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Abstract — In this article, a non-revisiting particle swarm
optimization (NrPSO) is proposed. NrPSO is an integration of
the non-revisiting scheme and a standard particle swarm
optimization (PSO). It guarantees that all updated positions are
not evaluated before. This property leads to two advantages: 1)
it undisputedly reduces the computation cost on evaluating a
time consuming and expensive objective function and 2) It
helps prevent premature convergence. The non-revisiting
scheme acts as a self-adaptive mutation. Particles genericly
switch between local search and global search. In addition,
since the adaptive mutation scheme of NrPSO involves no
parameter, comparing with other variants of PSO which
involve at least two performance sensitive parameters, the
performance of NrPSO is more reliable. The simulation results
show that NrPSO outperforms four variants of PSOs on
optimizing both uni-modal and multi-modal functions with
dimensions up to 40. We also illustrate that the overhead and
archive size of NrPSO are insignificant. Thus NrPSO is
practical for real world applications. In addition, it is shown
that the performance of NrPSO is insensitive to the specific
chosen values of parameters.

I. INTRODUCTION

P article Swarm Optimization (PSO) [1] [2] is an
evolutionary computation technique inspired by swarm
intelligence phenomena such as birds flocking and fish
schooling. For a D-dimensional problem, each particle in a
swarm in PSO is represented by 1) its position x = [x;, X2,
., Xp], 2) its velocity v = [v;, v,, ..., vp], and 3) its best
visited position so far b = [b;, b,, ..., bp]. Besides, the
swarm also records the historical best position g found by
the whole swarm. During iterations, the i position
component x; and the i velocity component v; of a particle
are updated according to the following equations:

Vi = wyi ;X 17X (b - x;) + eoX 112X (g - X;) (D
Xi & x;tv 2

where ¢; and ¢, are the relative influence of the cognitive
and social components respectively; w is the inertia weight;
17; and 7, are uniformly distributed random variables in the
range [0,1].

Compared to other evolutionary computation algorithms,
such as Genetic algorithm, PSO has shown a faster
convergence speed on some problems [3] [4]. In addition, it
is easier to implement with less parameters to adjust.
However, PSO suffers from premature convergence and
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stagnate at local optimal solutions. Angeline [5] showed that
though PSO may outperform other evolutionary algorithms
in the early iterations, its performance may not be
competitive as the number of generations is increased.
Particles converge to a position while their velocities tend to
zero. Thus, no more significant fitness improvement can be
made. In order to overcome the premature convergence of
PSO, it is important to increase the diversity of particles.
Recently, several researchers proposed adding swarm
diversity for avoidance of premature convergence, such as
solving the collision and clustering between two particles
[6], random re-initialization [7], and mutation with small
probability [8].

A dissipative particle swarm optimization (DPSO) [7]
introduced random mutation that helps particles to escape
from local minima. Its formula is described as follows:

If 75 < C then vi=1y X Viax/ Ca 3)

where 7; and 77, are uniformly distributed random variables
in the range [0,1]; C, is the mutation rate to control the
velocity; C,, is a constant to control the extent of mutation;
and V,,,, is the maximum velocity.

Particle swarm optimization with spatial particle
extension (SEPSO) [6] introduced the spatial particle
extension model to increase the diversity when particles start
to cluster. Two particles collide when their distance is
smaller than a given radius r. If collision occurs, the
corresponding particles bounce off by adjusting their
velocities.

Liu ef al. in [9] proposed a PSO with mutation (PSOMS)
that prevents premature convergence. According to the
averaged similarity between each particle and the historical
best particle explored by the swarm, the clustering degree of
particle swarm is computed to measure the swarm diversity.
The position of a particle is re-initialized if:

If 7y < o (1) X s(i ,Q) )

where o/is a predefined constant, c(¢) is the collectivity of /"
generation and s(i, g) denotes the similarity of the i particle
to the current best particle.

Though the modified PSO models [6] [7] [8] weaken the
chance of premature convergence, a proper selection of
parameters (i.e. C, and C,, in DPSO, r in SEPSO and o in
PSOMS) is critical to the performance. To be a truly
adaptive PSO, the particle exploration must be parameter
free. In this article, we proposed integrating the non-
revisiting scheme suggested by Yuen and Chow [10] with a
standard PSO, which results in a non-revisiting PSO
(NrPSO). Since all updated positions are guaranteed to be
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novel — they are non-revisited before, faster convergence
speed is expected. Moreover, the NrPSO reduces not only
computation cost but also the evaluation cost for a large
variety of applications [11]-[14]. Furthermore, due to the
nature of the non-revisiting scheme, the non-revisited
position self switch between local search and global search.
This paper is organized as follows: Section II reports the
PSO of which the updated positions are non-revisited.
Section III presents the simulation setup. Section IV reports
the simulations results. A conclusion is drawn in Section V.

II. NON-REVISITING PSO (NRPSO)

A. Non-Revisiting Scheme

The non-revisiting scheme is proposed by Yuen and
Chow in [10]. It is originally applied to genetic algorithm
(GA); the non-revisiting GA (NrGA) prevents from solution
re-evaluation. In addition, the scheme also acts as a
parameter-less mutation operation. The NrGA is found to be
more robust than GA.

Definition 1: Revisits
Suppose Q is a set of evaluated solutions, the solution x is a

revisitifx e Q. 0

The non-revisiting scheme stores all visited solutions {s;}
by a tree-structure archive, namely binary space partitioning
(BSP) tree. During iterations, the search space is being
partitioned into a set of regions H. The regions are non-
overlapping, i.e. h; N h;= & for all h;, h; € H and h; # h;, and
each of them consists of one evaluated solution. In view of
the BSP tree, a node represents a region 4 € H. Thus, the
tree grows along with the iterations. Since the tree
construction depends on the sequence of solution set, the
BSP tree is a random tree and its topology is different from
trial to trial.

The scheme is analogous to a black box function (fig. 1).
The input x of that function can be any point in the search
space. If x is a revisit, that function outputs solution r such
that 1) r # x, 2) X, r € /, € H and 3) r is the nearest neighbor
of x. Otherwise, r is assigned as x. Since the size of h € H
gradually decreases along with the iterations, and r is
randomly selected from /4, where x € #,, the expected
distance between x and r becomes smaller.

Updated pariicle position
xbyeq. (2)

= BSP Tree

PSO

Mon-revisiting
solution r by the
BESP tree

Fig. 1 Communication between PSO and the BSP tree.

B. Particle acceleration by the non-revisiting scheme

The position of a particle r returned by the non-revisiting
scheme can be expressed as:
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7O = x,-m + Ax,-(t) 5)

where x; is the i position component updated by eq. (2), the
superscript (f) represents the " iteration. Since the
adjustment of x: Ax is computed based on the archive 4
(revisit set) and the updated x, it can be written as a function
of x and 4:

Ax,-(‘) - l//(x,-(‘) A(t-l)) (6)
According to eqs. (1) - (2), Ax“ can be further expressed as
a function x,"V, vV bV gV and 44V (eq. (7)):

Ax[(l) - Vr(l) :l/j(xi(t-l)’ V[(H) , bi(l-l)’ gi(l-l), A(t-l)) 7
As 5" and g are elements of A“", eq. (7) can be
simplified as:

Ax[(l) _ Vr(l) :l/,(x’_(l-l) V[(H) A(l-l)) (8)

By substituting eq. (8) into egs. (1) and (2), it is observed
in eq. (9) that the non-revisiting scheme acts as an
accelerator to particles. The acceleration is ¥/.):

Vi([) = WVi(H) + Xy X(bi(t_l) - xi(t-])) + C2X772X(gi(t_l) - xi(t-])) +

W, v, AT ©)

Fig. 2 illustrates an example of particle acceleration by the
non-revisiting scheme. The sign e represents the particle
position while the grey region represents the positions that
have been evaluated. When the updated position x falls
into the grey region, an acceleration V. is applied to the
particle and it escapes from that region.

. Particle position
Revisit zone

Fig. 2 An example of the particle acceleration by the non-revisiting scheme.

Definition 2: Nearest neighbor

Note that PSO must be discretized for non-revisiting scheme
to work. In NrPSO, the search space S is in the form of a
grid. Every solution occupies a unique cell in S. Solution n
€ S is a nearest neighbor of solution x € S if the cell of n is
adjacent to the cell of x. For a D-dimensional function, every
solution, except those at the boundary of the search space,
has 2D nearest neighbors. O

Suppose Z c S is a revisit set (revisit zone in S), Bc Zis a
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subset of Z such that every b € B must has at least one
nearest neighbor m which is not a revisit, i.e. n ¢ Z.
According to the non-revisiting scheme, the distance
between x and r must be larger than |[x — by| where

(10)

b, :argr&igux—b\

Thus the magnitude of ¥, depends upon the size of the
revisit zone Z that x belongs to, i.e. x € R. Since the size of
Z is related to the size of optimal basin, NrPSO adaptively
switches between escaping from local optima and fine
searching solutions. Moreover, while the swarm converges
to a position X, (premature convergence), the region around
xo forms a revisit zone that accelerates particles to guide the
swarm to move away from X,.

C. Redirected Particle Position

Considering the case that particle p is moving towards a
visited position s, as discussed in the previous section, the
non-revisiting scheme forces the particle to a new position r
where 1) r is never visited before and 2) r is a nearby
position of s. It is analogous to view s as an obstacle in the
search space. These obstacles (revisit set) applies a reaction
force Ax to p such that the resultant position of pis r = x +
Ax. Since the particle receives reaction force only when it
collides with the obstacle, the force Ax should not be
included in the velocity updating equation of the NrPSO. In
addition, Ax is a random variable viewed from the particle,
the equation is normally the same as that of a standard PSO

(eq. (1))

D. Mechanism of NrPSO

In general, a standard PSO (SPSO) and its variants (i.e.
DPSO, SEPSO, PSOMS) can be easily modified as NrPSO
by including the black box function (fig. 1) since the non-
revisiting scheme is independent of the operations in PSO.
In this article, a standard PSO is used and modified as
NrPSO. Fig. 3 shows the pseudo code of NrPSO. The
procedure of NrPSO is similar to those of standard PSO
except for the following three extra steps in each iteration:

1. After updating x; and v;, the redirected position r; of x; is
computed by the non-revisiting scheme.

2. When r; is evaluated, it is regarded as a revisit. Thus, the
BSP tree should be updated in order to include r; into the
revisit pool.

3. Instead of x;, r; is used to update b; and g.

III. SIMULATION SETUP

A. Test function set

In this article, a real valued function set F = [fi(x),
fr(X),..., f14(X)] consisting of 14 functions are employed to
illustrate the performance of the proposed non-revisiting
scheme. The details (i.e. X — search space, D — function

2008 IEEE Congress on Evolutionary Computation (CEC 2008)

dimension, xo — optimal solution, y, — optimal fitness) of the
functions are listed in Table II. The first six functions are
simple unimodal functions whereas the remaining eight
functions are multimodal functions designed with a
considerable amount of local minima. Meanwhile, the
dimensions of the first ten functions are adjustable while the
dimensions of the remaining four functions are fixed at two.
All functions with the exceptions of fy, f;;, fi> and f;;, have
the global minimum at the origin or very close to the origin.
Simulations were carried out to find the global minimum of
each function.

B. Setup of test algorithms

To evaluate the impact of NrPSO, we compare its optimal
fitness with those found by SPSO, DPSO, SEPSO and
PSOMS. For all test algorithms, the values of ¢,, ¢, are set to
0.8. The inertia w is linearly decreasing from 1 to 0. Suppose
X =Ili-1. p[L:, U;] is the search space of a D-dimensional
objective function, the maximum velocity V,,,, is set to 0.1R
where R = max(U; - L;). For NrPSO, the axis resolutions d of
the first 10 functions are chosen as 100 whereas the values
of d are 2,000 for the remaining four. The parameters used in
DPSO, SEPSO and PSOMS are assigned as those suggested
their original works: the parameters C, and C,, of DPSO are
chosen to be 0.001 and 0.002 respectively. For SEPSO, the
radius r is assigned to 0.005RD*’ and simple velocity line
bouncing with bouncing factor -1 is used. For PSOMS, the
parameters d,,, dpa, P and o are set to 0.00 IRD?,
0.01RD", 1 and 3 respectively.

C. Simulation settings

For all simulations, the swarm size is set to 200 and the
search is terminated after 200 generations. All test functions
with the exceptions of f;;, fi2, f13 and fi, which is two-
dimensional, are tested with dimension 40. Since the test
algorithms are stochastic, their performance on each test
function are concluded by 100 independent runs. All
simulations are performed on a PC with 3.2GHz CPU and
1GB memory. The algorithms are implemented in C
language.

e Initialize particle positions {x;}
e Initialize iteration index ¢ as zero.
e Evaluate {x;} — {f(xi)}
while t < t,,, and fg) > frn
fori =1toN
e Update v; for all 7 according to the eq. (1)
e Update x; for all 7 according to the eq. (2)
e Compute the redirected position r;.
e Evaluate: r; — f(r;)
e Record [r;, f(I;)] in the BSP tree
. lff(r.) <f(bi) then bi T
Next i
o if flo) <f(g) then g < o where

0 =argmin f(s)
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o tt+1
loop

Fig. 3 The pseudo code for NrPSO.

IV. SIMULATION RESULTS

Initially, we observe the performance in terms of accuracy
(quality of the averaged optimal fitness) for 100 trials of
NrPSO in comparison with SPSO, DPSO, SEPSO and
PSOMS. The contribution of integrating the non-revisiting
scheme is observed. To be a practical solution to real world
problems, the processing time and the archive size of NrPSO
should be within a reasonable range. The average processing
time and the worst case archive size are also observed.
Finally, the stability of the test algorithms is observed. The
averaged and the standard deviation (inside brackets) of the
optimal fitness for 100 trials are presented in Table III. In
Table 1V, the averaged processing time of the algorithms are
presented. Table V lists the averaged archive sizes for 100
trials. Table VI lists the stability data of the algorithms.

A. Accuracy

Table III lists the average and the standard deviation of
the optimal fitness for 100 trials. The algorithm with bold
average fitness value represented that it performs the best
among all algorithms. It is clear from the table that NrPSO
performs better than other PSO models for all unimodal
functions except f;, which shows the superiority of the
neighbor picking scheme of NrPSO. Moreover, NrPSO has
improved the accuracy significantly when compared with
PSO models on optimizing multimodal functions: f; — f,.
The reason is that the non-revisiting scheme memorizes all
visited local optima. This substantially helps to escape from
the local basins. In general, a consistent performance of the
NrPSO has been observed for all benchmarks considered in
this investigation.

B. Processing time

During the search process, an algorithm spends its
computation on either solution generation or function
evaluation. Different algorithms use different strategies to
guess a solution, so the corresponding processing time is
different. For SEPSO and PSOMS, the mutual distance
among the swarm has to be computed in each iteration. The
NrPSO spends most computations on accessing the BSP tree
(i.e. search, insert and prune nodes). As a practical solution
to real world applications, the processing time of NrPSO
should be within an acceptable range. In this section, the
computation load of an algorithm, in term of processing
time, is studied.

Table IV lists the processing time amongst the test
algorithms. Seen from the table, NrPSO is faster than
SEPSO for all simulations. Though the maximum overhead
of NrPSO compared to SPSO, DPSO and SEPSO is 1.5
seconds, its improvement is significant. Furthermore, it
should be emphasized that, for real world applications such
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as surface registration [11], optimized design and energy
management of heating, ventilating and air conditioning
systems [12]-[14], function evaluations are much more time
consuming than solution generation. For these classes of
functions, the overhead rate of NrPSO is insignificant.

C. Archive size

The variations of the archive size of the BSP tree for 100
trials are observed and the results are listed in Table V. The
archive size is presented as the number of the BSP tree
nodes. In general, the archive size increases along with the
function dimension. One reason is that the increment on
function dimension leads to a significant growth on the size
of search space, which reduces the chance of tree node
pruning. Apart from the increment of function dimension,
the nature of an objective function also affects the archive
size. The fitness landscape of the Schwefel’s problem 2.21
composes of piecewisely flat regions. These regions mislead
the solution replacement strategy and NrPSO more likely
acts as a random non-revisiting search. Thus, the chance of
tree pruning is reduced. For the Quaric function, the random
element introduces many small oscillations (local optimum)
into the fitness landscape. In addition, these local optima can
hardly be merged to reduce the archive size as they are
sparsely distributed on the landscape. The upper bound of
the archive size in this test is 40,000. By comparing using a
PC that is commonly configured with 1GMB memory, these
40,000 units are just 0.096% of the memory (assuming that
each BSP tree node is represented by 24 bytes).

D. Stability of NrPSO

In this article, the stability of an algorithm is defined as
the influence of changing parameter values to algorithms
accuracy. It is in terms of quality of the averages and the
standard deviation of the optimal fitness using different
parameter values. Table I lists the varied parameters of the
algorithms and the corresponding ranges. In this experiment,
the axis resolution d of NrPSO is varied from 60 to 100. C,
in DPSO is varied from 0.0005R to 0.002R. r in SEPSO is
varied from 0.0005R to 0.002R. ¢rin PSOMS is varied from
1 to 10. The remaining parameters of the test algorithms are
maintained as the same in the accuracy test.

TABLEI
THE ADJUSTED PARAMETERS OF THE ALGORITHMS AND THE
CORRESPONDING RANGES IN STABILIT TEST

parameter range
NIPSO  d Sif10: [60, 100] and f; ;- f1. [1800, 2200]
DPSO C, [0.0005, 0.002]
SEPSO  r [0.005R, 0.02R]
PSOMS «a 1, 10]

Table VI lists the result for 100 trials. Seen from the table,
the results indicate that the effect of d on the optimal fitness
is insignificant for all test functions. On the other hand, the
choice of C,, r, and «rare critical factors for those functions.
In conclusion, it is clear from the results that the averaged
optimal fitness is only slightly dependent on the axis
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resolution for all the test functions. Therefore, a proper
selection of the axis resolution is not a key factor for most
problems (at least for the 14 benchmark functions), and the
use of the proposed scheme can be identified as a good
strategy to overcome the difficulties of selecting a proper
mutation parameter.

V. CONCLUSIONS

Premature convergence or lack of diversity is a major
problem of particle swarm optimization (PSO). To tackle it,
a variety of modifications on PSO including collision and
clustering between particles, random re-initialization and
mutation with small probability are suggested. In this article,
a non-revisiting particle swarm optimization (NrPSO) is
proposed. NrPSO is an integration of the non-revisiting
scheme [10] and a standard PSO. It guarantees that all
updated positions are novel — they have not been evaluated
before. This property leads to two advantages: 1) it
obviously reduces the computation cost on evaluating time-
consuming objective functions such as surface registration,
optimized design and energy management of heating,
ventilating and air conditioning systems; 2) It helps prevent
premature convergence; 3) The nature of the non-revisiting
scheme acts as a self-adaptive mutation. It provides a
generic guidance to particles to search either locally or
globally. 4) In addition, since the adaptive mutation scheme
of NrPSO involves no parameter, comparing with other PSO
models involving at least two performance sensitive
parameters, the performance of NrPSO is more reliable. The
simulation results show that NrPSO outperforms four PSO
models on optimizing both uni-modal and multi-modal
functions with dimensions up to 40. 5) We also illustrate that
NrPSO is practical for real world applications as its
overhead and archive size are insignificant. 6) In addition, it
is shown that the performance of NrPSO is insensitive to the
grid resolution parameter of the problem.
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TABLE II
THE DETAILS OF THE FOURTEEN TEST FUNCTIONS
X D Xo Yo
f1: Spherical model LA,
>, [-100, 100]° 40 [0,...,0] 0
i=1
f>: Schwefel’s problem 2.22 D
DI+ [-10, 10]° 40 [0.....0] 0
(= i=1
f3: Schwefel’s problem 1.2 b/ 2
DT [-100, 100]° 40 [0....,0] 0
i=1 \_j=1
Js: Schwefel’s problem 2.21 max |x; [-100, 100]° 40 [0,....0] 0
f5: Rosenbrock’s function D-l e ,
[100(x,,, =) +(x,=1)" ] [-29, 317 40 [0,...,0] 0
i=1
/52 Quaric function D,
Z(ix +random[0,1]) [-1.28,1.251° 40 [0,...,0] 0
i=l
/f7: Rastrigin’s function D,
Z[x, —1000s(2ﬂ'x,)+10] [-5.12, 5.12]° 40 [0,...,0] 0
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fs: Griewank function 1 &, 2 X, 5
—— > —[Jeos—E+1 [-600, 600] 40 [0,...,0] 0
400057 Vi
fo: Schwefel’s problem 2.26 D
. B . b [420.9687,
;x[ sin.f|x, [-500, 500] 40 420.9687] -418.9829D
fr0: Ackley 1 Z 12
—~20exp| 0.2 BZX,Z 7cxp[52cos 27rx,]+20+e [-32,32]° 40 [0,...,0] 0
i=1 i=1
f11: Shekel’s Foxholes -1
1 z 1
500 Z S
i3 (x-a, )’ [-98,34] 2 [-32,...,-32] 1
i=1
@ )= -32 -16 0 16 32 -32 -~ 0 16 32
Gt = -32 -32 -32 -32 -32 -16 --- 32 32 32
f12: Six-Hump Camel-Back [-4.91017,
) L1 ) 4 5.0893] x [- [0.08983.-
4x” =2.1x" +=x" +xx, —4x,” +4x, 2 0.7126], [- -1.0316285
3 57126, 0.08983,0.7126]
4.2874] ’
: Branin -8.142,
s L5 , 1 6[858] L [-3.142,12.275],
(="~ —6)"+ 10(1—8—)cosxl +10 12975 2 [3.142,2.275], 0398
Y4 V4 T 273,
2.725] [9.425,2.425]
f14: Goldstein-Price g(x) xh(x) where
g(x)=1+(x, +x, +1)*(19-14x, +3x7 = 14x, +6x,x, +3x,7)
[-2,2]%[-3,1] 2 [0,-1] 3
h(x)=30+(2x, —3x,)" (18 =32x, +12x, +48x, — 36x,x, +27x,)
TABLE III
THE AVERAGED BEST FITNESS FOUND BY NRPSO, SPSO, DPSO, SEPSO AND PSOMS
function mean stdev. function mean stdev. function mean stdev
NrPSO 4.700 2.478 NrPSO 14.335 0.993 NrPSO 0.998 0.006
SPSO 230.148 7.708 SPSO 15.014 0.881 SPSO 0.998 0.006
S DPSO 220.830 5.907 Js DPSO 14.688 0.823 fu DPSO 0.998 0.006
SEPSO 216.760 7.223 SEPSO 15.217 0.992 SEPSO 0.998 0.006
PSOMS 246.545 8.046 PSOMS 15.326 0.939 PSOMS 1.031 0.422
NrPSO 0.025 0315 NrPSO 67.496 4.181 NrPSO -1.032 0.006
SPSO 60.102 8.705 SPSO 198.674 4.939 SPSO -1.032 0.008
1 DPSO 33.283 7.222 1 DPSO 230.250 5.017 fi2 DPSO -1.032 0.012
SEPSO 71.803 9.018 SEPSO 207.040 5.069 SEPSO -1.032 0.009
PSOMS 31.884 6.785 PSOMS 211.737 4.931 PSOMS -1.032 0.010
NrPSO 2407.500 29.134 NrPSO 0.887 0.708 NrPSO 0.398 0.006
SPSO 5643.846 37.322 SPSO 9.920 1.602 SPSO 0.398 0.016
fi DPSO 4279.550 34.570 fs DPSO 8.842 1.451 J13 DPSO 0.399 0.040
SEPSO 5393.726 36.798 SEPSO 9.590 1.438 SEPSO 0.398 0.011
PSOMS 5700.470 37.300 PSOMS 10.550 1.779 PSOMS 0.398 0.018
NrPSO 24.750 1.901 NrPSO -9276.4 32.357 NrPSO 3.000 0.006
SPSO 18.782 1.639 SPSO -7218.9 29.202 SPSO 3.000 0.020
i DPSO 13.645 1.330 fo DPSO -4614.0 26.126 14 DPSO 3.001 0.036
SEPSO 18.407 1.874 SEPSO -7128.1 29.451 SEPSO 3.001 0.030
PSOMS 18.656 1.739 PSOMS -7203.1 26.464 PSOMS 3.000 0.021
NrPSO 1571.67 31.581 NrPSO 0.048 1.519
SPSO 51273.57 144.731 SPSO 9.144 0.840
5 DPSO 46195.23 118.383 Jio DPSO 7.886 0.737
SEPSO 60907.34 169.193 SEPSO 8917 0.842
PSOMS 68209.62 176.291 PSOMS 9.322 0.969
TABLE IV
THE AVERAGED PROCESSING TIME (IN SEC.) OF NRPSO, SPSO, DPSO, SEPSO AND PSOMS
function mean stdev.  function mean stdev.  function mean stdev.
1 NrPSO 1.733 0.165 Js NrPSO 1.767 0.150 S NrPSO 0.267 0.165
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SPSO 0.200 <0.001 SPSO 0.200 <0.001 SPSO 0.200 <0.001
DPSO 0.200 <0.001 DPSO 0.233 <0.001 DPSO 0.233 <0.001
SEPSO 7.900 <0.001 SEPSO 8.000 <0.001 SEPSO 0.600 <0.001
PSOMS 0.367 <0.001 PSOMS 0.400 <0.001 PSOMS 0.200 <0.001
NrPSO 1.667 0.187 NrPSO 1.900 0.148 NrPSO 0.100 0.148
SPSO 0.033 <0.001 SPSO 0.233 <0.001 SPSO 0.033 <0.001
f DPSO 0.067 <0.001 fr DPSO 0.267 <0.001 fi2 DPSO 0.033 <0.001
SEPSO 7.733 <0.001 SEPSO 8.000 <0.001 SEPSO 0.400 <0.001
PSOMS 0.200 <0.001 PSOMS 0.400 <0.001 PSOMS 0.033 <0.001
NrPSO 2.000 0.006 NrPSO 1.767 0.150 NrPSO 0.067 0.004
SPSO 0.433 <0.001 SPSO 0.267 <0.001 SPSO <0.001 <0.001
fi DPSO 0.433 <0.001 fs DPSO 0.300 <0.001 i3 DPSO 0.033 <0.001
SEPSO 8.200 <0.001 SEPSO 8.000 <0.001 SEPSO 0.400 <0.001
PSOMS 0.600 <0.001 PSOMS 0.400 <0.001 PSOMS 0.000 <0.001
NrPSO 1.667 0.187 NrPSO 1.667 0.187 NrPSO 0.100 0.028
SPSO 0.033 <0.001 SPSO 0.100 <0.001 SPSO 0.033 <0.001
fa DPSO 0.067 <0.001 fo DPSO 0.100 <0.001 f14 DPSO 0.033 <0.001
SEPSO 7.833 <0.001 SEPSO 7.867 <0.001 SEPSO 0.400 <0.001
PSOMS 0.200 <0.001 PSOMS 0.233 <0.001 PSOMS 0.067 <0.001
NrPSO 2.067 0.199 NrPSO 1.700 0.177
SPSO 0.500 <0.001 SPSO 0.267 <0.001
f5 DPSO 0.567 <0.001 Jio DPSO 0.267 <0.001
SEPSO 8.367 <0.001 SEPSO 8.000 <0.001
PSOMS 0.733 <0.001 PSOMS 0.433 <0.001
TABLE V
THE AVERAGED ARCHIVE SIZE OF NRPSO
function mean stdev. function mean stdev. function mean stdev. function mean stdev.
fi 38760 877 1 39943 239 fo 39422 661 fis 5976 125
1 37435 1144 fs 40000 <0.1 fio 38838 700 fi4 5535 154
fi 40000 <0.1 fr 39304 613 fi2 8860 1521
Ji 40000 <0.1 fs 39778 366 fi2 6160 1071
TABLE VI
THE STABILIES THE NRPSO, DPSO, SEPSO AND PSOMS
function mean stdev. function mean stdev. function mean stdev.
NrPSO 531 0.67 NrPSO 15.18 0.97 NrPSO 1.16 0.19
DPSO 346.89 132.55 . DPSO 23.26 9.47 . DPSO 1.26 0.28
Ji SEPSO 264.38 52.30 Js SEPSO 20.07 5.59 Ju SEPSO 127 0.27
PSOMS 329.85 87.87 PSOMS 19.86 4.90 PSOMS 1.41 0.39
NrPSO 0.03 0.01 NrPSO 86.16 22.14 NrPSO -1.28 0.28
DPSO 48.22 17.85 DPSO 297.40 78.80 DPSO -1.55 0.60
/2 SEPSO 107.40 40.36 % SEPSO 252.84 50.22 Jiz SEPSO -1.38 0.40
PSOMS 43.79 13.87 PSOMS 317.13 109.60 PSOMS -1.57 0.60
NrPSO 2483.24 7591 NrPSO 1.13 0.28 NrPSO 0.48 0.10
DPSO 5889.88 1617.37 DPSO 12.59 4.02 DPSO 0.51 0.13
s SEPSO 7695.46 2415.21 i SEPSO 12.66 3.10 Jis SEPSO 0.58 0.18
PSOMS 7486.99 1881.23 PSOMS 13.14 2.66 PSOMS 0.61 0.23
NrPSO 28.95 4.79 NrPSO -11090.3 2142.12 NrPSO 3.45 0.48
DPSO 17.86 4.73 . DPSO -7059.1 2704.05 DPSO 3.84 0.94
fi SEPSO 2292 5.31 b SEPSO -11400.5  4707.87 Jie SEPSO 4.77 1.92
PSOMS 27.99 10.54 PSOMS -11361.3 4230.39 PSOMS 4.53 1.66
NrPSO 1808.39 265.24 NrPSO 0.05 0.00
DPSO 63934.25 20942.20 DPSO 10.98 341
I5 SEPSO 94438.08  38544.21 Jio SEPSO 10.81 1.93
PSOMS 99434.88  34894.23 PSOMS 12.34 3.44
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