
 

Abstract—The non-revisiting genetic algorithm (NrGA) is 
extended to handle continuous search space. The extended 
NrGA model, Continuous NrGA (cNrGA), employs the same 
tree-structure archive of NrGA to memorize the evaluated 
solutions, in which the search space is divided into 
non-overlapped partitions according to the distribution of the 
solutions. cNrGA is a bi-modulus evolutionary algorithm 
consisting of the genetic algorithm module (GAM) and the 
adaptive mutation module (AMM). When GAM generates an 
offspring, the offspring is sent to AMM and is mutated 
according to the density of the solutions stored in the memory 
archive. For a point in the search space with high 
solution-density, it infers a high probability that the point is 
close to the optimum and hence a near search is suggested. 
Alternatively, a far search is recommended for a point with low 
solution-density. Benefitting from the space partitioning 
scheme, a fast solution-density approximation is obtained. Also, 
the adaptive mutation scheme naturally avoid the generation of  
out-of-bound solutions. The performance of cNrGA is tested on 
14  benchmark functions on dimensions ranging from 2 to 40.  It 
is compared with real coded GA, differential evolution, 
covariance matrix adaptation evolution strategy and two 
improved particle swarm optimization.  The simulation results 
show that cNrGA outperforms the other algorithms for 
multi-modal function optimization. 

I. INTRODUCTION

EARCH history, including the performed operations, the 
positions of the evaluated solutions and the fitness values 
of the solutions, are valuable information to enhance the 

performance of an evolutionary algorithm (EA). Intuitively, it 
can be used to maintain diversity. It can also guide the search 
direction or suggest promising search regions of interest. In 
addition, when the same optimum reappears in the search 
history, it can warn that the search may have trapped in a local 
optimum. In expensive objective function optimization, one 
may use the history to approximate the objective function and 
pre-evaluate the potential optimum on this approximated 
function. This helps save computation cost. 

Several search algorithms [1-3] employ search history in 
the form of memory to adaptively guide the search strategies. 
However, they only use partial search histories – that is, only 
part of the information gained from the search is retained and 
the rest are discarded.  Recently, a non-revisiting genetic 
algorithm (NrGA) is proposed by Yuen and Chow [4, 5]. It 
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memorizes all evaluated solutions. It is the first algorithm to 
our knowledge that advocates a non-revisiting design for EA. 
A binary partitioning tree (BSP) archive is used to store the 
evaluated solutions. Meanwhile, it divides the search space 
into non-overlapped rectangular partition set H = ∪i hi of 
different sizes according to the cumulative distribution of the 
evaluated solutions. 

The non-revisiting scheme of NrGA uses this archive to 
prevent solution re-evaluation. As a result, a solution that has 
been visited before will never be revisited.  In addition, the 
scheme acts as a parameter-less adaptive mutation operator: 
the input x of this operator can be any point in the search 
space. If x is a revisit, this operator outputs solution r such 
that 1) r ≠ x, 2) x, r ∈ h ⊆ H and 3) r is randomly selected 
from h. If x is not a revisit, r is assigned as x. Since the size of 
h ⊆ H gradually decreases as the number of iterations 
increase, and r is selected from h where x ∈ h, the expected 
distance between x and r (the mutation step size of x)
becomes smaller.  The qualitative picture is as follows:  
Initially, the GA uses the mechanism of selection and 
crossover to explore the search space. This is a pure 
exploration phase.  As selection and crossover finds 
promising hyper-rectangular boxes h, revisits begin to occur.  
An exploration-exploitation phase begins. h is searched using 
mutation steps that depends on the size of h, which in turn 
depends on the number of revisits.  The more promising is h,
the smaller is the mutation steps.   Hence it implements an 
adaptive mutation.   The exploration (selection and crossover) 
and exploitation (adaptive mutation) work cooperatively in a 
parameter-less manner.  This is a worthy merit as parameter 
settings and control is a very hard problem in evolutionary 
computation [6, 7].  NrGA has been compared with 1) GA; 2) 
real-coded GA; 3) GA with simple diversity; 4) particle 
swarm optimization (PSO); 5) two improved versions of 
PSOs; and 6) Covariance Matrix Adaptation Evolution 
Strategy (CMA-ES).  The comparison is done on 19 famous 
benchmark functions, which includes uni-modal functions, 
multi-modal functions, rotated multi-modal functions and 
hybrid composition function. The problem dimension D
varies from 10 to 40 (except for four 2-dimensional 
functions). NrGA obtains superior performance compared 
with all the above methods [5].  

The non-revisiting idea is a generic idea that can be applied 
to other evolutionary algorithms. For example, recently, it has 
been applied to simulated annealing [8] and particle swarm 
optimization [9]. In each case, significant performance gains 
are observed.   

Theoretical investigations have also been done on 
simplified versions of NrGA: the (1+1) EA with memory and 
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randomized local search (RLS) with memory. It is shown that 
by reducing revisits, it is sometimes possible to drastically 
reduce the expected time complexity of finding the optimal 
solution from exponential to polynomial [10, 11].  

The idea of NrGA advocates storing all visited solutions in 
memory, then organize it in some way to adaptively guide the 
search.  At first glance, this may involve a tremendous 
amount of memory.  In fact, it is untrue. Firstly, consider 
applications that involve expensive and time consuming 
fitness evaluations; the fitness evaluation cost is significantly 
higher than solution generation cost (the black box 
optimization scenario in computational complexity theory 
[12]).  There are many such applications in engineering, 
artificial intelligence and robotics.  For such problems, the 
total number of evaluations that can be made by an EA cannot 
be too large; and it is culpable to throw away any information 
gained from fitness evaluations.  Secondly, currently, the 
memory that is becoming available due to advance in 
computer technology is increasing drastically (Moore’s Law).  
Algorithms that are previously considered memory 
demanding, e.g. z buffer in computer graphics, are now 
standard provisions. Thirdly, even in applications whose 
solution generation costs is significant, it has recently been 
shown that using the entire search history may still give 
performance gains in spite of the  memory overhead (see [13] 
for our study on an NP hard problem).  Finally, EA are 
seldom used alone.  Memetic algorithms, the idea of 
hybridizing EA with another algorithm, often results in the 
best algorithm.  In such a scenario, the total number of 
evaluations that the EA is subject to is limited. 

In keeping with traditional GA, NrGA has a finite 
resolution parameter d for each gene in the chromosome.   
This allows it to be applied to both discrete (combinatorial) 
(e.g. the combinatorial optimization problem [13]) and 
continuous (real) parameter problems. In [5], we show that 
the performance of NrGA is relatively insensitive to the 
settings of the resolution parameter d, which is desirable.  
However, there are many practical applications in which 
parameters take on continuous values. Hence there is a 
practical need to consider a new type of NrGA that work on 
real valued parameters. 

In this paper, we extend the NrGA model to perform real 
valued optimization. The modified NrGA, named Continuous 
Non-Revisiting Genetic Algorithm (cNrGA), adopts the 
parameter-less adaptive mutation scheme of NrGA to handle 
continuous search space. It uses the distribution of the 
evaluated solutions in the search space to perform a real 
valued adaptive mutation.  

cNrGA consists of two modules: the genetic algorithm 
module (GAM) and the adaptive mutation module (AMM). 
GAM executes the general process in a genetic algorithm 
with crossover and selection. AMM manages the search 
history and when revisits occur, redirects/mutates offspring 
generated by GAM before the fitness evaluation. The search 
history is stored by a memory archive called Density Tree,
which is a structure modified from the BSP tree in NrGA. 

Though cNrGA and NrGA share the same nature in that 
they both memorize all evaluated solutions to perform 
adaptive mutation, cNrGA and NrGA are quite different 
algorithms. As aforementioned, NrGA is applied on discrete 
search space where the precision of its optima depends on the 
axis resolution. On the other hand, cNrGA deals with 
continuous search space to which the precision of its optima 
is up to the precision of the floating point number in the 
computer.  

Moreover, the mechanism of cNrGA is also different from 
that of NrGA. Firstly, since the search space of cNrGA is 
continuous, the number of possible solutions in a space 
partition is infinite. Thus, the Density Tree node has no 
Closed flag for indicating a fully evaluated sub-region (called 
“subspace” in [4, 5]. The term sub-region is used instead in 
this paper to avoid possible confusion with the mathematical 
term subspace in linear algebra); and node-pruning operation 
in NrGA [4, 5] is not necessary for Density Tree.  This makes 
the cNrGA algorithm somewhat simpler and tidier compared 
with the NrGA algorithm.  

The “standard” NrGA is a (μ+λ) GA with elitist selection, 
uniform crossover at the maximum rate of 0.5 and resolution 
parameter d, which is application dependent. The adaptive 
mutation is parameter-less. A background mutation (e.g. at 
fixed mutation rate of 1/D) may (as in [4]) or may not (as in 
[5]) be included. There are only a set of three parameters (μ,
λ, d) that needs to be set. cNrGA exempts the setting of d,
which is nice aesthetically. In a companion paper, we study in 
more details NrGA’s sensitivities to operator and parameter 
choices [14].  

The rest of this paper is organized as follows: Section II 
reports the structure and the distinct features of Density Tree. 
Section III presents the mechanism of cNrGA. Section IV 
reports the experimental results.  Section V gives the 
conclusion. 

II. DENSITY TREE

As in NrGA, cNrGA uses a BSP tree as an archive which 
stores the positions of the evaluated solutions {si}. It 
partitions the whole search space S according to the 
distribution of {si}. A tree node represents a partitioned 
sub-region of S. Suppose a parent node has two child nodes l
and r. The sub-regions represented by l and r are disjoint and 
their union is the sub-region of the parent, (i.e., the child 
nodes binary partitions the parent sub-region). As the tree 
construction depends on the sequence of solutions found by 
the GA, the BSP tree is a random tree and its topology is 
different from trial to trial.  

It should be pointed out that the memory archive of cNrGA 
and NrGA have two differences in terms of the represented 
information and the tree operation: 

1. A sub-region at a leaf node will be called a partition in this 
paper, refer to Definition 1 below. Since the search space 
of cNrGA is continuous, the number of possible solutions 
in a partition, either for a small partition or a large 
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partition, is infinite. No partition can be fully evaluated. 
Thus, no node-pruning is performed. 

2. Hence the number of nodes of the tree is exactly the same 
as the number of evaluated solutions.  Thus a node of the 
tree represents a sub-region that encodes the density of the 
visits.  

Because of property 2, we call the tree a density tree.

Thus the tree used in cNrGA is the same as that used in 
NrGA except all node status management, pruning and 
backtracking operation are removed. Initially, the density tree 
Ar consists of only the root node.  Each node of the tree 
records a distinct previously visited solution x of the GA. It 
also represents an unvisited “sub-region” X of the search 
space. Each sub-region is a hyper-rectangular box of the 
search space.  The tree is organized such that the nodes binary 
partition the search space using metric d(.), which in this 
paper is the Euclidean metric.  Two child nodes x and y
binary partition the space of its parent node into two disjoint 
halves X and Y, X ∩ Y = φ, by a hyper-plane at dimension j,
chosen such that the difference of x and y along the 
dimension is the largest amongst all dimensions. In this way, 
each previous solution generated by the GA is recorded in a 
node of the tree, and the BSP tree serves as an efficient data 
structure to query whether a new solution z is a revisit.  If it is 
not a revisit (revisit flag RF = 0), then a new node is generated 
to represent z, and implicitly its unvisited sub-region Z.  If it 
is a revisit, then the revisit flag RF is set to 1 and the search 
goes down to the leaf node of the tree, finds its unvisited 
sub-region, mutates randomly to a new solution in this 
sub-region, and records this new solution in the tree by 
creating a new node under the leaf node.  By definition, this 
new solution must be unvisited. The fitness of this new 
solution is then evaluated.   

 The pseudo code is as follows: 

1. Initial condition: Ar consists of the root node  
    revisit flag RF = 0 
2. A new solution z (generated by GA) is presented to Ar
3. Curr_node := root
4. If  (Curr_node has two child nodes) 
   {   
  Compare z with child node x and y; 

        If (z = x) or (z = y)
            RF = 1  

  Define the comparing dimension j:
),(maxarg

],1[
kdj

Dk
yx

∈
=

  If   d(x,z | j) ≤ d(y,z | j)
    Curr_node := child node x
  Else 
    Curr_node := child node y

  Repeat (Step 4) 
 } 
 Else 
 {  

If     (RF = 0) 
{

Insert a child node to Curr_node that records z 
Finish 

        } 
  Else 
  {

Create a child node by randomly mutating z  
within the sub-region of Curr_node 
Finish 

  } 
    } 

 Note that NrGA and cNrGA naturally avoid generating any 
out-of-bound solutions.  This is an advantage over some other 
methods that may generate out-of-bound solutions and need 
to define an extra repair operator to change the solutions back 
to valid ones. 

For more details on the tree construction as well as a 
working example, please refer to [5]. The part in bold is the 
only modification needed to Algorithm A.2 of  [5].  Note that 
it is much simpler to the full NrGA algorithm – Algorithm 
A.3 of [5]. 

III. CONTINUOUS NON-REVISITING GENETIC ALGORITHM

cNrGA is a real coded genetic algorithm. Instead of bit 
representation, each gene x of an individual in cNrGA is 
represented by a real value, i.e. x ∈ ℜ. For a D-dimensional 
objective function, an individual x of cNrGA is a 
D-dimensional real valued vector, i.e. x ∈ ℜD, and the search 
space S of cNrGA is a D-dimensional continuous space, i.e. S
⊂ ℜD. The precision of the solution obtained by cNrGA, 
rather than predefined by the user, is the precision of the 
floating point number represented in the computer.  

The flow of CNrGA, composing of GAM and AMM, is 
shown in Figure 1. The algorithm starts by initializing the 
population pool. Then, the offspring pool O is generated by 
genetic operators in GAM. Note that every offspring x in O is 
then adaptively mutated by AMM. In this mutation, AMM 
searches for the partition hx of x (see Definition 1 below for 
details). Afterwards, x is mutated to x’ where x’ is randomly 
selected from hx.

Definition 1: The partition of x
Suppose x ∈ S is a solution in the search space S, and S is 

partitioned as the sub-region set  H = ∪i hi  by Density Tree, 
we define the partition (sub-region) hx ⊆ H as the ‘partition of 
x’ if hx is represented by a leaf node of Density Tree.      

After evaluating the offspring, the distribution of the 
evaluated solutions is changed, and the Density Tree responds 
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to this change by inserting all individuals in O to the tree. The 
individuals in the offspring pool and the parent pool are then 
selected to form the new population pool. The reproduction 
and selection processes are repeated until the termination 
criterion is satisfied. 

Figure 1. Block diagram of cNrGA

In summary, cNrGA mutates offspring according to the 
density of the evaluated solutions. For an offspring x where 
the solution-density at x is low, x is preferred to be mutated 
with a large step size. Conversely, cNrGA performs a small 
mutation on x if the solution-density at x is high. In addition, 
because of the space partitioning scheme, the partition size is 
small (large) if the corresponding evaluated solution is close 
to (far from) its neighbor. Thus, the density of the evaluated 
solution at x can be estimated by the partition size of x.

The behavior of the adaptive mutation scheme is 
elaborated as follows: Initially, the Density Tree consists of 
only the root node and offspring is randomly assigned in the 
search space. Also, in the beginning of the evolution, since 
the number of evaluated solutions is small, the sizes of the 
partitions and hence the possible mutation step sizes are 
relatively large. The crossover and adaptive mutation 
operators act as a far-search operator which explores the 
search space. As more generations goes by, it is expected that 
the fittest individuals converge to a certain region X. This 
convergence will increase the solution-density at X, to which 
the scheme keeps sub-dividing the partitions at X. It results in 
a small mutation step such that a near search is performed. In 
conclusion, the mutation step size adjusts adaptively, 
governed by the search dynamics rather than a predefined 
rule; and the operation is completely parameter-less, i.e. no 
additional control parameter is needed. It performs far search 
when the partition size is large and/or the number of revisits is 

small and vice versa. Thus, the parameter-less adaptive 
mutation scheme obtains the step size from both the spatial 
information (i.e., the density of the evaluated solutions) and 
the temporal information (i.e., the convergence in the sense of 
the number of revisits) of the evolution. 

IV. EXPERIMENTAL RESULTS

A. Objective functions 
A real valued function set F = {f1(x), f2(x),…, f14(x)}

consisting of 14 functions are employed to illustrate the 
performance of cNrGA. The 14 test functions are as follows:  

1. Sphere function
2. Schwefel’s problem 2.22 
3. Schwefel’s problem 1.2 
4. Schwefel’s problem 2.21 
5. Generalized Rosenbrock function 
6. Quartic function 
7. Generalized Rastrigin function
8. Generalized Griewank function 
9. Generalized Schwefel’s problem 2.26
10. Ackley function 
11. Shekel’s Foxholes function
12. Six-Hump Camel-Back function
13. Branin function
14. Goldstein-Price function 

They are well known benchmark test functions taken from 
[15]. The mathematical forms, the search space and the 
optima of these functions are given in Table 1. 

The first six functions are uni-modal functions; the 
remaining eight are multi-modal functions designed with a 
considerable amount of local minima. Meanwhile, the 
dimensions of the first ten functions are adjustable while the 
dimensions of f11 – f14 are fixed at two. All functions with the 
exceptions of f9, f11, f12 and f13, have the global minimum at 
the origin or very close to the origin. Simulations are carried 
out to find the global minimum of each function. 

B. Test algorithms 
In this section, we compare the optimal fitness found by 

cNrGA with five benchmark evolutionary algorithms. The 
search spaces of all test algorithms are continuous. The 
design and settings of cNrGA and the algorithms for 
comparison are summarized below. 

Test algorithm 1 – Canonical real coded GA (RC-GA):
RC-GA is tailored for optimization in real-valued search 
spaces. The genes are real-valued object parameters; 
evolution operates on the natural representation, i.e. each 
gene is represented by a 64-bit floating point number. Two 
RC-GA genetic operators employed in this paper are 
summarized as follows: 
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Definition 2:  Uniform crossover of RC-GA 
Suppose X1 = [x1,1, x1,2, …, x1,D] and X2  = [x2,1, x2,2, …, 

x2,D] are chosen from the population uniformly at random. 
The corresponding crossover-generated offspring pair O1 = 
[o1,1, o1,2, …, o1,D] and O2  = [o2,1, o2,2, …, o2,D] are reproduced 
for which (o1,I = x1,I ∧ o2,I = x2,I ) for I = 1, …, D with 
probability rx and (o1,I = x2,I ∧ o2,I = x1,I) with probability 1 – 
rx, where rx is the crossover rate. 

Definition 3: Mutation of RC-GA 
Given an individual X, the corresponding 

mutation-generated offspring O is defined as O = X + N(σm)
where N(σm) is a 1 by D vector consisting of D Gaussian 
random variables with zero mean and standard deviation σm.
σm is denoted as mutation standard deviation.

Test algorithm 2 – Continuous non-revisiting genetic 
algorithm (cNrGA): cNrGA is a real-coded GA with an 
adaptive mutation scheme. Uniform crossover operator 
(Definition 2) is used to generate offspring. Also, to illustrate 
the adaptive mutation effect of the scheme, no mutation 
operator is used in the offspring reproduction.   

Test algorithm 3 – CMA-ES: CMA-ES [16] is an evolution 
strategy that adapts the full covariance matrix of a normal 
search (mutation) distribution. It is designed with the 
emphasis that the same parameters are used in all applications 
in order to be “parameter-less”.  The source code of CMA-ES 
is taken from [16] (Aug. 2007 version).  

Test algorithm 4 – Dissipative particle swarm 
optimization (DPSO): DPSO [17] is a modified particle 
swarm optimization (PSO) which introduces random 
mutation that helps particles to escape from local minima. Its 
formula is described as follows: 

If η3 < Cv  then vi =η4 × Vmax / Cm

where η3 and η4 are uniformly distributed random variables 
in the range [0,1]; Cv is the mutation rate to control the 
velocity; Cm is a constant to control the extent of mutation; 
and Vmax is the maximum velocity. 

Test algorithm 5 – PSO with mutation (PSOMS): PSOMS 
[18] prevents premature convergence according to the 
averaged similarity between each particle and the historical 
best particle explored by the swarm. The clustering degree of 
the swarm is computed to measure the swarm diversity and 
the position of a particle is re-initialized if: 

η4 < α × c(t) × s(I,g)
where α is a predefined constant, c(t) is the collectivity at the 
tth generation and s(I,g) denotes the similarity of the ith

particle to the current best particle. 

Test algorithm 6 – Differential Evolution (DE):
Differential evolution [19] is a stochastic parallel search 

evolution strategy optimization. It is mainly applied to 
continuous search space. The source code of DE is taken from 
[20]. 

For RC-GA and cNrGA, the crossover rate rx is chosen as 
0.5. This is the recommended setting in [21, pg. 48].  Suppose 
X = ∏[Li, Ui] for i = 1,…,D is the search space of a 
D-dimensional objective function, the mutation standard 
deviation σm in RC-GA is set to 0.05max{Ui-Li}.

For PSO-class test algorithms, the values of c1, c2 are set to 
2. The inertia w is linearly decreasing from 1 to 0. The 
maximum velocity Vmax is set to 0.1R where R = max(Ui – Li). 
The parameters used in DPSO and PSOMS are assigned to be 
the same as suggested in the original works: the parameters Cv

and Cm of DPSO are chosen to be 0.001 and 0.002 
respectively. For PSOMS, the parameters dmin, dmax, β and α
are set as 0.001RD0.5, 0.01RD0.5, 1 and 3 respectively. 

C. Simulation settings 
For cNrGA, RC-GA and DE, the population sizes are set to 

100. (100+100) selection is used. For CMA-ES, the 
population size λ is chosen by the suggested setting in [16] 
(i.e. λ = 4 + 3lnD ). For DPSO and PSOMS, the swarm sizes 
are set to 100 and 100 offspring are reproduced at each 
generation. To provide a fair comparison amongst the test 
algorithms, the total number of function evaluations of all 
algorithms is kept a constant: For functions f1 – f10, cNrGA, 
RC-GA, DPSO, PSOMS and DE are terminated after 400 
generations. CMA-ES is terminated after 40,000 function 
evaluations, i.e., the total number of fitness evaluations of all 
the algorithms is fixed at 40,000.  Similarly, for functions f11 – 
f14, the total number of fitness evaluations is fixed at 1,000. 
The swarm sizes of DPSO and PSOMS are set to 50. The 
population sizes of cNrGA, RC-GA and DE are set to 50 also. 
CMA-ES is terminated after 1,000 function evaluations. 

All test functions with the exception of f11 – f14, which are 
two-dimensional, are tested with dimensions 30 and 40. Since 
the test algorithms are stochastic, their performance on each 
test function is evaluated based on statistics obtained from 
100 independent runs. All simulations are done on a PC with 
3.2GHz CPU and 1GB memory. The test algorithms: cNrGA, 
RC-GA, DPSO and PSOMS are implemented in C language. 
CMA-ES uses source code in [16] and MATLAB version 6.1. 
DE uses source code in [20] and MATLAB version 6.1. 

D. Simulation results 
The detailed simulation results are reported in Table 2. 

Figure 2 presents a summary of the results. The shaded cells 
in the figure indicate that the corresponding test algorithm is 
the best algorithm on a particular test function at a particular 
function dimension. The values inside the table cells for 
cNrGA indicate the ranking of cNrGA on a particular test 
function at a particular function dimension when it is not the 
best algorithm. From the results, it can be observed that 
CMA-ES is the clear winner for uni-modal functions f1 - f6,
while the performance of cNrGA is average. (The average 
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rank is 3.5 out of 6).   However, for multi-modal functions f7 -
f14,  cNrGA outperforms every other algorithms including 
CMA-ES. It ranks 1st in 7 out of 8 functions and is only 
second to CMA-ES in one function. 

The detailed simulation results (mean and standard 
deviation) are listed in Table 2. It lists the average and the 
standard deviation (inside brackets) of the optimal fitness for 
100 trials. A value in bold indicates that the corresponding 
algorithm is the best amongst the algorithms on a particular 
test function at a particular function dimension. 

E. Overhead 
cNrGA has two overheads, namely, the memory storage 

cost N = O(N) of storing all N visited solutions, and the  
O(NlogN) computational effort for finding the partition.  

As discussed above, memory is not a problem in many 
practical applications, for which fitness evaluation is 
expensive and/or time consuming (e.g. 1 sec. to 1 day); and 
fitness evaluation cost is substantially higher than the solution 
generation cost – the so called black box optimization 
scenario [12]. Similarly, N is not unmanageably large when 
cNrGA is hybridized with an application dependent local 
improvement heuristic in a memetic algorithm. Finally, the 
amount of memory available is rapidly increasing due to 
Moore’s Law. 

Concerning the second overhead, the O(NlogN) 
computational effort is only moderate, especially against the 
backdrop that N is not extremely large in engineering 
problems and memetic algorithms.  This additional effort 
offers an attractive compensation however: a parameter-less 
adaptive mutation operator. It is well known that parameter 
control and setting is tricky and extremely difficult [6, 7]. 
Thus the ability to adaptively mutate without parameter is 
effectively delivering an algorithm that discovers its control 
and settings from the search process.  This is a worthy merit 
and arguably, is well worth the extra computational effort.   In 
the larger context, the partitioning scheme offers a novel 
non-parametric probability distribution that encodes all past 
experiences, and is potentially extremely useful for making 
good future search decisions. 
 In this experiment, N = 40,000.  Using a PC with 3.2 GHz 
CPU and 1 GB memory, the size of the BSP tree with 40,000 
nodes is just 0.0894% of the memory, assuming that each 
node occupies 24 bytes. The worst case computational 
overhead of cNrGA compared with RC-GA amongst the 14 
test functions (24 test cases) is merely 0.6227 sec.  

V. CONCLUSION

Non-revisiting genetic algorithm (NrGA) [4, 5] can 
adaptively mutate offspring according to the search history. 
Though it is a powerful mutation scheme, it is limited to 
search in discrete space. To obtain a more precise optimum, a 
real valued optimization algorithm is necessary. In this paper, 
we modify the NrGA model to handle continuous search 
space. The new genetic algorithm, namely continuous 
non-revisiting genetic algorithm (cNrGA), integrates a real 
coded genetic algorithm with a memory unit that encodes and 

intelligently uses the search history. cNrGA has the following 
properties: 

1. cNrGA adaptively suggests mutation vectors based on the 
distribution of the evaluated solutions. 

2. Because of the partitioning scheme, the distribution of 
partition sizes follows the solution-density in the search 
space; a fast density approximation is obtained. This can 
be considered as a form of non-parametric probability 
distribution of fitness whose data comes from the whole 
search history. This view leads to interesting connections 
with estimation of distribution algorithms [22]. 

4. The adaptive mutation naturally avoids the out-of-bound 
solution problem in bounded real valued optimization 
algorithms. 

5.  The overhead of cNrGA is reasonably small or 
insignificant for most applications. 

cNrGA is a bi-modulus evolutionary algorithm consisting 
of the genetic algorithm module (GAM) and the adaptive 
mutation module (AMM). GAM performs the general genetic 
operators such as crossover and selection, while AMM 
adaptively mutates every offspring generated by GAM 
according to the density of the evaluated solutions. AMM 
stores all evaluated solutions by a tree-structure archive. The 
archive divides the search space into non-overlapped 
hyper-rectangular partitions according to the distribution of 
the evaluated solutions. For a point in the search space with 
high solution-density, it infers a high probability that the 
point is close to the optimum and hence a near search 
(exploitation) is suggested. Alternatively, a far search 
(exploration) is recommended for a point with low 
solution-density.  

In the experiment section, we examine cNrGA on fourteen 
benchmark problems, including both uni-modal and 
multi-modal functions. The dimensions of the test functions 
are from 2 to 40. We compare the performance of cNrGA 
with five bench mark real coded evolutionary algorithms.  It 
is found that for multi-modal functions, cNrGA outperforms 
all the other algorithms, while it does not perform as well for 
uni-modal functions.  This suggests that cNrGA should be 
used in the optimization of multi-modal functions, which 
represents the harder and more challenging application 
problems.  

REFERENCES

[1] Glover and M. Laguna, Tabu Search. Kluwer Academic Publishers, 
1997. 

[2] R.G. Reynolds,  “An overview of cultural algorithms”, in Advances in 
Evolutionary Computation, McGraw Hill Press, 1999. 

[3] J.D. Farmer, N. Packard and A. Perelson, "The immune system, 
adaptation and machine learning", Physica D, vol. 2, pp. 187-204, 
1986.

[4] S. Y. Yuen and C. K. Chow, “A Non-revisiting genetic algorithm”, in 
Proc. IEEE CEC, pp. 4583 – 4590, 2007.  

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 1901



[5] S.Y. Yuen and C.K. Chow, “A Genetic algorithm that adaptively 
mutates and never revisits,” IEEE Transactions on Evolutionary 
Computation, to be published. 

[6] A.E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in 
evolutionary algorithms”, IEEE Transactions on Evolutionary 
Computation, vol. 3, no. 2, pp. 124-141, 1999. 

[7] F.G. Lobo, C.F. Lima and Z. Michalewicz (Eds.), Parameter setting 
in evolutionary algorithms. Springer, 2007. 

[8] S.Y. Yuen and C.K. Chow, “A Non-revisiting simulated annealing 
algorithm,”  in Proc. IEEE CEC, pp. 1886-1892, 2008. 

[9] C.K. Chow and S.Y. Yuen, “A Non-revisiting particle swarm 
optimization,” in Proc.  IEEE CEC, pp. 1879-1885, 2008. 

[10] C.W. Sung and S.Y. Yuen, “On the analysis of the (1+1) evolutionary 
algorithm with short-term memory,” in  Proc. IEEE CEC, pp. 
235-241, 2008. 

[11] C.W. Sung and S.Y. Yuen, “On the analysis of (1+1) evolutionary 
algorithms with memory,” Evolutionary Computation, submitted. 

[12]  I. Wegener, Complexity theory, Springer 2005. 

[13] S.Y. Yuen and C.K. Chow, “Applying non-revisiting genetic 
algorithm to traveling salesman problem,” in Proc. IEEE CEC, pp. 
2217-2224, 2008.   

[14] S.Y. Yuen and C.K. Chow, “A study of operator and parameter 
choices in non-revisiting genetic algorithm, “ in Proc. IEEE CEC,
2009. 

[15] X. Yao, Y. Liu, and G. M. Lin, “Evolutionary programming made 
faster,” IEEE Trans. Evolutionary Computation, vol. 3, no. 2, pp. 
82–102, 1999. 

[16] N. Hansen, “The CMA evolutionary strategy: A tutorial”, Technical 
Report, code version: 31 Aug. 2007. Link: 
www.bionik.tu-berlin.de/user/niko/cmatutorial.pdf

[17] X. F. Xie, W. J. Zhang, Z. L. Yang, “A dissipative particle swarm 
optimization,”  in Proc. IEEE CEC, pp. 1666 – 1670, 2002. 

[18] J. Liu, X. Fan and Z. Qu, “An improved particle swarm optimization 
with mutation based on similarity,”  in Proc. IEEE Int. Conf. on 
Natural Computation, pp. 824 – 828, 2007. 

[19] R. Storn and K. Price, ‘‘Differential evolution-----A simple and 
efficient adaptive scheme for global optimization over continuous 
spaces,’’  Berkeley, CA, Tech. Rep. TR-95-012, 1995.

[20] Differential evolution source code link: 
http://www.icsi.berkeley.edu/~storn/code.html 

[21] A. E. Eiben and J. E. Smith, Introduction to evolutionary computing,
Springer 2003. 

[22] P. Larrañaga and J.A. Lozano, Estimation of distribution algorithms: 
a new tool for evolutionary computation, Norwell, MA: Kluwer, 
2002. 

TABLE 1 DETAILS OF THE FOURTEEN TEST FUCNTIONS.

test function mathematical form range optimum 
1. Sphere function 2

1
1

( )
D

i
i

f x
=

=x [-100, 100]D [0,0,…,0] 

2. Schwefel’s problem 2.22
2

1 1

( )
DD

i i
i i

f x x
= =

= +∏x [-100, 100]D [0,0,…,0] 

3. Schwefel’s problem 1.2 2

3
1 1

( )
D i

j
i j

f x
= =

=x [-100, 100]D [0,0,…,0] 

4. Schwefel’s problem 2.21 4 [1, ]
( ) max ii D

f x
∈

=x [-100, 100]D [0,0,…,0] 
5. Generalized Rosenbrock function 1

2 2 2
5 1

1
( ) 100( ) ( 1)

D

i i i
i

f x x x
−

+
=

= − + −x [-29, 31]D [1,1,…,1] 

6. Quartic function 4
6

1
( ) [0,1]

D

i

f ix random
=

= +x

Note: This is a noisy fitness function. There is a 
random measurement noise in each fitness evaluation. 

[-1.28, 1.25]D [0,0,…,0] 

7. Generalized Rastrigin function 2
7

1
( ) 10cos(2 ) 10

D

i i
i

f x xπ
=

= − +x [-5.12, 5.12]D [0,0,…,0] 

8. Generalized Griewank function 2
8

1 1

1( ) cos 1
4000

DD
i

i
i i

x
f x

i= =

= − +∏x [-600, 600]D [0,0,…,0] 

9. Generalized Schwefel’s problem 2.26 
9

1
( ) sin

D

i i
i

f x x
=

= −x [-500, 500]D [420.9687,…, 
420.9687] 

10. Ackley function
−−−=

=

D

i
ix

D
f

1

2
10

12.0exp20)(x

ex
D

D

i
i ++

=
202cos1exp

1
π

[-32, 32]D [0,0,…,0] 
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11. Shekel’s Foxholes function 1

25

11 2
61

,
1

1 1( )
500 ( )j

i i j
i

f
j x a

−

=

=

= +
+ −

x
 where 

−−−−−−
−−−

=
323232163232323232
3216032321601632

}{ , jia

[-98, 34]2 [-32, 32] 

12. Six-Hump Camel-Back function
2 4 6 2 4

12 1 1 1 1 2 2 2
1( ) 4 2.1 4 4
3

f x x x x x x x= − + + − +x

[-4.91017,   
5.0893] ×

[-5.7126, 
4.2874] 

[0.08983, -0.7126] 
and [-0.08983, 

0.7126] 

13. Branin function 
2 2

13 2 1 1 12

5 5 1( ) ( 6) 10(1 )cos 10
4 8

f x x x x
π π π

= − + − + − +x [-8.142, 6.858] 
× [-12.275, 2.725] 

[-3.142, 12.275], 
[3.142, 2.275],  
[9.425, 2.425] 

14. Goldstein-Price function 14 ( ) ( ) ( )f g h= ×x x x
g(x) = 1 + (x1 + x2 + 1)2 ×

(19 - 14x1 + 3x1
2 + 6x1x2 + 3x2

2)
h(x) = 30 + (2x1 - 3x2)2 ×

(18 - 32x1 + 12x1
2 + 48x2 – 36x1x2 + 27x2

2)

[-2, 2] ×
[-3, 1] [0, -1] 

 Uni-modal  
Noisy 

Uni-moda
l

Multi-modal 

Function f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14

D 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 2 2 2 2 
cNrGA 2 2 2 2 5 5 5 5 4 4 3 3  2 2 

DE                         
RC-GA                         

CMA-ES             
DPSO                  

PSOMS                         
Figure 2. Indicators of the best test algorithm in the experiments: The cell with grey color represents that the corresponding test algorithm outperforms the 
others for a particular function and a particular function dimension. 

TABLE 2 THE AVERAGE AND THE STANDARD DEVIATION OF THE BEST FITNESS VALUES FOUND BY CNRGA, DE, RC-GA, CMA-ES, DPSO AND PSOMS. 
D cNrGA DE RC-GA CMA-ES DPSO PSOMS 

f1
30 0.89 (0.93) 32.92 (13.141) 254.79 (32.15) 0.00 (0.00) 72.96 (4.50) 45.47 (3.96) 
40 2.14 (1.66) 60.95 (20.510) 493.76 (41.13) 0.00 (0.00) 130.12 (5.21) 122.11 (5.95) 

f2
30 1.90 (1.30) 26.47 (5.88) 17.05 (0.83) 0.00 (0.00) 7.78 (1.06) 11.95 (4.57) 
40 4.11 (1.73) 38.80 (7.16) 27.46 (1.31) 0.00 (0.00) 35.76 (7.80) 53.43 (8.77) 

f3
30 4644.12 (1882.7) 3898.78 (1840.1) 7954.00 (1466.7) 1346.70 (3500.0) 1638.09 (21.66) 2045.42 (24.49) 
40 17706.3 (5232.9) 9195.87 (4773.8) 23477.7 (4088.3) 2615.4 (39090.9) 3156.77 (28.80) 4077.51 (32.83) 

f4
30 41.40 (7.91) 18.69 (4.34) 17.52 (1.10) 100.00 (0.00) 9.70 (1.26) 13.84 (1.79) 
40 50.54 (6.23) 22.31 (3.84) 23.04 (1.12) 100.00 (0.00) 11.41 (1.28) 16.41 (1.66) 

f5
30 14479 (21291) 39655.6 (19994) 194518.3 (3840) 10117.10 (11872) 8407.94 (65.0) 6674.39 (67.6)
40 34641 (42164) 83083.2 (30407) 591738.5 (9608) 20117.20 (90419) 18691.25 (83.4) 21132.67 (110.4) 

f6
30 8.75 (0.50) 0.544 (0.42) 9.71 (0.50) 0.20 (0.09) 9.85 (0.82) 9.99 (0.82) 
40 13.30 (0.66) 1.725 (1.33) 14.91 (0.69) 0.24 (0.08) 14.54 (0.87) 14.50 (0.95) 

f7
30 28.92 (6.79) 113.55 (23.54) 190.63 (11.44) 51.09 (13.70) 122.50 (4.12) 99.83 (4.33) 
40 45.71 (9.32) 183.83 (26.42) 287.74 (10.77) 74.22 (13.30) 191.58 (4.87) 162.29 (5.11) 

f8
30 1.79 (1.02) 32.46 (11.32) 15.62 (1.51) 0.00 (0.00) 3.53 (0.77) 2.74 (0.76) 
40 3.10 (1.74) 65.46 (20.97) 28.86 (2.18) 0.00 (0.00) 5.84 (1.04) 5.37 (1.12) 

f9
30 -12982.0 (272.9) -9191.79 (837.59) -9506.40 (283.3) -5406.80 (92.6) -4256.03 (21.3) -6562.55 (25.8) 
40 -16728.2 (415.6) -11165.3 (905.5) -11369.60 (434.7) -7187.40 (184.1) -5079.23 (24.5) -7718.63 (29.0) 

f10
30 3.93 (1.19) 20.383 (0.248) 9.15 (0.30) 18.77 (4.77) 5.66 (0.74) 6.04 (0.95) 
40 5.42 (1.52) 20.538 (0.289) 11.28 (0.28) 19.37 (3.42) 6.86 (0.81) 8.18 (0.96) 

f11 2 1.331 (0.839) 2.248 (1.725) 1.924 (1.128) 269.891 (244.52) 1.928 (1.03) 1.0080 (0.31) 
f12 2 -1.031 (0.001) -1.030 (0.001) -1.028 (0.002) -0.999 (0.160) -1.014 (0.131) -1.0310 (0.01) 
f13 2 0.398 (0.001) 0.399 (0.001) 0.400 (0.001) 0.399 (0.001) 1.997 (1.631) 0.3982 (0.01) 
f14 2 3.001 (0.050) 3.011 (0.004) 3.031 (0.031) 13.774 (25.693) 3.286 (0.786) 3.0230 (0.01) 
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