual quality of a AR 
scene is highly sensitive to the lighting consistency between 
the real and the virtual scenes. Recently, the lighting 
direction is recovered by a simple camera calibration under 
the controlled environment. In more complicated cases, the 
direction is assigned manually (by trial and error) and 
adjusted until the visual quality of the rendering sence is 
satisfactory to a human judge. In computer vision, the 
lighting direction is guessed though clues like shading and 
shadows. However, since the rendering model is different 
from image to image, the estimation process is complicated 
and time consuming. 

A useful discussion of the ambiguities involved in 
lighting direction estimation can be found in [ 1 ]. Several 
of researchers have proposed methods for the estimation of 
the light source direction. Horn and Brooks [ 2 ] propose an 
iterative method that updates both the shape and the 

illuminant direction at every iteration. To avoid local 
minima, a good initial state is necessary, and furthermore, 
the requirement for a light source vector of unit length is 
not enforced. Lee and Rosenfeld  [ 3 ] used a Gaussian 
sphere model for the surface normal distribution and local 
spherical patches, but did not take shadowing effects into 
account. Zheng and Chellappa  [ 4 ] present a more 
sophisticated image based method, considering shadowing 
effects and using a uniform distribution of the tilt and slant 
angles of surface normals. They still assume local spherical 
patches and their algorithm suffers on surfaces that deviate 
significantly from this assumption. Leclerc and Bobick [ 5 ] 
derive accurate light source information from surfaces 
reconstructed using stereo data. 

Dimitris et al. in [ 6 ] proposed an iterative algorithm to 
estimate the surface and lighting direction of a shaded 
image. They employed the method of Zheng and Chellappa  
[ 4 ] to initialize the lighting direction. The initialized 
direction is then used to estimate the model parameters 
(surface). Afterward, the lighting direction is re-estimated 
by the feedback of surface obtained in the pervious step. 
The iteration is repeated until the estimated lighting 
direction and the model parameters mutually agreed. The 
accuracy of the estimated lighting direction highly depends 
on the initiate. Furthermore, the convergence proof of the 
algorithm is absent that a converged solution is not 
guaranteed. 

Cho and Chow in [ 7 ] reported a neural computation 
approach to recover the reflectance model and 3D shape of 
a shaded image. Similar to [ 6 ], the model of Cho and 
Chow is an iterative approach; the estimated reflectance 
model and 3D shape are mutually updated by each another 
until the proposed stopping criterion is reached. This work 
suffers from the same convergence problem above. In 
addition, the network topology of the correct reflectance 
model is difficult to determine and is a challenging problem. 

Reflectance r(.) in computer graphics represents the 
mapping from a set of rendering parameters (i.e. lighting 
direction L, surface unit normal N = [Nx, Ny, Nz] and 
material K) of a point to the corresponding intensity I, i.e. I 
= r(L, N, K). A constant reflectance refers to an reflectance 
with constant L and K at any point of a captured scene and 
the shading equation is simplified as I = r(N). In the field of 
augmented reality, the constant reflectance can be 
recovered by a depth model and the corresponding shaded 
image. We denote this reflectance as empirical reflectance 
since it is obtained by reversing the rendering process. It is 
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pointed out in [ 7 ] that reflectance r(.) somehow reflects 
the lighting direction of a captured scene Ω. Thus, we 
propose to estimate the lighting direction of a scene by a 
NN. We treat reflectance as input patterns while the 
corresponding lighting directions are the output patterns. 
Notice that the empirical reflectance is represented as a 
point set {Ni | Ii} which is an invalid input pattern of the 
existing NNs, we propose to model the empirical 
reflectance as a polynomial, namely polynomial reflectance, 
in order to unify the representation of reflectance. 

The rest of this article is organized as follows: Section II 
discusses the reflectance map and its polynomial 
estimation. In Section III, we propose a surface input neural 
network module is that acts as the lighting direction 
estimator. Section IV demonstrates the performance of the 
proposed algorithm on give exact number thousands of 
lighting direction estimations. A conclusion is drawn at 
Section V. 
 

II. REFLECTANCE MAP ESTIMATION 

In computer graphics and computer vision, the 
reflectance map is a shading model that assigns shades to 
surface points based on the lighting direction(s), surface 
normal and material. Recently, several generalized 
reflectance models are proposed: Examples include the 
Phong reflection model [ 8 ], Lambertian model [ 9 ], Blinn 
Phong  model [ 10 ], Neumann model [ 11 ] and Ashikhmin 
model [ 12 ]. These models are represented as linear 
combination of ambient, specular and diffuse reflectance. 
Though their formulations are empirical, these models are 
extensively employed in scene rendering. 

In augmented reality, the constant reflectance of a given 
scene is estimated for the addition of computer generated 
graphics. In order to reduce the input dimension of constant 
reflectance I = r(N), N is converted to D = (α, β) in polar 
corordinate system such that N = [cosαcosβ, sinαcosβ, 
sinβ]. Suppose Z(u, v) and I(u, v) are the depth map and 
image of a captured scene Ω, the estimated (empirical) 
reflectance of Ω is obtaind by the procedure summarized in 
the following: Firstly, we compute the surface gradient N(u, 
v) = [-Zu(u, v), Zv(u, v), 1] at every (u, v) where 
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Afterward, N(u, v) is converted to a polar coordinate D(u, v) 
= [Zα(u, v), Zβ(u, v)] where 
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As a result, the empirical reflectance of Ω is described by a 
set of scattered reflectance samples S = {[Zα(u, v), Zβ(u, v), 
I(u, v)]}. Fig. 1 shows the empirical reflectances of the first 
four depth models under the same shading equation. Notice 

that the reflectance sample sets of the four models lie on a 
same surface (the actual reflectance). It can be concluded 
that the empirical reflectance is invariant to depth model 
shape. 

In this article, we represent the empirical reflectance r(α, 
β) as a two dimensional polynomial surface; namely 
polynomial reflectance: 
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where wi is the coefficient of the ith term; pi and qi are the 
integer powers of α and β of the ith term respectively. The 
superscript t denotes the maximum order of a polynomial 
reflectance, i.e. t = maxi pi + qi, the power set P = {pi, qi} of 
r(t)(α, β) is defined as: 

{pi, qi} = {x, 0 ≤ y ≤ t - x} for x ∈ [0, t] ( 3 ) 

For example, the polynomial reflectances with the 
maximum orders 2 and 3 are defined as: 

w1α2 + w2β2 + w3αβ + w4α + w5β + w6 
and 

w1α3 + w2β3 + w3α2β + w4αβ2 + w5α2 + w6β2 + 
w7αβ + w8α + w9β + w10 

respectively. The number of terms of a polynomial 
reflectance r(t)(α, β) is 0.5(t + 1)(t + 2). In addition, we 
define a polynomial reflectance set R = {r(t)(α, β) = 
∑iwiαpβq} where wi ∈ ℜ; t ∈ Ζ+; {p, q} satisfy eq. ( 3 ) for t 
∈ Ζ+. Given a set of reflectance samples S = {Qj = [αj, βj]  | 
Ij}, the coefficients {wi} of r(t)(α, β) are computed by the 
pseudo inverse method. 
 

III. SURFACE INPUT NETWORK 

Reflectance is a shape invariant shading information 
which relates to the lighting direction of a scene. We 
propose to achieve the inverse relation from reflectance to 
lighting direction by means of neural network (NN). Owing 
to the simplification of the training process, input patterns 
of the existing NN modules are commonly represented as 
vectors after feature extraction. In the view of lighting 
direction estimation, the coefficient set {wi} of a 
polynomial reflectance is possible to be a feature vector of 
NNs. However, as the influence of coefficient to the 
reflectance is different from one to another, i.e. ∂r(t)(α, 
β)/∂wa >> ∂r(t)(α, β)/∂wb if c + d >> e + f where wa and wb 
are the coefficients of the terms αcβd and αeβf respectively, 
the corresponding feature domain is sensitive to noise. 
Driven by the drawbacks of vectoral input pattern, we 
propose a novel neural network module called Surface 
Input Network (SIN) which constructs a mapping from 
surface input (polynomial reflectance) to vector output 
(lighting direction). This feature leads to a more realistic 
description of the relation between reflectance and lighting 
direction, through which more accurate estimation can be 
expected. 
 
 



A. Reflectance Similarity 

Similarity plays an important role in training and 
prediction of neural NN. For example, the self-organizing 
map uses the Euclidean distance between neuron and input 
pattern to conclude the winning node. Support vector 
machine uses the Euclidean distance among kernels to 
formulate the energy function. In this section, a measure of 
similarity between reflectances, namely reflectance 
distance, is introduced. 

Suppose r1
(t)(α, β) and r2

(u)(α, β) are two polynomial 
reflectances where 
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we denote by a notation of the reflectance distance between  
r1

(t)(α, β) and r2
(u)(α, β) as A(r1

(t)(α, β), r2
(u)(α, β)): 
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which is an integration of the squared differences between 
r1

(t)(α, β) and r2
(u)(α, β). As we represent any reflectance as 

a two dimensional polynomial, A(r1
(t)(α, β), r2

(u)(α, β)) can 
be further rewritten as: 
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B. Structure of SIN 

The proposed estimator F(⋅) describes the mapping from 
a polynomial reflectance r(t)(α, β) ∈ R to the corresponding 
lighting direction L = [θ1, θ2], i.e. L = F(r(t)(α, β)) by 
means of the Gaussian mixture model (GMM): 
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where B is the bias vector; mk = [mk,1, mk,2], µk(α, β) ∈ R 
and σk

2 are the weight vector, reflectance mean and 
variance of the kth kernel respectively. Initially, n Gaussian 
kernels are assigned for a SIN with a training set T = 
{rk

t(k)(α,β) | Lk = [θ1,k,θ2,k]}k∈[1,n] consisting of n samples. 
The number of kernels is pruned iteratively under the 
training error reaches the given threshold εT. 
 
 
 
 

C. Training algorithm of SIN 

The proposed training algorithm is an iterative method. 
The size of training set, namely contributed training set T’ 
= {rj

t(i)(α,β)’ ∈ R | Lj’ = [θ1,j,θ2,j]} ⊂ T, is reduced by one 
after each iteration. The remaining training pattern in T’ are 
regarded as the most contributed samples for the network. 
During the training phase, five types of parameters of SIN: 
1) the number of kernels, 2) means, 3) variances, 4) bias 
vector and 5) weight vectors have to be determined. 

1. The number of kernel is equivalent to the size of T’. 

2. Mean µj(α, β): Each training input pattern in T’ is 
regarded as the reflectance mean of the SIN, i.e. µj(α, β) 
← rj

t(j)(α, β)’. 

3. Variance σj
2: It is a measure of the averaged reflectance 

distance of an input reflectance from a reflectance 
mean. The value of σj

2 is suggested as: 
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4. Bias vector B = [b1, b2]: It denotes as the averaged 
lighting direction, i.e. B = ∑kLk / n. 

5. Weight vectors {mj}: They are computed by 
minimizing the least square error of the estimated L 
with respect to {mj}. This process can be done by a 
pseudo inversion calculation method. 

The training process is terminated at the tth iteration if the 
least square error in this iteration reaches εT. Otherwise, T’ 
is updated by the following procedures: 

1. The contribution Cj of the kernel [µj(α, β), σj
2, mj] is 

defined as the maximum of its hyper-volumes in θ1 and 
θ2 domains, i.e. Cj = max(mj,1σj(2π)0.5, mj,2σj(2π)0.5). 

2. The training pattern [ru
t(u)(α,β)’ | Lu’] ∈ T’ is removed 

from T’ where u = arg min{Cj}. 

3. Retrain the SIN with the updated T’. 

 
IV. EXPERIMENTAL RESULTS 

In this experiment, we apply SIN to estimate the lighting 
direction L = [θ1, θ2] of a captured scene Ω based on the 
shaded image I(u, v) and the depth map Z(u, v) of Ω. SIN is 
trained by a set of synthetic reflectance samples for which 
the shading equations are known. In the actual 
implementation, the shaded images are captured from 
scenes instead of by synthesis. 

Six depth maps: Mozart, 4 Mountains, Vase, Sphere, 
Skull and Heart shown in Fig. 2 are used to train and 
evaluate the proposed estimator. The first four models had 
appeared in [ 14 ] and the remaining two models can be 
found in [ 15 ]. The shading equations in this experiment 
are based on the Phong reflection model [ 8 ]. 

sn
sda kkkP )()(),( :model Phong FVLNLN ⋅+⋅+=  



where V = [0, 0, 1] and F = 2N(N⋅L) - L. The values of ka 
∈ [0, 0.05], kd ∈ [0.05, 0.5], ks  ∈ [0.05, 0.5] and ns  ∈ [2, 
6] are chosen randomly under the uniform distribution. 
Totally 40 patterns are used in training phase. In order to 
illustrate the generalization of the estimator, different sets 
of depth models are used in training and evaluation phases. 
The first three models (Mozart, 4 Mountains and Vase) 
form the depth map set {Zt

i(u, v)}i=1,2,3 for the construction 
of training set T = {rk

t(k)(α, β) | Lk} while the last three 
models (Sphere, Skull and Heart) form the depth map set 
{Ze

i(u, v)}i=1,2,3 for the evaluation. Although the reflectance 
depends only on the surface normal, the distribution of 
[Zα(u, v), Zβ(u, v)] of S is varied from depth map to depth 
map such that the corresponding polynomial reflectance 
piece-wisely agrees with the actual one. This is equivalent 
to introduce noise to training set of SIN. The training error 
threshold εT is chosen as 0.01. 

The performance of the estimator is compared with 
two methods: 

1) Support vector machine (SVM) [ 13 ] – a state of 
the art vector-input NN: The coefficients {wi} of a 
polynomial reflectance r (t)(α, β) form the corresponding 
feature vector f, i.e. f = [w1, w2, …, w0.5(t+1)(t+2)]. 

2) Nearest neighbor scheme (NNS): Given the 
sample set T, the output of an reflectance r(t)(α, β)  under 
the nearest neighbor scheme is estimated as Lc where the 
subscript c is defined as: 

( )),(),,(minarg )()( βαβα kt
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and rk
t(k)(α, β) ∈ R. 

The number of kernels of trained SIN and SVM are 20 
and 36 respectively. Empirically, the computational load of 
SIN is much lower (only 55%) than that of SVM as it 
involves less reflectance distance calculation. By comparing 
with the NNS, the reduced computational load is more 
significant since more than 30% of training patterns can be 
ignored in the network construction. 

In the evaluation phase, the lighting directions of 2000 
testing patterns are estimated by the proposed estimator, 
SVM and the nearest neighbor scheme. The generation 
procedures of the testing patterns follow those of the 
training patterns, except that the depth map set {Zt

i(u, v)} is 
replaced with {Ze

i(u, v)}. Fig. 3(a) and Fig. 3(b) show the 
sorted errors of the estimated θ1 and θ2 respectively. Fig. 4 
shows the angles θe between the actual lighting directions 
La and the estimated lighting directions Le, i.e. θe = cos-

1(La⋅Le / |La|⋅|Le|). The solid lines represent the results of 
SIN. The dotted lines represent the results of SVM and the 
dashed lines represent the results of the nearest neighbor 
scheme. Table I and Table II list the statistics of the 
absolute errors of θ1 and θ2. Table 3 lists the statistic of θe.  

Seen from the table, SIN is able to estimate the 
mapping from a set of piecewise correct information to θ1 
and θ2. The estimated θ1 and θ2 are more accurate than 
those obtained by SVM and the nearest neighbor scheme in 
both mean and median measures. Furthermore, the 

inaccurate results of the nearest neighbor scheme indicate 
that the relation between polynomial reflectance and 
lighting direction is complicated. In addition of the huge 
estimation errors of SVM, the light estimation by SIN is 
necessary. 
 

TABLE 1 
STATISTICS OF THE ESTIMATION ERRORS OF θ1 

 Mean Std. Median 
SIN 2.196 2.959 1.279 

SVM 38.432 44.189 24.041 
NNS 14.027 10.771 11.034 

TABLE 2 
STATISTICS OF THE ESTIMATION ERRORS OF θ2 

 Mean Std. Median 
SIN 20.756 22.127 14.311 

SVM 29.159 161.81 57.3 
NNS 73.536 44.835 78..714 

TABLE 3 
STATISTICS OF THE θE 

 Mean Std. Median 
SIN 19.752 21.746 13.137 

SVM 90.089 36.425 90.405 
NNS 68.929 37.233 71.402 

 
 

V. CONCLUSION 

Lighting direction is an essential information piece of 
in computer graphics, especially in augmented reality. A 
high quality augmented scene is dependent on an accurate 
lighting direction. The corresponding lighting direction 
estimation is considered as an information retrieval from 
the empirical reflectance of a captured scene. In this article, 
we propose estimating the lighting direction by means of 
neural network (NN). The promising results support two 
contributions of this article. Firstly, the empirical 
reflectance is parameterized as a two dimensional 
polynomial for the training. Since the empirical reflectance 
is in form of scattered reflectance samples, in addition to 
the variable sizes of the sample sets, the empirical 
reflectance is an invalid input pattern of NN. The proposed 
polynomial reflectance unifies the representations of 
reflectances such that the learning based estimation is 
possible. Secondly, the proposed surface input network 
(SIN) overcomes the drawback of non-uniform coefficient 
influences of polynomial reflectance. The SIN considers 
polynomial reflectances as input patterns, by which a more 
realistic description of the relation between reflectance and 
lighting direction is achieved. It is experimentally verified 
that a more accurate estimation is achieved compared with 
the support vector machine and the nearest neighbor 
scheme. 
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Fig. 1. The empirical albedos of different depth models under the same shading equation.  (a) Mozart, (b) 4 Mountains, (c) Sphere and (d) Vase 
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Fig. 2. The six depth models used in Section 4; the models for training: (a) Mozart, (b) 4 Mountains and (c) Sphere;  the models for evaluation (d) 
Vase, (e) Skull and (f) Heart. 
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Fig. 3. The absolute angle errors: (a) the estimated θ1 and (b) the estimated θ2 
 

 

 

Fig. 4. The angle differences between La and Le  
 


