

Abstract—The non-revisiting genetic algorithm (NrGA) is
extended to handle continuous search space. The extended
NrGA model, Continuous NrGA (cNrGA), employs the same
tree-structure archive of NrGA to memorize the evaluated
solutions, in which the search space is divided into
non-overlapped partitions according to the distribution of the
solutions. cNrGA is a bi-modulus evolutionary algorithm
consisting of the genetic algorithm module (GAM) and the
adaptive mutation module (AMM). When GAM generates an
offspring, the offspring is sent to AMM and is mutated
according to the density of the solutions stored in the memory
archive. For a point in the search space with high
solution-density, it infers a high probability that the point is
close to the optimum and hence a near search is suggested.
Alternatively, a far search is recommended for a point with low
solution-density. Benefitting from the space partitioning
scheme, a fast solution-density approximation is obtained. Also,
the adaptive mutation scheme naturally avoid the generation of
out-of-bound solutions. The performance of cNrGA is tested on
14 benchmark functions on dimensions ranging from 2 to 40. It
is compared with real coded GA, differential evolution,
covariance matrix adaptation evolution strategy and two
improved particle swarm optimization. The simulation results
show that cNrGA outperforms the other algorithms for
multi-modal function optimization.

I. INTRODUCTION

EARCH history, including the performed operations, the
positions of the evaluated solutions and the fitness values
of the solutions, are valuable information to enhance the

performance of an evolutionary algorithm (EA). Intuitively, it
can be used to maintain diversity. It can also guide the search
direction or suggest promising search regions of interest. In
addition, when the same optimum reappears in the search
history, it can warn that the search may have trapped in a local
optimum. In expensive objective function optimization, one
may use the history to approximate the objective function and
pre-evaluate the potential optimum on this approximated
function. This helps save computation cost.

Several search algorithms [1-3] employ search history in
the form of memory to adaptively guide the search strategies.
However, they only use partial search histories – that is, only
part of the information gained from the search is retained and
the rest are discarded. Recently, a non-revisiting genetic
algorithm (NrGA) is proposed by Yuen and Chow [4, 5]. It

Shiu Yin Yuen is with the Department of Electronic Engineering, City
University of Hong Kong, Hong Kong SAR, China (E-mail:
kelviny.ee@cityu.edu.hk).

Chi Kin Chow is with the Department of Electronic Engineering, City
Universtiy of Hong Kong, Hong Kong SAR, China (E-mail:
chowchi@cityu.edu.hk).

The work described in this paper was supported by CityU Research Grant
(7002304).

memorizes all evaluated solutions. It is the first algorithm to
our knowledge that advocates a non-revisiting design for EA.
A binary partitioning tree (BSP) archive is used to store the
evaluated solutions. Meanwhile, it divides the search space
into non-overlapped rectangular partition set H = ∪i hi of
different sizes according to the cumulative distribution of the
evaluated solutions.

The non-revisiting scheme of NrGA uses this archive to
prevent solution re-evaluation. As a result, a solution that has
been visited before will never be revisited. In addition, the
scheme acts as a parameter-less adaptive mutation operator:
the input x of this operator can be any point in the search
space. If x is a revisit, this operator outputs solution r such
that 1) r ≠ x, 2) x, r ∈ h ⊆ H and 3) r is randomly selected
from h. If x is not a revisit, r is assigned as x. Since the size of
h ⊆ H gradually decreases as the number of iterations
increase, and r is selected from h where x ∈ h, the expected
distance between x and r (the mutation step size of x)
becomes smaller. The qualitative picture is as follows:
Initially, the GA uses the mechanism of selection and
crossover to explore the search space. This is a pure
exploration phase. As selection and crossover finds
promising hyper-rectangular boxes h, revisits begin to occur.
An exploration-exploitation phase begins. h is searched using
mutation steps that depends on the size of h, which in turn
depends on the number of revisits. The more promising is h,
the smaller is the mutation steps. Hence it implements an
adaptive mutation. The exploration (selection and crossover)
and exploitation (adaptive mutation) work cooperatively in a
parameter-less manner. This is a worthy merit as parameter
settings and control is a very hard problem in evolutionary
computation [6, 7]. NrGA has been compared with 1) GA; 2)
real-coded GA; 3) GA with simple diversity; 4) particle
swarm optimization (PSO); 5) two improved versions of
PSOs; and 6) Covariance Matrix Adaptation Evolution
Strategy (CMA-ES). The comparison is done on 19 famous
benchmark functions, which includes uni-modal functions,
multi-modal functions, rotated multi-modal functions and
hybrid composition function. The problem dimension D
varies from 10 to 40 (except for four 2-dimensional
functions). NrGA obtains superior performance compared
with all the above methods [5].

The non-revisiting idea is a generic idea that can be applied
to other evolutionary algorithms. For example, recently, it has
been applied to simulated annealing [8] and particle swarm
optimization [9]. In each case, significant performance gains
are observed.

Theoretical investigations have also been done on
simplified versions of NrGA: the (1+1) EA with memory and

Continuous Non-Revisiting Genetic Algorithm
Shiu Yin Yuen and Chi Kin Chow

S

1896978-1-4244-2959-2/09/$25.00 c© 2009 IEEE

randomized local search (RLS) with memory. It is shown that
by reducing revisits, it is sometimes possible to drastically
reduce the expected time complexity of finding the optimal
solution from exponential to polynomial [10, 11].

The idea of NrGA advocates storing all visited solutions in
memory, then organize it in some way to adaptively guide the
search. At first glance, this may involve a tremendous
amount of memory. In fact, it is untrue. Firstly, consider
applications that involve expensive and time consuming
fitness evaluations; the fitness evaluation cost is significantly
higher than solution generation cost (the black box
optimization scenario in computational complexity theory
[12]). There are many such applications in engineering,
artificial intelligence and robotics. For such problems, the
total number of evaluations that can be made by an EA cannot
be too large; and it is culpable to throw away any information
gained from fitness evaluations. Secondly, currently, the
memory that is becoming available due to advance in
computer technology is increasing drastically (Moore’s Law).
Algorithms that are previously considered memory
demanding, e.g. z buffer in computer graphics, are now
standard provisions. Thirdly, even in applications whose
solution generation costs is significant, it has recently been
shown that using the entire search history may still give
performance gains in spite of the memory overhead (see [13]
for our study on an NP hard problem). Finally, EA are
seldom used alone. Memetic algorithms, the idea of
hybridizing EA with another algorithm, often results in the
best algorithm. In such a scenario, the total number of
evaluations that the EA is subject to is limited.

In keeping with traditional GA, NrGA has a finite
resolution parameter d for each gene in the chromosome.
This allows it to be applied to both discrete (combinatorial)
(e.g. the combinatorial optimization problem [13]) and
continuous (real) parameter problems. In [5], we show that
the performance of NrGA is relatively insensitive to the
settings of the resolution parameter d, which is desirable.
However, there are many practical applications in which
parameters take on continuous values. Hence there is a
practical need to consider a new type of NrGA that work on
real valued parameters.

In this paper, we extend the NrGA model to perform real
valued optimization. The modified NrGA, named Continuous
Non-Revisiting Genetic Algorithm (cNrGA), adopts the
parameter-less adaptive mutation scheme of NrGA to handle
continuous search space. It uses the distribution of the
evaluated solutions in the search space to perform a real
valued adaptive mutation.

cNrGA consists of two modules: the genetic algorithm
module (GAM) and the adaptive mutation module (AMM).
GAM executes the general process in a genetic algorithm
with crossover and selection. AMM manages the search
history and when revisits occur, redirects/mutates offspring
generated by GAM before the fitness evaluation. The search
history is stored by a memory archive called Density Tree,
which is a structure modified from the BSP tree in NrGA.

Though cNrGA and NrGA share the same nature in that
they both memorize all evaluated solutions to perform
adaptive mutation, cNrGA and NrGA are quite different
algorithms. As aforementioned, NrGA is applied on discrete
search space where the precision of its optima depends on the
axis resolution. On the other hand, cNrGA deals with
continuous search space to which the precision of its optima
is up to the precision of the floating point number in the
computer.

Moreover, the mechanism of cNrGA is also different from
that of NrGA. Firstly, since the search space of cNrGA is
continuous, the number of possible solutions in a space
partition is infinite. Thus, the Density Tree node has no
Closed flag for indicating a fully evaluated sub-region (called
“subspace” in [4, 5]. The term sub-region is used instead in
this paper to avoid possible confusion with the mathematical
term subspace in linear algebra); and node-pruning operation
in NrGA [4, 5] is not necessary for Density Tree. This makes
the cNrGA algorithm somewhat simpler and tidier compared
with the NrGA algorithm.

The “standard” NrGA is a (μ+λ) GA with elitist selection,
uniform crossover at the maximum rate of 0.5 and resolution
parameter d, which is application dependent. The adaptive
mutation is parameter-less. A background mutation (e.g. at
fixed mutation rate of 1/D) may (as in [4]) or may not (as in
[5]) be included. There are only a set of three parameters (μ,
λ, d) that needs to be set. cNrGA exempts the setting of d,
which is nice aesthetically. In a companion paper, we study in
more details NrGA’s sensitivities to operator and parameter
choices [14].

The rest of this paper is organized as follows: Section II
reports the structure and the distinct features of Density Tree.
Section III presents the mechanism of cNrGA. Section IV
reports the experimental results. Section V gives the
conclusion.

II. DENSITY TREE

As in NrGA, cNrGA uses a BSP tree as an archive which
stores the positions of the evaluated solutions {si}. It
partitions the whole search space S according to the
distribution of {si}. A tree node represents a partitioned
sub-region of S. Suppose a parent node has two child nodes l
and r. The sub-regions represented by l and r are disjoint and
their union is the sub-region of the parent, (i.e., the child
nodes binary partitions the parent sub-region). As the tree
construction depends on the sequence of solutions found by
the GA, the BSP tree is a random tree and its topology is
different from trial to trial.

It should be pointed out that the memory archive of cNrGA
and NrGA have two differences in terms of the represented
information and the tree operation:

1. A sub-region at a leaf node will be called a partition in this
paper, refer to Definition 1 below. Since the search space
of cNrGA is continuous, the number of possible solutions
in a partition, either for a small partition or a large

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 1897

partition, is infinite. No partition can be fully evaluated.
Thus, no node-pruning is performed.

2. Hence the number of nodes of the tree is exactly the same
as the number of evaluated solutions. Thus a node of the
tree represents a sub-region that encodes the density of the
visits.

Because of property 2, we call the tree a density tree.

Thus the tree used in cNrGA is the same as that used in
NrGA except all node status management, pruning and
backtracking operation are removed. Initially, the density tree
Ar consists of only the root node. Each node of the tree
records a distinct previously visited solution x of the GA. It
also represents an unvisited “sub-region” X of the search
space. Each sub-region is a hyper-rectangular box of the
search space. The tree is organized such that the nodes binary
partition the search space using metric d(.), which in this
paper is the Euclidean metric. Two child nodes x and y
binary partition the space of its parent node into two disjoint
halves X and Y, X ∩ Y = φ, by a hyper-plane at dimension j,
chosen such that the difference of x and y along the
dimension is the largest amongst all dimensions. In this way,
each previous solution generated by the GA is recorded in a
node of the tree, and the BSP tree serves as an efficient data
structure to query whether a new solution z is a revisit. If it is
not a revisit (revisit flag RF = 0), then a new node is generated
to represent z, and implicitly its unvisited sub-region Z. If it
is a revisit, then the revisit flag RF is set to 1 and the search
goes down to the leaf node of the tree, finds its unvisited
sub-region, mutates randomly to a new solution in this
sub-region, and records this new solution in the tree by
creating a new node under the leaf node. By definition, this
new solution must be unvisited. The fitness of this new
solution is then evaluated.

 The pseudo code is as follows:

1. Initial condition: Ar consists of the root node
 revisit flag RF = 0
2. A new solution z (generated by GA) is presented to Ar
3. Curr_node := root
4. If (Curr_node has two child nodes)
 {
 Compare z with child node x and y;

 If (z = x) or (z = y)
 RF = 1

 Define the comparing dimension j:
),(maxarg

],1[
kdj

Dk
yx

∈
=

 If d(x,z | j) ≤ d(y,z | j)
 Curr_node := child node x
 Else
 Curr_node := child node y

 Repeat (Step 4)
 }
 Else
 {

If (RF = 0)
{

Insert a child node to Curr_node that records z
Finish

 }
 Else
 {

Create a child node by randomly mutating z
within the sub-region of Curr_node
Finish

 }
 }

 Note that NrGA and cNrGA naturally avoid generating any
out-of-bound solutions. This is an advantage over some other
methods that may generate out-of-bound solutions and need
to define an extra repair operator to change the solutions back
to valid ones.

For more details on the tree construction as well as a
working example, please refer to [5]. The part in bold is the
only modification needed to Algorithm A.2 of [5]. Note that
it is much simpler to the full NrGA algorithm – Algorithm
A.3 of [5].

III. CONTINUOUS NON-REVISITING GENETIC ALGORITHM

cNrGA is a real coded genetic algorithm. Instead of bit
representation, each gene x of an individual in cNrGA is
represented by a real value, i.e. x ∈ ℜ. For a D-dimensional
objective function, an individual x of cNrGA is a
D-dimensional real valued vector, i.e. x ∈ ℜD, and the search
space S of cNrGA is a D-dimensional continuous space, i.e. S
⊂ ℜD. The precision of the solution obtained by cNrGA,
rather than predefined by the user, is the precision of the
floating point number represented in the computer.

The flow of CNrGA, composing of GAM and AMM, is
shown in Figure 1. The algorithm starts by initializing the
population pool. Then, the offspring pool O is generated by
genetic operators in GAM. Note that every offspring x in O is
then adaptively mutated by AMM. In this mutation, AMM
searches for the partition hx of x (see Definition 1 below for
details). Afterwards, x is mutated to x’ where x’ is randomly
selected from hx.

Definition 1: The partition of x
Suppose x ∈ S is a solution in the search space S, and S is

partitioned as the sub-region set H = ∪i hi by Density Tree,
we define the partition (sub-region) hx ⊆ H as the ‘partition of
x’ if hx is represented by a leaf node of Density Tree.

After evaluating the offspring, the distribution of the
evaluated solutions is changed, and the Density Tree responds

1898 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

to this change by inserting all individuals in O to the tree. The
individuals in the offspring pool and the parent pool are then
selected to form the new population pool. The reproduction
and selection processes are repeated until the termination
criterion is satisfied.

Figure 1. Block diagram of cNrGA

In summary, cNrGA mutates offspring according to the
density of the evaluated solutions. For an offspring x where
the solution-density at x is low, x is preferred to be mutated
with a large step size. Conversely, cNrGA performs a small
mutation on x if the solution-density at x is high. In addition,
because of the space partitioning scheme, the partition size is
small (large) if the corresponding evaluated solution is close
to (far from) its neighbor. Thus, the density of the evaluated
solution at x can be estimated by the partition size of x.

The behavior of the adaptive mutation scheme is
elaborated as follows: Initially, the Density Tree consists of
only the root node and offspring is randomly assigned in the
search space. Also, in the beginning of the evolution, since
the number of evaluated solutions is small, the sizes of the
partitions and hence the possible mutation step sizes are
relatively large. The crossover and adaptive mutation
operators act as a far-search operator which explores the
search space. As more generations goes by, it is expected that
the fittest individuals converge to a certain region X. This
convergence will increase the solution-density at X, to which
the scheme keeps sub-dividing the partitions at X. It results in
a small mutation step such that a near search is performed. In
conclusion, the mutation step size adjusts adaptively,
governed by the search dynamics rather than a predefined
rule; and the operation is completely parameter-less, i.e. no
additional control parameter is needed. It performs far search
when the partition size is large and/or the number of revisits is

small and vice versa. Thus, the parameter-less adaptive
mutation scheme obtains the step size from both the spatial
information (i.e., the density of the evaluated solutions) and
the temporal information (i.e., the convergence in the sense of
the number of revisits) of the evolution.

IV. EXPERIMENTAL RESULTS

A. Objective functions
A real valued function set F = {f1(x), f2(x),…, f14(x)}

consisting of 14 functions are employed to illustrate the
performance of cNrGA. The 14 test functions are as follows:

1. Sphere function
2. Schwefel’s problem 2.22
3. Schwefel’s problem 1.2
4. Schwefel’s problem 2.21
5. Generalized Rosenbrock function
6. Quartic function
7. Generalized Rastrigin function
8. Generalized Griewank function
9. Generalized Schwefel’s problem 2.26
10. Ackley function
11. Shekel’s Foxholes function
12. Six-Hump Camel-Back function
13. Branin function
14. Goldstein-Price function

They are well known benchmark test functions taken from
[15]. The mathematical forms, the search space and the
optima of these functions are given in Table 1.

The first six functions are uni-modal functions; the
remaining eight are multi-modal functions designed with a
considerable amount of local minima. Meanwhile, the
dimensions of the first ten functions are adjustable while the
dimensions of f11 – f14 are fixed at two. All functions with the
exceptions of f9, f11, f12 and f13, have the global minimum at
the origin or very close to the origin. Simulations are carried
out to find the global minimum of each function.

B. Test algorithms
In this section, we compare the optimal fitness found by

cNrGA with five benchmark evolutionary algorithms. The
search spaces of all test algorithms are continuous. The
design and settings of cNrGA and the algorithms for
comparison are summarized below.

Test algorithm 1 – Canonical real coded GA (RC-GA):
RC-GA is tailored for optimization in real-valued search
spaces. The genes are real-valued object parameters;
evolution operates on the natural representation, i.e. each
gene is represented by a 64-bit floating point number. Two
RC-GA genetic operators employed in this paper are
summarized as follows:

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 1899

Definition 2: Uniform crossover of RC-GA
Suppose X1 = [x1,1, x1,2, …, x1,D] and X2 = [x2,1, x2,2, …,

x2,D] are chosen from the population uniformly at random.
The corresponding crossover-generated offspring pair O1 =
[o1,1, o1,2, …, o1,D] and O2 = [o2,1, o2,2, …, o2,D] are reproduced
for which (o1,I = x1,I ∧ o2,I = x2,I) for I = 1, …, D with
probability rx and (o1,I = x2,I ∧ o2,I = x1,I) with probability 1 –
rx, where rx is the crossover rate.

Definition 3: Mutation of RC-GA
Given an individual X, the corresponding

mutation-generated offspring O is defined as O = X + N(σm)
where N(σm) is a 1 by D vector consisting of D Gaussian
random variables with zero mean and standard deviation σm.
σm is denoted as mutation standard deviation.

Test algorithm 2 – Continuous non-revisiting genetic
algorithm (cNrGA): cNrGA is a real-coded GA with an
adaptive mutation scheme. Uniform crossover operator
(Definition 2) is used to generate offspring. Also, to illustrate
the adaptive mutation effect of the scheme, no mutation
operator is used in the offspring reproduction.

Test algorithm 3 – CMA-ES: CMA-ES [16] is an evolution
strategy that adapts the full covariance matrix of a normal
search (mutation) distribution. It is designed with the
emphasis that the same parameters are used in all applications
in order to be “parameter-less”. The source code of CMA-ES
is taken from [16] (Aug. 2007 version).

Test algorithm 4 – Dissipative particle swarm
optimization (DPSO): DPSO [17] is a modified particle
swarm optimization (PSO) which introduces random
mutation that helps particles to escape from local minima. Its
formula is described as follows:

If η3 < Cv then vi =η4 × Vmax / Cm

where η3 and η4 are uniformly distributed random variables
in the range [0,1]; Cv is the mutation rate to control the
velocity; Cm is a constant to control the extent of mutation;
and Vmax is the maximum velocity.

Test algorithm 5 – PSO with mutation (PSOMS): PSOMS
[18] prevents premature convergence according to the
averaged similarity between each particle and the historical
best particle explored by the swarm. The clustering degree of
the swarm is computed to measure the swarm diversity and
the position of a particle is re-initialized if:

η4 < α × c(t) × s(I,g)
where α is a predefined constant, c(t) is the collectivity at the
tth generation and s(I,g) denotes the similarity of the ith

particle to the current best particle.

Test algorithm 6 – Differential Evolution (DE):
Differential evolution [19] is a stochastic parallel search

evolution strategy optimization. It is mainly applied to
continuous search space. The source code of DE is taken from
[20].

For RC-GA and cNrGA, the crossover rate rx is chosen as
0.5. This is the recommended setting in [21, pg. 48]. Suppose
X = ∏[Li, Ui] for i = 1,…,D is the search space of a
D-dimensional objective function, the mutation standard
deviation σm in RC-GA is set to 0.05max{Ui-Li}.

For PSO-class test algorithms, the values of c1, c2 are set to
2. The inertia w is linearly decreasing from 1 to 0. The
maximum velocity Vmax is set to 0.1R where R = max(Ui – Li).
The parameters used in DPSO and PSOMS are assigned to be
the same as suggested in the original works: the parameters Cv

and Cm of DPSO are chosen to be 0.001 and 0.002
respectively. For PSOMS, the parameters dmin, dmax, β and α
are set as 0.001RD0.5, 0.01RD0.5, 1 and 3 respectively.

C. Simulation settings
For cNrGA, RC-GA and DE, the population sizes are set to

100. (100+100) selection is used. For CMA-ES, the
population size λ is chosen by the suggested setting in [16]
(i.e. λ = 4 + 3lnD). For DPSO and PSOMS, the swarm sizes
are set to 100 and 100 offspring are reproduced at each
generation. To provide a fair comparison amongst the test
algorithms, the total number of function evaluations of all
algorithms is kept a constant: For functions f1 – f10, cNrGA,
RC-GA, DPSO, PSOMS and DE are terminated after 400
generations. CMA-ES is terminated after 40,000 function
evaluations, i.e., the total number of fitness evaluations of all
the algorithms is fixed at 40,000. Similarly, for functions f11 –
f14, the total number of fitness evaluations is fixed at 1,000.
The swarm sizes of DPSO and PSOMS are set to 50. The
population sizes of cNrGA, RC-GA and DE are set to 50 also.
CMA-ES is terminated after 1,000 function evaluations.

All test functions with the exception of f11 – f14, which are
two-dimensional, are tested with dimensions 30 and 40. Since
the test algorithms are stochastic, their performance on each
test function is evaluated based on statistics obtained from
100 independent runs. All simulations are done on a PC with
3.2GHz CPU and 1GB memory. The test algorithms: cNrGA,
RC-GA, DPSO and PSOMS are implemented in C language.
CMA-ES uses source code in [16] and MATLAB version 6.1.
DE uses source code in [20] and MATLAB version 6.1.

D. Simulation results
The detailed simulation results are reported in Table 2.

Figure 2 presents a summary of the results. The shaded cells
in the figure indicate that the corresponding test algorithm is
the best algorithm on a particular test function at a particular
function dimension. The values inside the table cells for
cNrGA indicate the ranking of cNrGA on a particular test
function at a particular function dimension when it is not the
best algorithm. From the results, it can be observed that
CMA-ES is the clear winner for uni-modal functions f1 - f6,
while the performance of cNrGA is average. (The average

1900 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

rank is 3.5 out of 6). However, for multi-modal functions f7 -
f14, cNrGA outperforms every other algorithms including
CMA-ES. It ranks 1st in 7 out of 8 functions and is only
second to CMA-ES in one function.

The detailed simulation results (mean and standard
deviation) are listed in Table 2. It lists the average and the
standard deviation (inside brackets) of the optimal fitness for
100 trials. A value in bold indicates that the corresponding
algorithm is the best amongst the algorithms on a particular
test function at a particular function dimension.

E. Overhead
cNrGA has two overheads, namely, the memory storage

cost N = O(N) of storing all N visited solutions, and the
O(NlogN) computational effort for finding the partition.

As discussed above, memory is not a problem in many
practical applications, for which fitness evaluation is
expensive and/or time consuming (e.g. 1 sec. to 1 day); and
fitness evaluation cost is substantially higher than the solution
generation cost – the so called black box optimization
scenario [12]. Similarly, N is not unmanageably large when
cNrGA is hybridized with an application dependent local
improvement heuristic in a memetic algorithm. Finally, the
amount of memory available is rapidly increasing due to
Moore’s Law.

Concerning the second overhead, the O(NlogN)
computational effort is only moderate, especially against the
backdrop that N is not extremely large in engineering
problems and memetic algorithms. This additional effort
offers an attractive compensation however: a parameter-less
adaptive mutation operator. It is well known that parameter
control and setting is tricky and extremely difficult [6, 7].
Thus the ability to adaptively mutate without parameter is
effectively delivering an algorithm that discovers its control
and settings from the search process. This is a worthy merit
and arguably, is well worth the extra computational effort. In
the larger context, the partitioning scheme offers a novel
non-parametric probability distribution that encodes all past
experiences, and is potentially extremely useful for making
good future search decisions.
 In this experiment, N = 40,000. Using a PC with 3.2 GHz
CPU and 1 GB memory, the size of the BSP tree with 40,000
nodes is just 0.0894% of the memory, assuming that each
node occupies 24 bytes. The worst case computational
overhead of cNrGA compared with RC-GA amongst the 14
test functions (24 test cases) is merely 0.6227 sec.

V. CONCLUSION

Non-revisiting genetic algorithm (NrGA) [4, 5] can
adaptively mutate offspring according to the search history.
Though it is a powerful mutation scheme, it is limited to
search in discrete space. To obtain a more precise optimum, a
real valued optimization algorithm is necessary. In this paper,
we modify the NrGA model to handle continuous search
space. The new genetic algorithm, namely continuous
non-revisiting genetic algorithm (cNrGA), integrates a real
coded genetic algorithm with a memory unit that encodes and

intelligently uses the search history. cNrGA has the following
properties:

1. cNrGA adaptively suggests mutation vectors based on the
distribution of the evaluated solutions.

2. Because of the partitioning scheme, the distribution of
partition sizes follows the solution-density in the search
space; a fast density approximation is obtained. This can
be considered as a form of non-parametric probability
distribution of fitness whose data comes from the whole
search history. This view leads to interesting connections
with estimation of distribution algorithms [22].

4. The adaptive mutation naturally avoids the out-of-bound
solution problem in bounded real valued optimization
algorithms.

5. The overhead of cNrGA is reasonably small or
insignificant for most applications.

cNrGA is a bi-modulus evolutionary algorithm consisting
of the genetic algorithm module (GAM) and the adaptive
mutation module (AMM). GAM performs the general genetic
operators such as crossover and selection, while AMM
adaptively mutates every offspring generated by GAM
according to the density of the evaluated solutions. AMM
stores all evaluated solutions by a tree-structure archive. The
archive divides the search space into non-overlapped
hyper-rectangular partitions according to the distribution of
the evaluated solutions. For a point in the search space with
high solution-density, it infers a high probability that the
point is close to the optimum and hence a near search
(exploitation) is suggested. Alternatively, a far search
(exploration) is recommended for a point with low
solution-density.

In the experiment section, we examine cNrGA on fourteen
benchmark problems, including both uni-modal and
multi-modal functions. The dimensions of the test functions
are from 2 to 40. We compare the performance of cNrGA
with five bench mark real coded evolutionary algorithms. It
is found that for multi-modal functions, cNrGA outperforms
all the other algorithms, while it does not perform as well for
uni-modal functions. This suggests that cNrGA should be
used in the optimization of multi-modal functions, which
represents the harder and more challenging application
problems.

REFERENCES

[1] Glover and M. Laguna, Tabu Search. Kluwer Academic Publishers,
1997.

[2] R.G. Reynolds, “An overview of cultural algorithms”, in Advances in
Evolutionary Computation, McGraw Hill Press, 1999.

[3] J.D. Farmer, N. Packard and A. Perelson, "The immune system,
adaptation and machine learning", Physica D, vol. 2, pp. 187-204,
1986.

[4] S. Y. Yuen and C. K. Chow, “A Non-revisiting genetic algorithm”, in
Proc. IEEE CEC, pp. 4583 – 4590, 2007.

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 1901

[5] S.Y. Yuen and C.K. Chow, “A Genetic algorithm that adaptively
mutates and never revisits,” IEEE Transactions on Evolutionary
Computation, to be published.

[6] A.E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in
evolutionary algorithms”, IEEE Transactions on Evolutionary
Computation, vol. 3, no. 2, pp. 124-141, 1999.

[7] F.G. Lobo, C.F. Lima and Z. Michalewicz (Eds.), Parameter setting
in evolutionary algorithms. Springer, 2007.

[8] S.Y. Yuen and C.K. Chow, “A Non-revisiting simulated annealing
algorithm,” in Proc. IEEE CEC, pp. 1886-1892, 2008.

[9] C.K. Chow and S.Y. Yuen, “A Non-revisiting particle swarm
optimization,” in Proc. IEEE CEC, pp. 1879-1885, 2008.

[10] C.W. Sung and S.Y. Yuen, “On the analysis of the (1+1) evolutionary
algorithm with short-term memory,” in Proc. IEEE CEC, pp.
235-241, 2008.

[11] C.W. Sung and S.Y. Yuen, “On the analysis of (1+1) evolutionary
algorithms with memory,” Evolutionary Computation, submitted.

[12] I. Wegener, Complexity theory, Springer 2005.

[13] S.Y. Yuen and C.K. Chow, “Applying non-revisiting genetic
algorithm to traveling salesman problem,” in Proc. IEEE CEC, pp.
2217-2224, 2008.

[14] S.Y. Yuen and C.K. Chow, “A study of operator and parameter
choices in non-revisiting genetic algorithm, “ in Proc. IEEE CEC,
2009.

[15] X. Yao, Y. Liu, and G. M. Lin, “Evolutionary programming made
faster,” IEEE Trans. Evolutionary Computation, vol. 3, no. 2, pp.
82–102, 1999.

[16] N. Hansen, “The CMA evolutionary strategy: A tutorial”, Technical
Report, code version: 31 Aug. 2007. Link:
www.bionik.tu-berlin.de/user/niko/cmatutorial.pdf

[17] X. F. Xie, W. J. Zhang, Z. L. Yang, “A dissipative particle swarm
optimization,” in Proc. IEEE CEC, pp. 1666 – 1670, 2002.

[18] J. Liu, X. Fan and Z. Qu, “An improved particle swarm optimization
with mutation based on similarity,” in Proc. IEEE Int. Conf. on
Natural Computation, pp. 824 – 828, 2007.

[19] R. Storn and K. Price, ‘‘Differential evolution-----A simple and
efficient adaptive scheme for global optimization over continuous
spaces,’’ Berkeley, CA, Tech. Rep. TR-95-012, 1995.

[20] Differential evolution source code link:
http://www.icsi.berkeley.edu/~storn/code.html

[21] A. E. Eiben and J. E. Smith, Introduction to evolutionary computing,
Springer 2003.

[22] P. Larrañaga and J.A. Lozano, Estimation of distribution algorithms:
a new tool for evolutionary computation, Norwell, MA: Kluwer,
2002.

TABLE 1 DETAILS OF THE FOURTEEN TEST FUCNTIONS.

test function mathematical form range optimum
1. Sphere function 2

1
1

()
D

i
i

f x
=

=x [-100, 100]D [0,0,…,0]

2. Schwefel’s problem 2.22
2

1 1

()
DD

i i
i i

f x x
= =

= +∏x [-100, 100]D [0,0,…,0]

3. Schwefel’s problem 1.2 2

3
1 1

()
D i

j
i j

f x
= =

=x [-100, 100]D [0,0,…,0]

4. Schwefel’s problem 2.21 4 [1,]
() max ii D

f x
∈

=x [-100, 100]D [0,0,…,0]
5. Generalized Rosenbrock function 1

2 2 2
5 1

1
() 100() (1)

D

i i i
i

f x x x
−

+
=

= − + −x [-29, 31]D [1,1,…,1]

6. Quartic function 4
6

1
() [0,1]

D

i

f ix random
=

= +x

Note: This is a noisy fitness function. There is a
random measurement noise in each fitness evaluation.

[-1.28, 1.25]D [0,0,…,0]

7. Generalized Rastrigin function 2
7

1
() 10cos(2) 10

D

i i
i

f x xπ
=

= − +x [-5.12, 5.12]D [0,0,…,0]

8. Generalized Griewank function 2
8

1 1

1() cos 1
4000

DD
i

i
i i

x
f x

i= =

= − +∏x [-600, 600]D [0,0,…,0]

9. Generalized Schwefel’s problem 2.26
9

1
() sin

D

i i
i

f x x
=

= −x [-500, 500]D [420.9687,…,
420.9687]

10. Ackley function
−−−=

=

D

i
ix

D
f

1

2
10

12.0exp20)(x

ex
D

D

i
i ++

=
202cos1exp

1
π

[-32, 32]D [0,0,…,0]

1902 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

11. Shekel’s Foxholes function 1

25

11 2
61

,
1

1 1()
500 ()j

i i j
i

f
j x a

−

=

=

= +
+ −

x
 where

−−−−−−
−−−

=
323232163232323232
3216032321601632

}{ , jia

[-98, 34]2 [-32, 32]

12. Six-Hump Camel-Back function
2 4 6 2 4

12 1 1 1 1 2 2 2
1() 4 2.1 4 4
3

f x x x x x x x= − + + − +x

[-4.91017,
5.0893] ×

[-5.7126,
4.2874]

[0.08983, -0.7126]
and [-0.08983,

0.7126]

13. Branin function
2 2

13 2 1 1 12

5 5 1() (6) 10(1)cos 10
4 8

f x x x x
π π π

= − + − + − +x [-8.142, 6.858]
× [-12.275, 2.725]

[-3.142, 12.275],
[3.142, 2.275],
[9.425, 2.425]

14. Goldstein-Price function 14 () () ()f g h= ×x x x
g(x) = 1 + (x1 + x2 + 1)2 ×

(19 - 14x1 + 3x1
2 + 6x1x2 + 3x2

2)
h(x) = 30 + (2x1 - 3x2)2 ×

(18 - 32x1 + 12x1
2 + 48x2 – 36x1x2 + 27x2

2)

[-2, 2] ×
[-3, 1] [0, -1]

 Uni-modal
Noisy

Uni-moda
l

Multi-modal

Function f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14

D 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 30 40 2 2 2 2
cNrGA 2 2 2 2 5 5 5 5 4 4 3 3 2 2

DE
RC-GA

CMA-ES
DPSO

PSOMS
Figure 2. Indicators of the best test algorithm in the experiments: The cell with grey color represents that the corresponding test algorithm outperforms the
others for a particular function and a particular function dimension.

TABLE 2 THE AVERAGE AND THE STANDARD DEVIATION OF THE BEST FITNESS VALUES FOUND BY CNRGA, DE, RC-GA, CMA-ES, DPSO AND PSOMS.
D cNrGA DE RC-GA CMA-ES DPSO PSOMS

f1
30 0.89 (0.93) 32.92 (13.141) 254.79 (32.15) 0.00 (0.00) 72.96 (4.50) 45.47 (3.96)
40 2.14 (1.66) 60.95 (20.510) 493.76 (41.13) 0.00 (0.00) 130.12 (5.21) 122.11 (5.95)

f2
30 1.90 (1.30) 26.47 (5.88) 17.05 (0.83) 0.00 (0.00) 7.78 (1.06) 11.95 (4.57)
40 4.11 (1.73) 38.80 (7.16) 27.46 (1.31) 0.00 (0.00) 35.76 (7.80) 53.43 (8.77)

f3
30 4644.12 (1882.7) 3898.78 (1840.1) 7954.00 (1466.7) 1346.70 (3500.0) 1638.09 (21.66) 2045.42 (24.49)
40 17706.3 (5232.9) 9195.87 (4773.8) 23477.7 (4088.3) 2615.4 (39090.9) 3156.77 (28.80) 4077.51 (32.83)

f4
30 41.40 (7.91) 18.69 (4.34) 17.52 (1.10) 100.00 (0.00) 9.70 (1.26) 13.84 (1.79)
40 50.54 (6.23) 22.31 (3.84) 23.04 (1.12) 100.00 (0.00) 11.41 (1.28) 16.41 (1.66)

f5
30 14479 (21291) 39655.6 (19994) 194518.3 (3840) 10117.10 (11872) 8407.94 (65.0) 6674.39 (67.6)
40 34641 (42164) 83083.2 (30407) 591738.5 (9608) 20117.20 (90419) 18691.25 (83.4) 21132.67 (110.4)

f6
30 8.75 (0.50) 0.544 (0.42) 9.71 (0.50) 0.20 (0.09) 9.85 (0.82) 9.99 (0.82)
40 13.30 (0.66) 1.725 (1.33) 14.91 (0.69) 0.24 (0.08) 14.54 (0.87) 14.50 (0.95)

f7
30 28.92 (6.79) 113.55 (23.54) 190.63 (11.44) 51.09 (13.70) 122.50 (4.12) 99.83 (4.33)
40 45.71 (9.32) 183.83 (26.42) 287.74 (10.77) 74.22 (13.30) 191.58 (4.87) 162.29 (5.11)

f8
30 1.79 (1.02) 32.46 (11.32) 15.62 (1.51) 0.00 (0.00) 3.53 (0.77) 2.74 (0.76)
40 3.10 (1.74) 65.46 (20.97) 28.86 (2.18) 0.00 (0.00) 5.84 (1.04) 5.37 (1.12)

f9
30 -12982.0 (272.9) -9191.79 (837.59) -9506.40 (283.3) -5406.80 (92.6) -4256.03 (21.3) -6562.55 (25.8)
40 -16728.2 (415.6) -11165.3 (905.5) -11369.60 (434.7) -7187.40 (184.1) -5079.23 (24.5) -7718.63 (29.0)

f10
30 3.93 (1.19) 20.383 (0.248) 9.15 (0.30) 18.77 (4.77) 5.66 (0.74) 6.04 (0.95)
40 5.42 (1.52) 20.538 (0.289) 11.28 (0.28) 19.37 (3.42) 6.86 (0.81) 8.18 (0.96)

f11 2 1.331 (0.839) 2.248 (1.725) 1.924 (1.128) 269.891 (244.52) 1.928 (1.03) 1.0080 (0.31)
f12 2 -1.031 (0.001) -1.030 (0.001) -1.028 (0.002) -0.999 (0.160) -1.014 (0.131) -1.0310 (0.01)
f13 2 0.398 (0.001) 0.399 (0.001) 0.400 (0.001) 0.399 (0.001) 1.997 (1.631) 0.3982 (0.01)
f14 2 3.001 (0.050) 3.011 (0.004) 3.031 (0.031) 13.774 (25.693) 3.286 (0.786) 3.0230 (0.01)

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 1903

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

