A Non-Revisiting Genetic Algorithm

Shiu Yin Yuen

Chi Kin Chow

Department of Electronic Engineering
City University of Hong Kong
Hong Kong, China
{kelviny.ee, chowchi}@cityu.edu.hk

Abstract - Genetic Algorithm (GA) is a revisiting
stochastic algorithm. In other words, a solution that
has been visited before may be revisited. The fitness of
the solution has to be evaluated each time. Since
fitness evaluation is the most computationally
intensive process in the execution of the GA, revisits
should be minimized or eliminated. In this paper, a
novel dynamic binary partitioning tree archive is
proposed to eliminate all revisits. It works as follows:
When the GA generates a solution, the tree is accessed.
A leaf node is appended to the tree if the solution has

not been visited before and so has no record in the tree.

Otherwise, a search is initiated from the leaf node that
is the duplicate to the solution to find the nearest

neighbor solution in the search space that is not visited.

During this process, whole sub-trees may be pruned if
all the leaf nodes it contains are visited. The search
naturally implements a self adaptive mutation
mechanism. Hence the GA requires no other mutation
parameter or mutation scheme. Experimental results
reveal that this new GA is superior in performance
compared with the standard GA with revisits, and the
tree archive is not memory intensive.

I. INTRODUCTION

Many stochastic algorithms (e.g. Genetic Algorithm,
Simulated Annealing, etc) do not memorize places that
they have visited. Exceptions are Tabu search [1] and
Particle Swarm Optimization [2], which incorporates the
memory of recent search results to guide the next search
step. However, even with these algorithms, not the entire
list of visited positions is recorded. Thus, revisits are
inevitable. A revisit to a search position s is defined as a
re-evaluation of the function (or fitness) of s which has
been evaluated before. Since function evaluation is
usually the most computational intensive process within
the stochastic algorithm, such revisits are clearly wasteful
of computational resources. In the terminology of the No-
free-lunch (NFL) theorems [3], all non-revisiting
(stochastic or deterministic) algorithms have the same
average performance when the problem distribution is
uniform. A revisiting algorithm A searches the same
sequence of distinct points as a non-revisiting algorithm

1-4244-1340-0/07$25.00 ©2007 IEEE

A" when revisited points in the sequence are taken out.
This implies that 4’ is superior to 4 as A’ has the same
performance but with fewer function evaluations. Thus it
is always beneficial to eliminate all the revisits.

A naive way to eliminate the revisits is to keep an
archive of all visited points so far. Unfortunately, if the
search space is of size a’, where a is the cardinality of the
alphabet, then the worst case memory complexity of the
archive is a” - 1. This is infeasible for any realistic search
space size. In this paper, we propose a practical solution
to the revisit problem in the context of the Genetic
Algorithm (GA). We show that an archive design can be
naturally integrated with the GA so that revisits are
completely eliminated while the archive size is kept
reasonably small and practically feasible (see section III:
Experimental Results). A modification of the GA by
incorporating an adaptive mutation naturally arises from
the integration.

The GA is a famous stochastic optimization
algorithm pioneered by Holland [4]. It mimics the
evolutionary process of a population of individuals over
time. The hall mark of a GA is the provision of a
population (multiple parallel search capability), selection
(survival of the fittest), crossover (sexual reproduction)
and mutation (random incremental changes). The GA is
closely related to the Evolutionary Strategies (ES) and
Evolutionary Programming (EP). There are many flavors
in the design of GA, for example, there exists many
different designs for the population structure, selection,
mutation, and crossover [5]. Our modification of the GA
is applicable to both discrete and continuous space
problems.

It is recognized very early on that duplicate removal
can enhance the performance of the GA significantly.
Mauldin [6]'s uniqueness operator only allow a new child
to be inserted into the population if its Hamming distance
to all members of the population is greater than a
threshold. Davis [7] reports that a binary coded GA that
removes duplicates in the population results in superior
performance in a comparable number of child evaluations.
These researches compare each child with each solution
in the current population. For a population with &
individuals, o comparisons need to be made. Ronald [8]
reported the use of Hash table to reduce the number of
comparison to O(1). However, these efforts only compare

4583

a child with the current population and do not guarantee
no revisits in the entire search.

From another angle, it is generally agreed by the GA
research community that to prevent premature
convergence, an appropriate diversity in the population
has to be maintained. The reason is that once the entire
population converges to a single kind of individual,
crossover will be useless and the GA reduces to parallel
mutation climbing. Numerous operators that modify the
selection, crossover or mutation to diversify the
population have been proposed. Some more famous
examples are fitness sharing [9], rank based selection [10],
elitist selection with incest avoiding [11] and crowding
[12]. Our method automatically guarantees that each
individual in a current population is different from each
other without the need to introduce any special operator.

From yet another angle, it is known from theoretical
studies [13, 14] that an adaptive mutation rate is
beneficial for the GA to find the global optimum more
efficiently. However, researchers still have little idea on
how to design a suitable adaptive mutation schedule for
general optimization problems, see survey by [15]. This
paper offers a fresh perspective to this problem. Our
method naturally suggests the adaptive mutation
mechanism and requires no tuning parameters. Our GA
does not need to set any mutation parameter or decide on
the mutation scheme. It would automatically increase its
mutation rate if it is too small, and there is a physical
meaning to the adjective "small" in the GA - The
mutation must be big enough to find the nearest unvisited
neighbor.

The use of a dynamic archive in single objective
optimization using GA is novel to our knowledge. The
use of archive in the existing GA literature is limited to
the use of adaptive archive in MultiObjective EA
(MOEA). There the problem is to use an archive to store
the best solutions that are pareto optimal, as in MOEA the
pareto optimal set can be sizable [16]. The problem is
completely different and bears no relation to this research.

This paper is organized as follows: Section II reports
the GA with the dynamic tree archive method. Section III
reports the experimental results. Section IV gives the
conclusion.

II. GENETIC ALGORITHM WITH DYNAMIC TREE ARCHIVE

A binary space partitioning (BSP) tree archive Ar is
constructed. A GA can be visualized as generating a
sequence of solutions sq = (s(1), s(2), ...). For a
generational GA with population size &, J solutions are
generated in the same cycle. For a steady state GA,
solutions are generated one by one until J solutions are
generated. Both can be considered as generating a
sequence of solutions. The function of 4r is to return an
amended sequence sq’ = (s(1)’, s(2)’, ...) such that no two
s(7)’ and s(j)’ satisfy s()’ = s(j)’ unless i = j. For clarity,

let ignore revisits for the moment. That is, s(i) # s(j)
unless i = j. Then each solution x = (x;, ..., x,) (x can be
s(1), s(2), etc) will insert a leaf node x to the tree. x; are
variables with cardinality «. We need the following
metric to partition the search space:

Definition 1: Metric d(X,y | j)

The Euclidean distance between x; and y; is designated as
the metric d(x,y |) -

Remark: Other metric, for example the Hamming, may
also be employed.

The following algorithm constructs the archive 47 when
there are no revisits:

Algorithm Al: (Archive construction when there are no
re-visits)

1. Initial condition: Ar consists of the root
node
2. A new solution z (generated by the GA) is
presented to Ar
3. Curr _node := root
4. If (Curr_node has two child nodes)
{
Compare z with child node x and y;
Define the comparing dimension j:

j=argmax d(x,y| k)
kell,7]

If d(x,z | j) < dly,z | 7)
Curr node := child node x
Else
Curr node := child node y
Repeat (Step 4)
}
Else
{
Insert a child node (that records) z to
Curr node”
Finish

}

Remark: If the objective function is a pseudo boolean
function, the comparing dimension j defined in step 4 is
randomly chosen subject to the condition: x; # y;.

The archive is a standard BSP tree with the following well
established properties:

1. The root represents the entire search space S.

2. Each non-root node represents a subspace of S.
Precisely, it is a hyper-rectangular box in the search
space.

3. Suppose a parent node has two child nodes x and y,
then the subspaces of x and y are disjoint and their

4584 2007 IEEE Congress on Evolutionary Computation (CEC 2007)

union is the subspace of the parent, i.e., the child
nodes binary partition the parent subspace.

Remark”: If Curr_node in the algorithm A7 represents a
subspace that has only a single point, then no insertion is
performed. (It will be marked Closed. See Definition 3
below.)

The following properties are specific to the BSP tree
proposed for GA:

1. It is constructed dynamically using the data points
generated by the GA. Thus, each run of GA will
produce a different tree.

2. It stores all the search positions x visited by the GA.
(Recall that we make the simplifying assumption that
there are no revisits for the moment.)

3. For a balanced tree, the mean number of steps to
decide whether a search position x has been visited is
at most O(log(a”)).

Next, consider the general case when revisits could occur:
Definition 2: Revisits

The ™ solution s(i) in the sequence sq = (s(1), $(2), ...) is
a revisit if 3 j < i, s(i) = s(j). It occurs if and only if
Curr_node = s(i) is found when traversing the tree.

Recall that each node in 4r records a solution in the set
{s(1), ..., s@ - 1)}. Thus a revisit may occur when
Algorithm A/ is visiting a non-leaf (intermediate) node or
a leaf node.

Before introducing the algorithm that handles revisits, it is
desirable to enlarge the utility of the concept that
Curr_node = x in the following way, i.e. this information
may also be interpreted as Curr_node recording the entire
subspace under x. Denote the subspace spanned by x as X.
In the tree, it is represented by introducing a status flag:

Definition 3: Open and Closed node

A node x is flagged Open if the subspace represented by x
has not all been visited. Otherwise, it is flagged Closed.

Remark: By definition, a node x for which the subspace
contains a single point is always flagged Closed, since the
single point, which simultaneously is the whole subspace,
has been visited at the time when the node is created.

Thus when the tree traversal visits a Closed node, then a
revisit has occurred.

The following algorithm deals with revisits. The newly
added codes are in bold:

Algorithm A2 (Archive construction allowing revisits)

3.
4.

Initial condition:
node.

A new solution z

Flag(root) := Open

presented to Ar

Curr_node := root
Case 1: Flag(Curr node) = Open
If (Curr node has two child nodes)

{

Compare z with child node x and y;

Define the comparing dimension j:
j=argmaxd(x,y | k)
kell.y]

If d(x,z |) < dly,z | J)

Curr node := child node x
Else
Curr_node := child node y
Repeat (Step 4)
}
Else

{

Insert a child node

Curr_node

If (child node's subspace is
singleton)
Flag(child node) := Open
Else
Flag(child node) := Closed
Finish
}
Case 2: Flag(Curr node) = Closed
Curr node := Parent

If (there are two Closed child nodes)

Case 1

{

Flag(Curr node) := Closed

Prune the subtree under Curr node

Repeat (Step 4)

}
Else If (there is an Open child node)
Case 2
{
Curr node := Open child node

Repeat (Step 4)

Else // Case 3

Evaluate the unvisited

represented by Curr node

(that records)

Ar consists of the root

(generated by the GA) is

z to

not a

//

//

subspace

Create a child node by mutating z within

the unvisited subspace

If (child node's subspace is
singleton)

Flag(child node) := Open
Else

2007 IEEE Congress on Evolutionary Computation (CEC 2007)

not a

4585

Flag(child node) := Closed
Finish

}

Algorithm 42 is the same as Algorithm 4/ except when
revisits are encountered. Consider a node x that is closed.
This implies that all the points in X have been visited.
The algorithm backtracks to its parent node p. Three cases
may occur:

Case 1: Node y, the other child node of p, exists and is
also Closed. Then the entire subspace of p, P =X U Y,
has been visited. P is flagged Closed as well. The
algorithm backtracks to the parent of p. Meanwhile, the
entire sub-tree under p is pruned.

Case 2: Node y exists and is Open. Then the entire
subspace X has been visited, but there are still some
unvisited points within ¥ = P - X. Then the search is
directed to node y.

Case 3: Node y does not exist. Then the entire subspace
P - X has not been visited. This forms the unvisited
subspace. Now mutate z to some point z' within P - X.
z' is a point in P - X that has the minimum distance to z,
ie.,

A 1 —_
z'=arg min [[a-z||

where ||.|| denotes the Euclidean distance.

When there is more than one point that has the same
minimum distance, one is arbitrarily chosen.

The main idea for handling revisits is as follows:
When a node that stores the solution is identical to the
solution generated by the GA, z, is found, a revisit has
occurred. The tree needs to generate a solution that is not
visited before. It does so by backtracking to the parent
and check whether the subspace of the parent has all been
visited (Case 1 above). When this occurs, backtracking is
again initiated and the process goes on until the parent's
subspace have not been visited entirely (Case 2 and 3).
Meanwhile, since the whole sub-tree under the parent
node has been visited, there is no need to keep the sub-
tree. Hence the entire sub-tree is pruned. This pruning is
important to keep the size of the tree at any one time
small.

Meanwhile, when the parent's subspace has all been
visited, the situation can be further subdivided into two
cases: Case 2 and 3. For case 2, there is an Open child
node that means that some solutions under the child
node's subspace has been visited, but not all. A depth first
order search commences to go down the sub-tree of this
child node. By nature of the binary space partitioning, it
would eventually generate a leaf node (unvisited solution)
in this sub-tree that has the minimum distance to z. Thus
it is implementing a nearest neighbor search.

For case 3, the location of the subspace that is
unvisited that is the nearest neighbor(s) to z has finally
been found. To generate an unvisited leaf node, z is
"mutated" to the nearest neighbor solution in this
unvisited subspace. In the degenerate case where there is
more than one nearest neighbor, one is arbitrarily chosen.

Observe that the position z' that z will mutate to is a
function of z and P - X. It is not a specific mutation with
a fixed mutation rate (cf. 1 point, 2 point, or uniform).
However, it will mutate to a point in the neighborhood of
z. Also, though the mutation per se is deterministic, z and
X are both random and their behaviour depends on the
problem. Thus the mutation process when taken as a
whole is also random. This agrees with the intuitive
meaning of the term mutation. Loosely speaking, when
the searched positions in the neighborhood of z is sparse,
the mutation jumps to nearby points. When the
neighborhood is dense, the mutation jumps to points
further away. It is also problem specific.

Note that no other mutation operator needs to be
defined within the GA. After selection and crossover, the
solution can be passed immediately to the tree. If the
solution has not been visited, no mutation will be
performed. Otherwise, it will mutate to the nearest
unvisited neighbor. Note that we have introduced a novel
adaptive mutation operator that has the desirable property
of having no parameter that requires user fine tuning, i.e.
a parameter-less mutation operator.

The efficacy of such a BSP tree archive design
heavily depends on its integration with the search method.
For example, for random search, the expected maximum
number of leaf nodes is half of the search space, as there
is no correlation in the search positions. Such a large
archive is obviously useless. For this design to be useful,
it has to be integrated with a search method that exploits
correlations in the past visits, such that the pruning of the
archive occurs frequently and the archive size is kept
small throughout the whole process. In this paper, we
integrate the tree archive with the GA. We conjecture
that the archive can be kept small using the GA. The
motivation of the conjecture is based on the Building
Block Hypothesis of the GA [4, 17]. The hypothesis
suggests that short, low order, schemas that has above
average fitness will reproduce better than other schema.
Thus at any one time, the GA's population will be
populated by several such schemas. Elements within the
schemas will be visited more often and they will form
clusters. At any one time, the GA will conduct several
parallel searches within these clusters, and new
potentially good clusters are generated by crossover. The
binary space partitioning tries to capture such good
schema. Conceptually, the pruning afforded by a
particular subspace attempts to reflect the goodness of a
particular schema.

4586 2007 IEEE Congress on Evolutionary Computation (CEC 2007)

III. EXPERIMENTAL RESULTS

In this experiment, a function set {f;(x), fx(x), ...,
fs(x)} consisting of six functions are employed to
illustrate the performance of the proposed non-revisiting
scheme. The six test functions are:

Function 1: Spherical Model
=
Function 2: Generaiilzed Rosenbrock’s Function
0= D 1000x, —x2): +(x~1)]
Function 3: Generai:ilzed Rastrigin’s function
fi(x)= i(xf ~10cos(27x,) +10)
Function 4: Generai:ilzed Griewank function
£,(%) :foogx"z —13005[%)+1

Function 5: Schwefel’s Problem 2.26

==Y xsin x|

Function 6: Linear function
100
Js(x)= “10100 % i,

f1(x), /2(x) and f5(x) are uni-modal whilst f3(x) to f5(x) are
multi-modal. f;(x) to f5(x) are real functions whilst fx(x) is
a pseudo boolean function. This illustrates that the
concept is equally applicable to both real and pseudo
boolean functions. All six functions are to be minimized.

TABLE 1
DETAILS OF THE SiX TESTING FUNCTIONS

A. Accuracy Test

In this test, the best fitness found by the NGA and
GA are recorded after 60 generations. Since GAs are
stochastic algorithms, the results are extracted from 100
independent runs. Table 1 lists the average optimal fitness
of the NGA and GA. The improvements / of NGA on the
six functions are also provided for illustrating the
enhancement made by the non-revisiting scheme. We
denote the improvement / of NGA related to GA as the
fraction of the error (difference from the global optimum)
of GA to the error of GA, i.e. I=(f, —f,) / (f, — 1), where
f» is the best fitness found by the NGA, f, is the best
fitness found by the GA and f, is the global optimal
fitness. An improvement is made by the NGA if the
corresponding / is larger than one.

TABLE 2
EXPERIMENTAL RESULTS OF THE ACCURACY TEST
Function NGA GA 1
i 4.67 49.62 10.63
1 3958.8 141132.7 3571
f 32154 8.908 2.77
1 0.3914 3.4209 8.77
fs -2736.3 -2596.7 1.71
Is -0.9804 -0.753 12.65

Function range of x optimum optimal fitness
fi [-100,1007 [0,0,...,0] 0
f [-30,30]" [1,1,...,1] 0
fi [-5.12,5.12] [0,0,...,0] 0
i [-600, 6001’ [0,0,...,0] 0
fs [-500, 5001 [420.96, ..., 420.96] -2933
% 10,1 [1,1,....1] 1

Table 1 lists the range of x, the optimal x and the
corresponding optimal fitness of the six test functions.
The number of divisions d of each dimension of x is
chosen as 100. The value of d of f5 is chosen as 2 as it is a
pseudo boolean function. In this experiment, the
contribution of the proposed scheme is illustrated by
comparing the non-revisiting GA (NGA) with the
standard GA (with revisits) (GA). The conventional GA:
1-point crossover, 1-point mutation and elitism selection
is employed (though other variations of GA are also
permissible). The population sizes are chosen as 30. The
performance of the scheme is described by two quantities:
1) accuracy — the search power within a fixed number of
generations and 2) probability of success.

Seen from Table 2, the enhancement made by the
non-revisiting scheme is clear: the best fitness of the six
test functions searched by NGA are significantly smaller
than those by the GA. One explanation is as follows:
When the GA comes into the basin of attraction of a local
or global optimum, the chance of generating a revisiting
offspring is higher. The random crossover and mutation
then constitute a random, revisiting search within the
basin, which is much less efficient than a non-revisiting
search within the basin. For a global optimum, it
facilitates the location of the optimum more quickly. For
a local optimum, it facilitates the complete search of the
basin, so that the NGA may escape out of the basin sooner.

We define ¢, and ¢, as the processing time of NGA
and GA respectively. The corresponding overhead CPU
effort of accessing the BSP tree of NGA is then computed
as O =t, —t.. The mean and standard deviation of ¢, for all
simulations are around 2 sec. and 0.001 sec. respectively.
The average values of O of the first five and the last test
function(s) are/is around 0.071 sec. and 0.21 sec. with
standard deviations 0.03 sec. and 0.009 sec. respectively.
The speed of the CPU used in the simulations is 3.0GHz.
C language is used for the simulations.

In real function optimization, the value of d plays an
important role as it controls the size of the search space
and hence the accuracy. The BSP tree node size S and the
node to search space ratio R of the five real functions are
illustrated in Fig. 1 to Fig. 5, in order to empirically
investigate the computation load of the non-revisiting
scheme. In this investigation, the values of d are varied

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 4587

from 10 to 100. The analysis for f; is not done since d is
fixed as 2 (pseudo boolean function).

The results of S and R indicate that the archive size of
the BSP tree is small even for large search space, i.e. fine
resolution solution. The best, average and worst values of
S and R, represented as dashed, solid and dotted lines, of
the five functions, shown in Fig. 1 to Fig. 5, are within
reasonably small ranges, which empirically verify the
practicability of the proposed scheme. The archive size
ratio R ranges from 10™ (for coarse resolution) to 10™°
(for finest resolution). For coarse resolution, the archive
affords a quicker and better search and the archive size is
not an issue. For the finest resolution, the archive size
ratio is still small. In summary, it can be observed that all
of them have modest sizes and our implementation of the
NGA is an existence proof for its feasibility.

In larger scale optimization, the number of possible
solutions non-linearly increases as the resolution increases.
As expected, the chance of generating a revisiting
offspring is smaller and the size of the BSP tree increases.
However, as the individuals of GA are non-uniformly
searching the global optimum in the search space, i.e.
higher density at the basins of attraction of the local or
global optima, the size of the BSP tree is sub-linearly
(better than linear) proportional to d (hence the
corresponding R is inversely proportional to d). The
experimental results suggest that the archive size scales
well with the resolution of the search, which is a nice

property.

B. Probability of Success (PoS) Test

In this test, we study the enhancement on the
probability of success PoS from the proposed non-
revisiting scheme. A run is said to be a success if the GA
meets a target fitness F, within 500 generations. The F,, of
the six test functions are defined as the corresponding best
fitness found in the accuracy test. Table 3 lists the values
of F, of the six test functions.

As in above, 100 independent trials are performed to
obtain the averaged PoSs. Table 4 lists the PoSs of NGA
and GA. For all the test functions, the PoSs of NGA are
superior to that of GA. In summary, a significant
improvement on PoS is made by the NGA.

f5 24% 3%
Js 43% 1%

TABLE 3
THE VALUES OF F,
Ji S S5 Ji f5 Js
0 882.2 0.005 0.02 -2855 -0.998
TABLE 4
EXPERIMENTAL RESULTS OF THE POS TEST
Function NGA GA
fi 67% 8%
£ 49% 2%
fi 18% 0%
fa 73% 6%

IV. CONCLUSIONS

A fundamental problem in computer science is that
stochastic algorithms are re-visiting. It is frequently
impossible to record all places that have been visited
before. The revisiting problem means that functions are
evaluated at the same place more than once. This is
clearly a waste of computational resources.

A key contribution of this paper is pointing out that
for some classes of stochastic algorithms, it is possible to
eliminate a/l such revisits. In particular, it is possible to
do it with genetic algorithm (GA) via an archive in the
form of a novel dynamic binary space partitioning (BSP)
tree. The archive is a random tree that is built up during
the search process. Since all "intelligent" search is not
proceeding at random, but exploits correlations in the
search process, whole visited subtrees can be pruned
dynamically during the search. Our critical insight is that
the worst case size of such an archive is small for
"intelligent" search algorithms such as the GA. Soitisa
practical solution that solves the problem of revisits in
GA conclusively. We propose that it is in part due to the
working principle of the GA, which is based on the
building block hypothesis. As a significant byproduct,
we discover that the tree pruning is isomorphic to an
interesting self adaptation mutation operator that is
parameter-less. Another key contribution of this paper is
that by eliminating revisits, it provides a fresh solution to
the problem of premature convergence and the
maintenance of diversity. These problems are resolved
and eliminated. The method can be applied to both
continuous and discrete space problems, i.e., real coded
and pseudo boolean functions. The archive design also
has the nice property of scaling well with the resolution or
problem dimension.

The experimental results are very encouraging. They
show that the Non-revisiting GA is clearly superior to its
conventional counterparts, and equally importantly, the
archive size can indeed be kept small and the overhead of
accessing the archive is also small, which means that the
design of the archive is practical.

There is a need to extensively test our ideas in this
paper in more functions, particularly on real problems. It
also seems promising to apply the archive design to other
well known stochastic search algorithms, as exploiting
correlation is a prevalent theme in general algorithm
designs.

ACKNOWLEDGMENT

The work described in this article was supported by a
grant from CityU (7001859).

4588 2007 IEEE Congress on Evolutionary Computation (CEC 2007)

(1]

(2]

(3]

(4]

(6]

(7]

(8]

[10]

REFERENCES

F. Glover, "Tabu search: 1.," ORSA Journal on Computing, vol. 1,
no. 3, pp. 190-206, 1989.
R.C. Eberhart and J. Kennedy, "A new optimizer using particle

swarm theory," Proc. 6" Int. Symp. Micromachine Human Sci., vol.

1, pp. 39-43, 1995.

D.H. Wolpert and W.G. Macready, “No free lunch theorems for
optimization,” IEEE Trans. on Evolutionary Computation, vol. 1,
no. 1, pp. 67-82, 1997.

J.H. Holland, Adaptation in natural and artificial systems,
University of Michigan Press, Ann Arbor, 1975.
A.E. Eiben and J.E. Smith, Introduction
Computing, Springer 2003.

to Evolutionary

M.L. Mauldin, "Maintaining diversity in genetic search," Proc.
National Conference on Artificial Intelligence, pp. 247-250, 1984.
L. Davis, Handbook of genetic algorithms, Van Nostrand Reinhold,
New York, 1991.

S. Ronald, "Duplicate genotypes in a Genetic algorithm,"
IEEE Int. Conf. on Evolutionary Computation, IEEE World
Congress on Computational Intelligence, pp. 793-98, 1998.

D.E. Goldberg and J. Richardson, "Genetic algorithms with
sharing for multimodal function optimization," Proc. 2" Int. Conf.

Proc.

on Genetic Algorithms, Lawrence Erlbaum, pp. 41-49, 1987.

D. Whitley, "The GENITOR algorithm and selection pressure:
why rank-based allocation of reproduction trials is best," Proc. 3™
Int. Conf. on Genetic Algorithms, Morgan Kaufmann, pp. 116-121,
1989.

Average|
4600 Best |
Worst

4400

4200 — 1

4000 o 3

BSP tree node

3800 -
ss00f b
3400

3200

10 20 30 40 50 60 70 80 90 100

[11]

[12]

[13]

[14]

[15]

[16]

[17]

L.J. Eshelman, "The CHC adaptive search algorithm: how to have

safe search when engaging in nontraditional genetic
recombination," Foundation of Genetic Algorithms, G.J. E.
Rawlins, Ed., California: Morgan Kaufmann, pp. 265-283, 1991.
S.W. Mahfoud, "Crowding and preselection revisited," Parallel
Problem Solving from Nature 2, R Manner and B. Manderick, Eds.,
Amsterdam: North-Holland, pp. 27-36, 1992.

T. Béick, “The interaction of mutation rate, selection and self-
adaptation within a genetic algorithm”, Parallel Problem Solving
from Nature 2, R Manner and B. Manderick, Eds., Amsterdam:
North-Holland, pp. 85-94, 1992.

T.E. Davis and J.C. Principe, “A Markov chain framework for the
simple genetic algorithm,” Evolutionary Computation, vol. 1(3),
pp- 269-288, 1993.

A.E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter
control in evolutionary algorithms”, IEEE Transactions on
Evolutionary Computation, vol. 3(2), pp. 124-141, 1999.

J. Knowles and D. Corne, "Properties of an adaptive archiving
algorithm for storing nondominated vectors," IEEE Trans. on
Evolutionary Computation, Vol. 7, no. 2, pp. 100-116, 2003.

S. Forrest, M. Mitchell, "Relative building-block fitness and the
building-block hypothesis," Proc. 2"
Foundations of Genetic Algorithms (FOGA), D. Whitley, Ed.,

Morgan Kaufmann, San mateo, CA, pp. 109-126, 1993.

Workshop on the

BSP tree node to search space ratio

(b)

Fig. 1. Results about the spherical function: (a) BSP tree node and (b) the corresponding R plotted against the number of divisions.

4800 T T T T T T
Average|
- - Best
4600 Worst
4a00F]
e
L 2o -
E o
$ 4000} s 1
£ P
3 /
/]
3800 y e
7 _—
/ I
sa0],” -
34000 e 1
3200L i ,
10 20 30 [50 E3 70 80 %0 100

(2)

Average

BSP tree node to search space ratio

(b)

Fig. 2. Results about the generalized Rosenbrock’s function: (a) BSP tree node and (b) the corresponding R plotted against the number of divisions.

2007 IEEE Congress on Evolutionary Computation (CEC 2007)

4589

BSP tree node

BSP tree node

4600

4400

4200

4000

3800

3600

3400

3200

3000

0 20 30

40

50

(a)

70

T T T T T T T T T
Average| | 3 Average|
- -~ - Best 10" E -—--Best |
Worst § Worst
\\
10°F N E
I}
s
8 s
g 10° | E
£
5
g
2107 b E
<
3
2
8a0° | E
7 o
[}
1] T
- 109 L s S "
10" T 4
Il I L 1 I I L I I il s L
80 90 100 10 20 30 40 50 60 70 80 90 100
d
(b)

Fig. 3. Results about the generalized Rastrigin’s function: (a) BSP tree node and (b) the corresponding R plotted against the number of divisions.

T T T T T
Average| N
4600 - -—--Best | 10° b
Worst
4400 - 4 10° L
°
4200 2
3 6
& 10° b
&
4000 <
5
8 7
107 £
3800 2
®
3
3
2
3600 0o
o
@
1]
3400
10° b
3200
10"
3000
10 20 30 40 50 60 70 80 90 100 10
d
(a)

T T T T
Average
= Bt 3
Worst
L ! 1 I i >
50 60 70 80 90 100
d

4400[- ——
Average|
~ === Best 10" b 3
4300 Worst |+ \\
4200+ E 10° L E
2
4100 - 9 E
/ 8 10° L 4
8 4000} S -c:
Z 39001 R 2 10" e 3
. g
38001 - R]
o
(7}
3700 - o
10° £ E
3600 - -
35000 __ _ — ey, . ///’/ 4 10"} S =
10 2‘0 3‘0 4‘0 5‘0 6‘0 ;0‘ 8‘0 E;U 100 10 2‘0 3‘0 4‘0 5‘0 6‘0 7‘0 8‘0 9‘0 ;00
d d
(a) (®)
Fig. 5. Results about the Schwefel’s problem 2.26: (a) BSP tree node and (b) the corresponding R plotted against the number of divisions.
4590 2007 IEEE Congress on Evolutionary Computation (CEC 2007)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

