
Hydrol. Earth Syst. Sci., 18, 1475–1492, 2014
www.hydrol-earth-syst-sci.net/18/1475/2014/
doi:10.5194/hess-18-1475-2014
© Author(s) 2014. CC Attribution 3.0 License.

Hydrology and 
Earth System

Sciences
O

pen A
ccess

Teleconnection analysis of runoff and soil moisture over the
Pearl River basin in southern China

J. Niu1, J. Chen1, and B. Sivakumar2,3

1Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
2School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
3Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA

Correspondence to:J. Chen (jichen@hku.hk)

Received: 26 July 2013 – Published in Hydrol. Earth Syst. Sci. Discuss.: 30 September 2013
Revised: 6 February 2014 – Accepted: 7 March 2014 – Published: 23 April 2014

Abstract. This study explores the teleconnection of two cli-
matic patterns, namely the El Niño–Southern Oscillation
(ENSO) and the Indian Ocean Dipole (IOD), with hydrolog-
ical processes over the Pearl River basin in southern China,
particularly on a sub-basin-scale basis. The Variable Infil-
tration Capacity (VIC) model is used to simulate the daily
hydrological processes over the basin for the study period
1952–2000, and then, using the simulation results, the time
series of the monthly runoff and soil moisture anomalies for
its ten sub-basins are aggregated. Wavelet analysis is per-
formed to explore the variability properties of these time se-
ries at 49 timescales ranging from 2 months to 9 yr. Use of
the wavelet coherence and rank correlation method reveals
that the dominant variabilities of the time series of runoff
and soil moisture are basically correlated with IOD. The in-
fluences of ENSO on the terrestrial hydrological processes
are mainly found in the eastern sub-basins. The teleconnec-
tions between climatic patterns and hydrological variability
also serve as a reference for inferences on the occurrence of
extreme hydrological events (e.g., floods and droughts).

1 Introduction

Regional responses of hydrological processes to climate vari-
ability are often different from one river basin to another
(Eltahir, 1996). Accordingly, the different sub-basins of a
large-scale river basin may play their own roles in modu-
lating the influences of climatic patterns (Chen and Kumar,
2002, 2004; Markovíc and Koch, 2005) and in manifesting
the tendency of flood or drought occurrence due to extreme

precipitation. Therefore, an important step in the assessment
and prediction of floods or droughts is to understand the re-
lationships between the key hydrological variables (e.g., pre-
cipitation, runoff, soil moisture) and climate patterns.

Generally speaking, observations of hydrological vari-
ables over large-scale basins are scarce, except for precip-
itation. For instance, even though streamflow gauging sta-
tions currently exist along most large rivers around the world,
long-term flow observations are still not available, especially
for sparsely populated regions and complex terrains. In ad-
dition, while soil moisture is a key component of the hydro-
logical cycle, it is also one of the least observed hydrologi-
cal variables in terms of spatial and temporal coverage. Be-
cause of the lack of long-term and large-scale observations
of runoff and soil moisture, utilization of hydrological vari-
ables forced by observed precipitation and other near-surface
meteorological data is considered as a sensible and viable
alternative in hydrological and water resources studies. For
instance, using a macroscale hydrological model, the Vari-
able Infiltration Capacity (VIC) model, Niu and Chen (2009,
2010) simulated the daily terrestrial hydrological processes
over the Pearl River basin in southern China, and routed the
simulated runoff to the downstream control stations of three
major tributaries (i.e., the West River, the North River, and
the East River).

In the specific context of the Pearl River basin, many other
recent studies have also helped advance our understanding
of the hydrological variability over the basin and the sur-
rounding regions, including those on precipitation (e.g., Cui
et al., 2007; Yang et al., 2010; Fischer et al., 2012; Chen et
al., 2011; Zhang et al., 2012) and runoff (S. R. Zhang et al.,
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2008; Niu and Chen, 2010), among others. For instance, sev-
eral studies have reported that the significant fluctuations in
precipitation over the basin are associated with atmospheric
circulation patterns (Li and Zhou, 2012; Niu, 2013) influenc-
ing the monsoon system over the region (Zhang et al., 2010;
Zhou et al., 2012). Zhang et al. (2013) examined the me-
teorological drought tendencies based on the standardized
precipitation index by employing copula functions and the
Mann–Kendall trend test. The Pearl River basin was cate-
gorized into six regions based on latitude, longitude, eleva-
tion, and the mean annual precipitation using the L-moments
approach (Yang et al., 2010), and four homogenous regions
based on the changing properties of precipitation using the
k mean clustering algorithm (Zhang et al., 2012). Zhang et
al. (2009) analyzed the scaling and persistence features of
the long, daily streamflow series for four hydrological sta-
tions on the mainstream of the East River. The changes of
observed water discharge and sediment load (1950s–2004)
were analyzed by S. R. Zhang et al. (2008) for nine stations
in the Pearl River basin, although performed only on annual
timescale. Despite these developments, it must be recognized
that these studies were mainly performed based on observed
data, the exceptions being those of Niu and Chen (2009,
2010).

Following up on the studies by Niu and Chen (2009,
2010), the present study evaluates the sub-basin hydrologi-
cal processes over the Pearl River basin in response to two
large-scale climatic patterns, the El Niño–Southern Oscilla-
tion (ENSO) and the Indian Ocean Dipole (IOD), in order
to improve our understanding of basin-featured flood and
drought occurrences. Compared with the previous studies
over the Pearl River basin, our focus in this study is on runoff
and soil moisture processes, particularly on a sub-basin scale
basis. Although runoff and soil moisture processes are gen-
erally driven by precipitation, details of the analysis of pre-
cipitation on sub-basin scale over the basin are not presented
here. For such details, the interested reader is directed to the
studies by Niu (2013), which present extensive investigations
on the precipitation process over the basin as well as its tele-
connections with climatic patterns.

In this study, we attempt to address the following spe-
cific question: are there some characteristic periods and vari-
ability processes of different hydrological variables within
the Pearl River basin that may be related to climatic pat-
terns, which may be a possible trigger for major floods or
droughts (i.e., extreme hydrological events) in the basin?
We address this question through (1) investigation of the
possible variability linkages between the runoff/soil mois-
ture and the above two climatic patterns, and (2) discus-
sion of the underlying causes for extreme hydrological events
from this perspective. For analysis, we consider data over
the period 1952–2000, similar to the period studied by Niu
and Chen (2009, 2010). To identify the patterns and capture
the differences in continuous timescales of fluctuation em-
bedded in the hydrological time series (i.e., streamflow and

soil moisture), we employ wavelets, in particular continuous
wavelet transform.

Torrence and Compo (1998) developed a significance
test for the wavelet power spectrum to provide quantita-
tive results and reliable insights, and make the applications
of continuous wavelet transform extensive. Subsequently,
Grinsted et al. (2004) discussed the cross-wavelet trans-
form and wavelet coherence for the applications to geo-
physical time series in examining relationships between time
series in a time–frequency domain. Meanwhile, Maraun
and Kurths (2004) suggested that the interpretation of non-
normalized cross spectra for the interrelation between two
processes is not straightforward if not including appropriate
confidence intervals, as it may show misleading peaks when
just one of the time series has a strong peak. Further, Schaefli
et al. (2007) reviewed recent developments in wavelet spec-
tral analysis, recommended the calculation of wavelet coher-
ence in the applications, and provided a valuable example
to illustrate the usefulness of wavelet spectral analysis for
detecting the flood-triggering situations in the Alpine catch-
ment. In addition, the importance of the pervious knowledge
about the physical processes and a methodologically rigorous
significance testing are presented for the proper application
and interpretation of the wavelet spectral analysis (Maraun
and Kurths, 2004; Schaefli et al., 2007; Maraun et al., 2007).

The rest of this paper is organized as follows. Section 2
gives details of the Pearl River basin study area and data
considered for analysis. Section 3 describes the methods, in-
cluding Morlet wavelet transform, the wavelet coherence and
Spearman’s rank correlation. Section 4 presents the results
and discussions from the wavelet application to runoff and
soil moisture data in the study basin. Section 5 discusses the
underlying causes of major flood/drought events in the basin.
Conclusions are drawn in Sect. 6.

2 Background

2.1 The Pearl River basin

The Pearl River basin in southern China has a total area of
about 450 000 km2, and consists of four main components:
the East River, the North River, the West River and the Pearl
River delta. The basin is located in a tropical and subtrop-
ical monsoon climate region (Pearl River Water Resources
Commission, 2005), with a long-term average annual pre-
cipitation of about 1480 mm yr−1 and mean annual temper-
ature ranging from 14 (in the western part) to 22◦C (in the
eastern part). As the largest river in terms of the rate of an-
nual runoff generation (about 740 000 m3 km−2 yr−1) among
the seven major rivers in China (i.e., the Yangtze River, the
Yellow River, the Songhua River, the Pearl River, the Huai
River, the Hai River, and the Liao River), the Pearl River ex-
periences an abundant amount of variability in the terrestrial
hydrological processes. For instance, the runoff ratio of the
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Fig. 1. The Pearl River basin in South China, gauge stations, and 10 sub-basins (after 
Niu, 2013). 

 

 

Fig. 1.The Pearl River basin in southern China, gauge stations, and 10 sub-basins (after Niu, 2013).

wettest year to the driest year is as high as 6–7, and about
80 % of the total annual runoff occurs in the wet season of
April–September (Niu and Chen, 2009). As a consequence,
extreme hydrological events frequently occur over the basin
(Pearl River Hydraulic Research Institute, 2007; Cui et al.,
2007). For example, a basin-scale flood occurred in 1994 and
a severe drought event in 1963.

With due consideration to hydrological factors, water
resources management, topographic features, and climate
zones, this study divides the basin into ten sub-basins for
analysis, similar to the approach by Niu (2013). These sub-
basins are the East River, the North River, and the eight
sub-basins in the West River basin (i.e., the Guihe, Lijiang,
Hongshui, Beipan, Nanpan, Youjiang, Zuoyu, and the West
River’s lower reach) (see Fig. 1). The sub-basin areas range
from 29 000 to 58 600 km2, and the mean annual precipita-
tion varies from 1072 to 1772 mm yr−1.

2.2 Model simulation

2.2.1 Hydrological model

To obtain runoff and soil moisture data over the Pearl River
basin, we adopt the VIC hydrological model to simulate such
data. The VIC model (Liang et al., 1994) is a macroscale
hydrological model, usually applied with spatial resolutions
ranging from 0.125 to 2◦ latitude/longitude and from hourly
to daily temporal resolutions (Nijssen et al., 2001a, b; Maurer
et al., 2002; Sheffield et al., 2004; Troy et al., 2008). The
model uses the variable infiltration curve (Zhao et al., 1980),
which allows for the representation of subgrid variability in

soil storage capacity and infiltration capacity, and the param-
eterization of baseflow as a nonlinear recession curve from
the bottom soil layer (Dümenil and Todini, 1992; Todini,
1996). The land surface of the study area is represented by
a specified number of tiled land cover classes (e.g., cropland,
grassland) and the soil column is divided into three soil lay-
ers. The total runoff of each grid cell is the sum of the over-
land runoff and baseflow obtained for each grid cell (Nijssen
et al., 1997).

2.2.2 Forcing and output data

The terrestrial hydrological processes over the Pearl River
basin are simulated by the VIC model for the period 1952–
2000, with 1◦ × 1◦ spatial resolution at daily time steps (Niu
and Chen, 2010). The GTOPO30 DEM (digital elevation
model) data set with 1 km spatial resolution (Verdin and
Verdin, 1999) is used to delineate the Pearl River basin.
Meteorological forcings, including daily precipitation, max-
imum and minimum temperature, wind speed, and relative
humidity, reported in Feng et al. (2004), are used. The veg-
etation and soil data are extracted from two global data sets
provided by Nijssen et al. (2001a). The vegetation data are
derived from the 1 km vegetation database of the Univer-
sity of Maryland, on the basis of Advanced Very High Res-
olution Radiometer (AVHRR) data (Hansen et al., 2000).
The soil texture and soil bulk density are derived from the
5 min FAO-UNESCO (Food and Agriculture-United Nations
Educational, Scientific, and Cultural Organization) digital
soil map of the world and the WISE (World Inventory of
Soil Emission Potentials) Pedon database; the remaining soil
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Table 1.Runoff simulation results at a monthly time step for 10 gauging stations over the Pearl River basin (in Fig. 1).

River Station Control area Period RB RRMSE NSE
(km2)

West River Gaoyao 351 525 1980–2000 0.06 0.27 0.88
North River Shijiao 37 872 1980–2000 −0.19 0.32 0.85
East River Boluo 25 325 1980–2000 0.56 1.21 −3.17
East River Xinfengjiang 5734 1951–1958−0.07 0.42 0.83
East River Longchuan 7699 1952–1972−0.21 0.41 0.82
West River Wuzhou 329 705 1981–1985 0.01 0.20 0.90
Baipan River Zhedong 19 300 1958–1987−0.02 0.59 0.72
Youjiang River Baise 21 930 1951–1985 0.12 0.52 0.78
Zuoyu River Nanning 75 520 1951–1985 0.26 0.45 0.80
Liujiang River Liuzhou 45 785 1951–1987 −0.09 0.32 0.90

parameters are obtained based on the study of Cosby et
al. (1984). The thicknesses of the three soil layers over the
Pearl River basin are 0.3 m (the upper layer), 1.0–2.5 m (the
second layer), and 0.2 m (the bottom layer), respectively.

The VIC-model’s daily simulation results are compared
with the observations at a monthly scale after aggregation of
daily data. The available streamflow observations at 10 gaug-
ing stations (i.e., Gaoyao, Shijiao, Boluo, Zhedong, Baise,
Nanning, Liuzhou, Wuzhou, Xinfengjiang, and Longchuan)
in the basin (see Fig. 1) are used (Niu and Chen, 2010). The
monthly scale is chosen for (1) the more “acceptable” accu-
racy of the model simulation results, and (2) the compatibil-
ity with the large-scale climate indices data. Table 1 presents
a comparison between the observations and the model simu-
lations of streamflow data for these 10 stations, by employ-
ing three objective functions (i.e., relative bias – RB, relative
root mean square error – RRMSE, and Nash–Sutcliffe effi-
ciency – NSE – coefficient). The comparison suggests that
the VIC model can simulate reasonably well the streamflow
from the North River and the West River with its several
sub-basins. However, there is a considerable discrepancy be-
tween the streamflow simulations and the observations for
the Boluo station in the East River. The studies by Niu and
Chen (2010) and Wu and Chen (2012) have revealed that
the Boluo streamflow is heavily regulated by the reservoirs
in the upstream of the station. Therefore, the observations
without the reservoir influences from two upstream stations
(Xinfengjiang and Longchuan) are also used herein to eval-
uate the streamflow simulations in the East River basin. The
new results for the East River basin are comparable to the re-
sults for the other stations in the North or West River basins
(see Table 1). Based on the performance ratings suggested by
Moriasi et al. (2007), the streamflow simulations at a monthly
time step in the Pearl River basin in this study are evaluated
as “satisfactory” (NSE>0.5 and RB<±0.25). With the val-
idation of the VIC model performance, the monthly time se-
ries of runoff and soil moisture are further aggregated for the
10 sub-basins (see Fig. 1 for their locations), and the wavelet-
based analysis is carried out for the monthly runoff and soil

moisture anomalies for the sub-basins for the study period
1952–2000. It is also noted that the routing effects are ef-
fective within 2–3 weeks for the Pearl River basin (Niu and
Chen, 2010), and thus the monthly scale we choose, as the
basis of the teleconnection study, is larger than the effective
timescale of the routing effects. Table 2 lists the basic statis-
tical properties for the observed precipitation and simulated
runoff and soil moisture over the 10 sub-basins in the basin.

2.2.3 Large-scale climatic patterns

Two prominent large-scale climatic patterns influencing
southern China (Saji et al., 1999; Guan and Yamagata,
2003; Zhou and Chen, 2007; Zhang et al., 2007), ENSO
and IOD, are selected for examining the influence of large-
scale climatic patterns on the hydrological processes in the
Pearl River basin. The ENSO indices used are obtained
from the monthly data of the National Oceanic and Atmo-
spheric Administration (NOAA) Niño 3.4 (5◦ N–5◦ S, 170–
120◦ W) SST (sea surface temperature; Trenberth and Stepa-
niak, 2001; Labat, 2010a) for the base climatological pe-
riod 1952–2000. The intensity of the IOD is characterized by
an anomalous SST gradient between the western equatorial
Indian Ocean (10◦ S–10◦ N, 50–70◦ E) and the southeastern
equatorial Indian Ocean (10◦ S–0◦ N, 90–110◦ E). The IOD
indices used are the combination of monthly IOD indices
(1952–1997) from the Hadley Centre Global Sea Ice and Sea
Surface Temperature (HadISST) data set and monthly IOD
indices (1997–2000) from the NOAA Optimum Interpolation
(OI) SST data set (Saji et al., 1999).

3 Methods

3.1 Morlet wavelet transform

As the continuous wavelet transform is suitable for analyz-
ing nonstationary signals (such as streamflow and soil mois-
ture) and identifying the temporal localization of dominant
events, such wavelets are considered here. In particular, the
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Table 2. Statistical properties of the observed precipitation and the simulated monthly time series (1952–2000) of 10 sub-basins over the
Pearl River basin.∗

Sub-basins Precipitation Runoff Soil moisture

Mean σ2 α Mean σ2 α Mean σ2 α

East River 147.63 6545.19 0.05 77.86 3668.94 0.26 672.37 1342.57 0.64
North River 139.67 4467.53 0.10 70.27 2421.51 0.29 511.60 1020.70 0.67
Guihe River 138.40 3998.68 0.10 71.15 2149.07 0.27 479.28 948.47 0.69
Liujiang River 130.45 3711.81 0.07 66.72 2338.30 0.20 400.90 652.78 0.64
Hongshui River 116.60 2465.79 0.02 51.49 1174.34 0.22 525.82 738.16 0.68
Beipan River 101.37 1698.33 0.01 44.71 716.52 0.34 614.46 481.99 0.63
Nanpan River 89.31 1120.98 0.03 28.65 263.26 0.47 646.14 697.10 0.75
Youjiang River 109.80 2293.40 0.04 42.14 676.54 0.38 810.84 1198.27 0.73
Zuoyu River 138.45 4187.52 0.02 70.77 1817.86 0.26 844.51 1088.41 0.64
WR lower reach 140.27 4578.70 0.10 70.07 1960.38 0.37 882.04 1548.43 0.70

∗ The mean value (unit: mm month−1) is obtained from the monthly raw time series for its corresponding hydrological variable. The values ofσ2

(variance) (unit: (mm month−1)2) andα (lag-1 coefficient of the assumed red-noise process) are computed from the monthly anomaly time series
obtained by removing the respective 49 yr monthly mean.

continuous Morlet wavelet transform is performed, as (1) it
offers a good balance between time and frequency on the
interpretation of variability properties; and (2) its complex
wavelet function consists of more oscillation waves, thus,
making it capable of capturing the oscillatory characteristics.

The continuous wavelet transform, especially the Morlet
wavelet transform, has been widely applied and tested to
reveal the variability features in a time–frequency domain,
including for geophysical, climatic, and hydrological time
series (Kumar and Foufoula-Georgiou, 1997; Torrence and
Webster, 1999; Labat, 2006, 2010b; Schaefli et al., 2007;
Özger et al., 2009; Schaefli and Zehe, 2009). Let us as-
sume a time seriesxn (monthly runoff or soil moisture
anomaly series in this study) at an equal time intervalδt ,
with n= 0, . . . ,N − 1 (N is number of points;N = (2000–
1952+ 1)× 12 = 588 in this study). The Morlet wavelet,
ψ0(η), that depends on a non-dimensional “time” parameter,
η, is defined as follows:

ψ0(η) = π−1/4eiω0η e−η
2/2, (1)

whereω0 is the non-dimensional frequency (Farge, 1992).
The Morlet wavelet consists of a complex exponential wave
modulated by a Gaussian function.

To realize the continuous wavelet transform (for a given
wavelet scales) at all time indexn simultaneously and effi-
ciently (Torrence and Compo, 1998), the wavelet transform
can be calculated as

Wn(s) =

N−1∑
k=0

x̂k ψ̂
∗ (s ωk) e

iωknδt , (2)

where “hat” denotes the Fourier transform,∗ indicates the
complex conjugate,k is the frequency index andωk is the an-
gular frequency equal to±2π k

N δt
. For convenience, the scales

are written as fractional powers of two:

sj = s02jδj , j = 0, 1, . . . , J, (3)

wheres0 is the smallest resolvable scale andJ determines
the largest scale. In this study, for the period 1952–2000, the
values ofδt = 1/12 yr, s0 = 2δt , δj = 0.12, andJ = 48 give a
total of 49 scales, ranging from 1/6 yr (2 months) up to 9 yr.

The wavelet power spectrum is defined as
∣∣Wn(sj )

∣∣2 and
gives a local measure of the time series variance at time and
frequency domains. The total energy is conserved under the
wavelet transform, and the variance of the analyzed time se-
ries is given as

σ 2
=
δj δt

CδN

N−1∑
n=0

J∑
j=0

∣∣Wn

(
sj
)∣∣2

sj
, (4)

where Cδ is a reconstruction factor specific to different
wavelet functions (Cδ = 0.776 for the Morlet) (Torrence and
Compo, 1998).

The time-averaged wavelet power spectrum over all the
local wavelet spectra is defined as a global wavelet spectrum
(GWS):

W
2(
sj
)

=
1

N

N−1∑
n=0

∣∣Wn

(
sj
)∣∣2 . (5)

The chi-square (χ2) test is performed to evaluate the signif-
icance of the timescale observed by the GWS. The scale-
averaged wavelet power spectrum is the weighted sum of the
wavelet power spectrum over scalesj1 to j2:

W
2
n(s) =

δj δt

Cδ

j2∑
j=j1

∣∣Wn

(
sj
)∣∣2

sj
. (6)
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In addition, to display the variance evolution on the dominant
variability band, the band-pass reconstruction is performed.
The reconstructed time series is the sum of the real part of
the wavelet transform (Torrence and Compo, 1998) over the
above band:

x′
n =

δj δt1/2

Cδψ0(0)

j2∑
j=j1

Re
{
Wn

(
sj
)}

s
1/2
j

, (7)

where the factorψ0(0) removes the energy scaling,
Re
{
Wn(sj )

}
is the real part of the transform, ands1/2

j con-
verts the wavelet transform to an energy density.

3.2 Wavelet coherence

The wavelet coherence analysis is used to identify regions
in a time–frequency domain where the two time series co-
vary, but may not have a common high power (Grinsted et
al., 2004). The software package on wavelet coherence by
Grinsted et al. (2004) is employed here to provide both cor-
relation analysis and rough information on the phase differ-
ence between two time series in a time–frequency domain.
For two given time series,xn and yn, with corresponding
wavelet transformsWX

n (s) andWY
n (s), the cross spectrum

is WXY
n (s)=WX

n (s)W
Y∗
n (s). The wavelet coherence phase

is defined as tan−1 [imaginary part of
{
WXY
n (s)

}
/ real part of{

WXY
n (s)

}
], and the wavelet coherence of two time series is

defined as

R2
n(s) =

∣∣S (s−1WXY
n (s)

)∣∣2
S
(
s−1

∣∣WX
n (s)

∣∣2) · S
(
s−1

∣∣WY
n (s)

∣∣2) , (8)

whereS is a smoothing operator, defined as (Grinsted et al.,
2004):

S(W) = Sscale(Stime(Wn(s))) , (9)

whereSscale is the smoothing along the wavelet-scale axis
and Stime is the smoothing in time. A suitable smoothing
operator for the Morlet wavelet is given by Torrence and
Webster (1999) as follows:

Stime(W) |s =

(
Wn(s) · c

−t2

2s2

1

)
|s , (10)

Sscale(W) |n =

(
Wn(s) · c2

∏
(0.6s)

)
|n , (11)

wherec1 andc2 are normalization constants, and
∏

is the
rectangle function. The value 0.6 represents the decorrela-
tion length of the empirically determined scale for the Morlet
wavelet. The statistical significance level of the wavelet co-
herence is estimated based on a large ensemble of surrogate
data set pairs with the same lag-1 autoregressive (AR1) co-
efficients given by Grinsted et al. (2004). The global wavelet
coherence spectrum can be obtained by averaging the local
wavelet coherence spectrum in time, and is helpful to ex-
amine the characteristic scales (Torrence and Compo, 1998;
Labat, 2010a).

3.3 Rank correlation

The Spearman’s rank correlation coefficientrS is applied to
measure the association between the ranks of two time series
of scale-averaged wavelet power (xn andyn). The rank corre-
lation analysis is used here because the transformed wavelet-
power time series, for either an individual timescale or a
timescale band, normally does not follow Gaussian distribu-
tion (Torrence and Webster, 1999). The scored is calculated
after ranking bothxn andyn, which is the difference between
the rank onxn and the rank onyn.

rS = 1 −

(
6
∑
d2

n
(
n2 − 1

)) (12)

The significance test of the Spearman’s correlation hast and
z versions as

to = rS

√
n − 2

1 − r2
S

, (13)

where significance statisticto has (n− 2) degrees of freedom,
and

zo = rS
√
n − 1, (14)

where significance statisticzo has (n− 1) degrees of free-
dom. Following the now-familiar rules (Asquith, 2008), the
t test is used when the cases or paired data points are fewer
than 30, whilez is used for 30 cases or more.

4 Results and discussion

4.1 Wavelet power spectrum

In this study, ten sub-basins over the Pearl River are analyzed
to examine the relationships between large-scale climatic
patterns and local hydrological processes. Among these ten
sub-basins, we consider the Boluo station in the East River
for the purpose of illustration.

For the Boluo station, the monthly runoff anomaly time
series is shown in Fig. 2a-i, and the normalized wavelet-
power spectrum,|Wn(s)|

2/σ 2, is shown in Fig. 2a-ii; the hor-
izontal axis is the time position over the period 1952–2000.
In Fig. 2a-i, the anomaly data is obtained by removing the
monthly mean for the period 1952–2000. In Fig. 2a-ii, the
vertical axis has 49 timescales of the wavelet transform rang-
ing from 2 months to 9 yr, and the strong variability power
with greater than 95 % confidence is highlighted using white
contours. We can observe that many abnormal runoff events
(i.e., monthly runoff being too high or too low) appear at
short timescales (e.g., less than 1 yr). Most of the wavelet
power is distributed at the 1–4 yr band, and the strong vari-
ability power, shown as white-contour enclosed regions, is
found during the periods 1955–1970, 1980–1985 and 1990–
1995.
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Fig. 2. (a) i. Monthly runoff anomaly time series at Boluo station in the East River 

and ii. Its local wavelet power spectrum using the Morlet wavelet, normalized by 1/σ2 

(σ2 = 3,668.94 mm2). The dashed curve depicts the cone of influence beyond which 

the edge effects become important. The shaded contours are at normalized variances 

of 1, 2 and 4. The white contour closes regions of greater than 95% confidence for a 

red-noise process with a lag-1 coefficient α of 0.26. iii. Global wavelet power (solid 

line with circles), mean red-noise spectrum (left dashed line), and 95% confidence 

spectrum (right dashed line). (b) same as (a) but for soil moisture, in which (σ2 = 

1,342.57 mm2, α = 0.64). 

 

 

Fig. 2. (a)(i) Monthly runoff anomaly time series at Boluo station in the East River and (ii) its local wavelet power spectrum using the Morlet
wavelet, normalized by 1/σ2 (σ2 = 3668.94 mm2). The dashed curve depicts the cone of influence beyond which the edge effects become
important. The shaded contours are at normalized variances of 1, 2 and 4. The white contour closes regions of greater than 95 % confidence
for a red-noise process with a lag-1 coefficientα of 0.26. (iii) Global wavelet power (solid line with circles), mean red-noise spectrum (left
dashed line), and 95 % confidence spectrum (right dashed line).(b) Same as(a) but for soil moisture, in whichσ2 = 1342.57 mm2, and
α = 0.64.

Figure 2a-iii shows the global wavelet power spectrum
(GWS) of the monthly runoff anomaly data (see Eq. 5). As
many geophysical time series can be modeled as red noise
(Torrence and Compo, 1998), the figure also includes the
mean and 95 % confidence level red-noise spectrum (left and
right dashed lines) by using the lag-1 autocorrelation. It is
observed that, over the 49 timescales, the highest runoff vari-
ability is identified at the 1.92 yr scale, which is above the
95 % confidence level. This is consistent with the result ob-
tained for precipitation data in the East River basin (Niu,
2013), where the highest precipitation variability is detected
around the 2 yr band. The detected significant variability in-
dicates less randomness of the underlying processes due to
local influences, and it may well be related to external cli-
matic patterns (see Sect. 4.4 for details).

Figure 2b shows the corresponding results for the monthly
soil moisture in the East River basin. A comparison between

Fig. 2a-ii and b-ii reveals that the high variability power at
short timescales for soil moisture almost disappears, while
for larger timescales, the related power for soil moisture is
enhanced. In the terrestrial hydrological processes, the river
basin, like a buffer, reduces the high-frequency precipitation
variability by runoff, and the long-term precipitation vari-
ability is memorized by soil moisture. Figure 2b-iii shows
that the variability power at short timescales is reduced much
more, but improved at larger timescales (note that the magni-
tude of the GWS is doubled compared to that in Fig. 2a-iii).
Further, the detected highest variability is transferred from
1.92 (see Fig. 2a-iii) to 3.16 yr (see Fig. 2b-iii), with the large
spikes (about 6 spikes) in Fig. 2a-ii appearing around the
2 yr scale, and the spikes with the largest area (in a time–
frequency domain) exist around the 2 yr scale in Fig. 2b-ii.
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4.2 Coherent modes of the GWSs

In addition to the analysis of the East River presented
above, we further inspect their global variability distributions
(i.e., GWSs) for the other nine sub-basins. Performing prin-
cipal component analysis (PCA) on the GWSs over these 10
sub-basins, we find that there are three coherent modes for
hydrological variabilities at the 49 timescales (see Fig. 3).
The main steps in the PCA application in this study are as fol-
lows: (1) a covariance matrix is obtained by using the wavelet
power spectra fors (equal to 49) timescales of runoff/soil
moisture in 10 sub-basins; (2) the covariance matrix is de-
composed to get eigenvectors of the matrix, which accounts
for the maximum amount of the joint variability of anomalies
of initial wavelet power spectrum at each sub-basin; (3) the
new variables are produced after projecting the data on the
obtained eigenvectors; (4) the first three principal compo-
nents are selected for runoff and soil moisture, respectively;
and (5) each sub-basin is then classified as belonging to the
mode where its coefficient of the eigenvectors (i.e., the length
of the vector projected on corresponding direction) is the
largest absolute value.

Over the Pearl River basin, there are mainly three types of
precipitation events: frontal type storms (during April–June),
tropical cyclonic rains (during July–October), and convective
rainstorms (during June–August) (Niu, 2013). Therefore, the
rainy season essentially lasts for 7 months in a year, from
April to October (Niu, 2010). This high variability of pre-
cipitation is partly transferred to the high runoff variabil-
ity at the timescale of 0.59 yr (see Fig. 3a). Apart from the
high variability for less-than 1 yr periods, the variability in
the dominant low-frequency variability band (DLVB), 0.83–
5.21 yr, demonstrates the distinct features of the three multi-
scale variability modes in the Pearl River basin (see Fig. 3a).
The DLVB is determined as follows: the local dominant vari-
ability band is defined as the longest projecting portion with
its peak spectrum at least above the mean red-noise spectrum
and most likely to reach a higher confidence level (e.g., 95 %
level); and the DLVB is the band that covers most of the iden-
tified dominant variability bands of the 10 sub-basins. The
three coherent modes of soil moisture in Fig. 3b show that
the variability at longer timescales (longer than 0.59 yr) has
the striking features within the DLVB range of 1.92–5.21 yr.

Figure 4a and b shows the sub-basin clusters of multiscale
variability of runoff and soil moisture, respectively; the three
clusters correspond to the three coherent modes. The cluster
of runoff is basically consistent with that of precipitation (see
Niu, 2010), while the cluster of soil moisture displays dis-
similar results. One rainstorm center in the Pearl River basin
is located in the lower reach of the Hongshui River basin
(Pearl River Water Resources Commission, 2005), and this
results in the highest power at the 0.5–1 yr period for the third
mode of precipitation and runoff in the central part. The Nan-
pan River basin is in the northwest region of the Pearl River
basin. This region has the highest altitudes, and is influenced
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Fig. 3. (a) Coherent modes of temporal variability for the wavelet power spectrum of 

monthly runoff anomaly over the Pearl River basin. The bold line is the first mode, 

while the line with circles and the dashed line are the second mode and the third mode, 

respectively. DLVB stands for the dominant low-frequency variability band (0.83–

5.21 yr). (b) Same with (a) but for soil moisture with DVLB (1.92–5.21 yr). 

Fig. 3. (a)Coherent modes of temporal variability for the wavelet-
power spectrum of monthly runoff anomaly over the Pearl River
basin. The bold line is the first mode, while the line with circles
and the dashed line are the second mode and the third mode, re-
spectively. DLVB stands for the dominant low-frequency variabil-
ity band (0.83–5.21 yr).(b) Same with(a) but for soil moisture with
DLVB (1.92–5.21 yr).

by the topographic rain shadow with respect to the prevail-
ing storm tracks. The east region of the Pearl River basin is
close to the South China Sea, and is subjected to convective
movement of water by semitropical typhoons (Niu, 2013).
The higher variability in the 1–4 yr band is more obvious,
compared to the third mode of runoff in the central part of
the Pearl River basin.

The Beipan, Nanpan, and Youjiang river basins, located
in the northwestern region with the highest altitudes, be-
long to the first mode of soil moisture that displays a single
peak of high variability at longer timescales. In these basins,
the high-frequency precipitation variability is kept less by
runoff and reflected more by soil moisture at low frequen-
cies. The second mode of soil moisture, including the North,
Guihe, and Zuoyu river basins and the West River’s lower
reach, shows relatively flat variability power distribution (see
Fig. 3b), which either has lower altitudes or is located at the
downstream of the Pearl River. Meanwhile, the third mode of
soil moisture, to which the Liujiang, Hongshui and East river
basins belong, sits between the above two distinctive modes,
which is partly consistent with elevation variations between
the other two modes.

Hydrol. Earth Syst. Sci., 18, 1475–1492, 2014 www.hydrol-earth-syst-sci.net/18/1475/2014/



J. Niu et al.: Teleconnection analysis of runoff and soil moisture over the Pearl River basin in southern China 1483

 

(b) 

(a) 

 

Fig. 4. (a) Spatial distribution of coherent modes (in Fig. 3) on global wavelet 

spectrum of runoff. (b) Same as (a) but for soil moisture. 

 
 
 

 

 

Fig. 4. (a)Spatial distribution of coherent modes (in Fig. 3) on global wavelet spectrum of runoff.(b) Same as(a) but for soil moisture.

4.3 Evolution of bandpass variance

To highlight the variability processes with respect to time
for the coherent mode of GWS, the variance evolution in
the dominant band is inspected by using the scale-averaged
wavelet power and bandpass-filtered time series. Figure 5 il-
lustrates the flowchart of unfolding regional variance evolu-
tion of hydrological variables. We use Eq. (6) to compute
the scale-averaged wavelet power, and Eq. (7) to generate
the bandpass-filtered series. The representative of each mode
is the time series average of the independent sub-basins that
belong to the same mode.

Figure 6 shows the runoff series of both scale-averaged
wavelet power and corresponding bandpass-filtered time se-
ries for three coherent modes between the timescales of
0.83 and 5.21 yr. The second mode (i.e., the East River, North
River, Guihe River, and Liujiang river basins and the WR’s
(West River’s)lower reach) shows larger variance processes
in terms of the magnitude of average variance (2508 mm2),
with high variance occurring sometime around 1963, and
also two other periods from 1983 to 1984 and from 1991 to
1996. The variability processes for the third mode (i.e., the
Hongshui, Beipan, Youjiang and Zuoyu river basins) show
an irregular cycle of an increasing amplitude of runoff events

followed by a decreasing amplitude. The approximately 5 yr
cycle is also clearly apparent from 1967 to 1977 and from
1987 to 1997.

Figure 7 shows the variance evolution of soil moisture
within 1.92–5.21 yr. Compared to the results obtained for
runoff, the soil moisture variability processes are relatively
smooth along the time and relatively balanced in terms of the
magnitude of average variance for the three modes (i.e., 792,
1151 and 911 mm2). A large variance can be identified for
the first mode (i.e., the Beipan, Nanpan and Youjiang river
basins) for the period 1955–1970. The variance processes
for the second mode (i.e., the North, Guihe and Zuoyu river
basins and the WR’s lower reach) are relatively gentle, while
the third mode (i.e., the East, Liujiang and Hongshui river
basins) shows noticeable changes with two high-variance pe-
riods: 1960–1970 and 1995–2000.

4.4 Teleconnection to climatic patterns

To examine the possible linkages of climatic patterns with
variations in runoff and soil moisture in the Pearl River basin,
their wavelet coherences are inspected. The results are pre-
sented below.
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Fig. 5. The flowchart of regional variance evolutions for different hydrological 
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Fig. 5.The flowchart of regional variance evolutions for different hydrological variables.

4.4.1 Runoff

Figure 8 shows the local and global wavelet coherence of
the three modes of runoff (modes one to three, from top to
bottom) in the Pearl River basin with ENSO (left panels)
and IOD (right panels). It is observed that, for the first-mode
runoff and ENSO (Fig. 8a, left panel), there are significant
regions around the 1 yr band within the periods 1970–1975
and 1990–1995, and also for the 2–4 yr band around 1995.
The vectors in the regions outlined by thick contours in-
dicate the close in-phase relationship around 1995 (for 2–
4 yr band), which is also consistent with the rank correlation
results in Sect. 4.5. These observations seem to indicate a
link (i.e., close in-phase variance change) between the first-
mode runoff and ENSO in the 2–4 yr band around 1995. The
right panel in Fig. 8a shows the correlations of the first-mode
runoff and IOD. The noticeable in-phase relations are found
within the 2–4 yr band around 1995.

The runoff in the eastern part of the Pearl River basin
belongs to the second coherent mode. Its correlation with
ENSO is shown in Fig. 8b (left panel). The identifiable
correlations (i.e., the time–frequency region is with signif-
icant wavelet coherence) are within the 1–4 yr band during
the 1970–1975 period and around 1983, and within the 2–
4 yr band around 1995. The phase relations indicate ENSO

leading the second-mode runoff during the 1970–1975 pe-
riod. The in-phase relation is identified within the 2–4 yr
band around 1995. For the correlations between the second-
mode runoff and IOD in Fig. 8b (right panel), the identifi-
able correlations are mainly within the 0.5–2 yr band around
1983 (anti-phase) and within the 1–4 yr band around 1995
(in-phase).

The left panel in Fig. 8c shows that the identifiable correla-
tion between the third-mode runoff and ENSO exists around
the 4 yr band during the period 1985–1995. The vectors in
the regions show close in-phase relations of variance pro-
cesses. Figure 8c (right panel) shows the main identifiable
correlations between the third-mode runoff and IOD, with
anti-phase relations within the 1–2 yr band during the period
1970–1975 and in-phase relations within the 2–4 yr band dur-
ing the period 1990–1995. The global wavelet coherence re-
sults in Fig. 8 also show the oscillation correlation around the
1–6 yr band, especially between the second and third modes
of runoff and IOD (the right panels in Fig. 8b and c).

4.4.2 Soil moisture

The wavelet coherence between the first-mode soil mois-
ture and ENSO in Fig. 9a (right panel) discloses high co-
herence at both short and relatively longer periods. The
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Fig. 6. The scale-averaged (0.83–5.21 yr) wavelet power for runoff (thick black curve) 

and the bandpass filtered time series of square form (runoff2) (thin curve) from 0.83 to 

5.21 yr using a wavelet filter. The upper, middle and lower panels are the first, second 

and third modes of runoff, respectively. The black shading indicates positive peaks in 

the filtered time series, while the white are negative peaks. The time series of the 

wavelet power and the bandpass filtered (before squaring) are the averaged time series 

over the sub-basins belonging to the same mode. The averaged variances of initial 

monthly runoff time series 2  for the first, second and third modes are 263.26 mm2, 

2,507.64 mm2 and 1,096.32 mm2, respectively. 

 

 

Fig. 6. The scale-averaged (0.83–5.21 yr) wavelet power for runoff (thick black curve) and the bandpass filtered time series of square form
(runoff squared) (thin curve) from 0.83 to 5.21 yr using a wavelet filter. The upper, middle and lower panels are the first, second and third
modes of runoff, respectively. The black shading indicates positive peaks in the filtered time series, while the white are negative peaks.
The wavelet power and bandpass filtered time series (before squaring) are the averaged time series over the sub-basins belonging to the
same mode. The averaged variances of initial monthly runoff time seriesσ2 for the first, second and third modes are 263.26, 2507.64 and
1096.32 mm2, respectively.
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Fig. 7. Same to Fig. 5, but for soil moisture in 1.92–5.21 yr band. The averaged 

variances of initial monthly soil moisture time series 2  for the first, second and third 

modes are 792.45 mm2, 1,151.50 mm2 and 911.17 mm2, respectively. 

 

 

Fig. 7. Same as Fig. 5, but for soil moisture in the 1.92–5.21 yr band. The averaged variances of initial monthly soil moisture time seriesσ2

for the first, second and third modes are 792.45, 1151.50 and 911.17 mm2, respectively.

major identifiable correlations are distributed within the 1–
2 yr band (around 1965 and 1973, and during the period
1990–1995), the 2–4 yr band (around 1995), and the 4 yr
band (during the period 1980–1990). The results also show
close in-phase relationships for the regions during the pe-
riod 1980–1990 and around 1995. The major identifiable

correlations between the first-mode soil moisture and IOD in
Fig. 9a (right panel) are found within the 1–2 yr band around
1975 (anti-phase), and within the 2–4 yr band around the pe-
riod 1990–1995 (close in-phase).

The left panel in Fig. 9b shows that the identifiable correla-
tions between the second mode of soil moisture and ENSO,
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Fig. 8. (a) Squared wavelet coherence (local and global) between the first mode runoff 

and ENSO time series (left panel), and between the first mode runoff and IOD time 

series (right panel). The 5% significance level against red noise is shown as a thick 

contour and the cone of influence (COI) where edge effects might become important 

is shown as a thin black line. The relative phase relationship is shown as arrows (with 

in-phase pointing right, anti-phase pointing left, runoff leading ENSO by 90° pointing 

straight down, and ENSO leading runoff pointing straight up). (b) Same as (a) but for 

the second model of runoff. (c) Same as (a) but for the third model of runoff.  

Fig. 8. (a) Squared wavelet coherence (local and global) of the first mode runoff and ENSO time series (left panel), and between the first
mode runoff and IOD time series (right panel). The 5 % significance level against red noise is shown as a thick contour and the cone of
influence (COI) where edge effects might become important is shown as a thin black line. The relative phase relationship is shown as arrows
(with in-phase pointing right, anti-phase pointing left, runoff leading ENSO by 90◦ pointing straight down, and ENSO leading runoff pointing
straight up).(b) Same as(a) but for the second model of runoff.(c) Same as(a) but for the third model of runoff.

which are basically distributed within the 1–4 yr band, in-
cluding around 1965 (1–2 yr band), 1974 (2 yr), 1976 (1 yr),
1983 (1–2 yr band), 1993 (1–2 yr band), and 1995 (2–4 yr
band). The vectors in the regions show that ENSO leads soil
moisture around 1965 and in-phase relations around 1983. In
Fig. 9b (left panel), they are within the 0.5–2 yr band dur-
ing the period 1980–1985 (anti-phase) and within the 2–4 yr
band around 1995 (close in-phase).

The identifiable correlations between the third mode of
soil moisture and ENSO in Fig. 9c (left panel) can be found
within the 1–2 yr band during the period 1960–1975 and the
1–4 yr band during the period 1990–2000, in which the vec-
tors indicate that ENSO leads soil moisture in the former
region and close in-phase relations in the latter region. The
right panel in Fig. 9c shows that the major identifiable corre-
lations are within the 0.5–2 yr band during the period 1980–
1985 (anti-phase) and within the 1–4 yr band during the pe-
riod 1990–2000 (close in-phase). The global wavelet coher-
ence in Fig. 9b and c shows the teleconnection peaks between
regional (the eastern and central parts) soil moisture and cli-
matic patterns at longer timescales.

4.5 Correlation at multiple timescales

As indicated above, the significant correlations of runoff and
soil moisture with the two climatic patterns (ENSO and IOD)
mainly exist within the DLVB. To highlight the teleconnec-
tion influences further, the correlations of wavelet power time
series between a hydrological variable and a climatic in-
dex, within the corresponding DLVB, are computed by using
Spearman’s rank correlation. A positive correlation value in-
dicates that the amplitudes of variance over the desired time
period have consistent evolution processes, while a negative
correlation value corresponds to opposite evolution processes
(Niu, 2010).

Figure 10 shows the scale-averaged wavelet power for
each runoff mode within the 0.83–5.21 yr band and the two
climatic indices (i.e., ENSO and IOD), and Table 3 lists the
corresponding correlation results. It is observed that the first
and third modes of runoff correlate with ENSO and IOD oc-
casionally for the divided 10 yr periods. The second mode
of runoff is basically depicted by IOD, which is reflected
by the significant correlations for all the divided periods and
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Fig. 9. Same as Fig. 8 but for soil moisture.   
Fig. 9.Same as Fig. 8 but for soil moisture.

also by the high correlation value of 0.643 for the complete
time period (1952–2000). The opposite evolution processes
are found for ENSO and IOD for the period 1960–1969 (see
Fig. 10), which, in turn, produces positive correlations (0.295
and 0.744) and negative correlations (−0.417 and−0.501)
with the first and second modes of runoff, respectively. This
also confirms the different temporal processes of variance for
the two climatic patterns (Niu, 2013). Figure 11 indicates a
good relationship between each mode of soil moisture and
IOD within the 1.92–5.21 yr band for the entire period, with
the rank correlation values of 0.669 (for the first mode), 0.319
(for the second mode) and 0.832 (for the third mode), as pre-
sented in Table 3. Significant correlations are also found be-
tween soil moisture and ENSO for most of the divided 10 yr
periods, but with lower correlation degree for the first mode
of soil moisture (i.e., in the western part of the basin) and
higher for the second mode (i.e., in the eastern part of the
basin) after the 1970s, compared to the corresponding corre-
lation level between soil moisture and IOD.

5 Inferences on droughts and floods

To illustrate the potential utility of the above analysis,
possible inferences of the results as to the occurrence of

basin-featured extreme hydrological events (i.e., the flood
event in 1994 and the drought event in 1963) are explored.

Two Asian monsoon systems, namely the Indian summer
monsoon and the East Asian summer monsoon, strongly in-
fluence eastern China (Ding and Chan, 2005). Torrence and
Webster (1999) discussed the relationship between the In-
dian monsoon and ENSO, through analysis of a 122 yr-long
data set (1872–1993). They reported that the Indian mon-
soon tends to be weaker during the El Niño event periods
and that the weak monsoon statistically leads by about 4
months to the peak of equatorial Pacific SST. A strong mon-
soon is associated with cold SST, and its peak lags the mon-
soon by about 4 months (Torrence and Webster, 1999). Even
though investigating the mechanisms and relationships be-
tween climatic indices and monsoon systems is out of the
scope of the current study, the results reported by Torrence
and Webster (1999) are helpful for understanding the coher-
ence results obtained in the present study. The complex cor-
relations between monsoon and climatic indices indicate a
phase difference of the variability of runoff or soil moisture
with climatic signals.
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Fig. 10. Comparison of the scale-averaged wavelet power for runoff and selected 

climate indices for the dominant low-frequency variability band 0.83–5.21 yr. 
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5.1 Flood event

In 1994, a major flood occurred over almost the entire Pearl
River basin. This flood event offers a reasonable basis to
interpret the results from the wavelet analysis in the con-
text of relationships that exist between large-scale climatic
patterns and basin-featured hydrological processes. The sig-
nificant common wavelet power and coherence in Fig. 8a
and c show strong in-phase relations between runoff and IOD
within the 2–4 yr band in 1994, but the correlation of runoff
with ENSO is not that visible; it is relevant to note that there
was a strong positive IOD event in 1994. Further, in 1994,
the moisture transport resulting from the southeastern trop-
ical Indian Ocean gave rise to an enhanced convection over
the Indian subcontinent and East Asia (Behera et al., 1999).

Therefore, heavy rainfall and flood occurred over southern
China, including in the Pearl River basin.

The impactful occurrence of small-scale activity (variabil-
ity) is indeed often supported by larger-scale activity (see
Kumar, 1996 for details). Flood events normally occur in
response to abundant precipitation over a short period of
time, especially when the land has already been in a wet
state (runoff or soil moisture) over a long time period. The
abundant precipitation in 1994 occurred during an already
wet state that existed due to high runoff in the basin before
1994, including due to high runoffs in the central part in 1992
and 1993 (shown in Fig. 6b) and in the western part in 1993
(shown in Fig. 6c), thus resulting in an extreme flood over the
whole basin in 1994. Although abundant precipitation also

Hydrol. Earth Syst. Sci., 18, 1475–1492, 2014 www.hydrol-earth-syst-sci.net/18/1475/2014/



J. Niu et al.: Teleconnection analysis of runoff and soil moisture over the Pearl River basin in southern China 1489

Table 3.Spearman’s rank correlations between the wavelet powers of runoff/soil moisture and selected climate indices in the low-frequency
dominant variability band. DOF denotes the degrees of freedom. Bold indicates greater than 95 % confidence level.

52–59 60s 70s 80s 90s 1952–2000

Runoff DOF 38 46 46 46 46 214
(0.83–5.21 yr) First mode

ENSO −0.430 −0.417 0.210 0.100 0.874 0.289
IOD −0.184 0.295 0.167 −0.458 0.502 0.158

Second mode

ENSO 0.371 −0.501 0.866 −0.098 −0.855 0.009
IOD 0.876 0.744 0.896 0.721 −0.538 0.643

Third mode

ENSO −0.362 −0.005 0.696 0.526 −0.595 −0.068
IOD 0.016 −0.152 0.705 0.241 −0.435 0.239

Soil moisture DOF 18 21 21 21 21 93
(1.92–5.21 yr) First mode

ENSO 0.438 −0.859 0.545 0.433 0.417 −0.160
IOD 0.995 0.877 0.719 0.770 0.529 0.669

Second mode

ENSO 0.462 −0.709 0.887 0.585 0.886 0.174
IOD 0.991 0.893 0.774 0.364 0.649 0.319

Third mode

ENSO 0.438 −0.661 0.556 −0.511 0.632 0.094
IOD 0.996 0.767 0.519 −0.276 0.903 0.832

occurred around 1983, it did not cause any major flood since
the land surface was not as wet during the period before 1983
as it was before 1994, as the second mode of runoff indi-
cates. Further, the soil moisture condition before 1983 was
also in a long-term dry state (see Fig. 7), especially for the
first and the third modes of soil moisture. Such relatively dry
runoff and soil moisture states play a significant role in low-
ering and slowing down the runoff over the basin and, con-
sequently, the resulting flow would not be sufficient to cause
major floods; the fact that there was no flood in 1983 despite
abundant precipitation explains this.

5.2 Drought event

In 1963, about 5 % of the total area of the Pearl River basin
was subjected to a severe drought; this drought also pro-
vides a reasonable basis for interpreting the results from the
wavelet analysis above. As seen in Fig. 9, the soil mois-
ture (especially for the second and third modes) has signif-
icant wavelet coherence at>95 % confidence levels with
the ENSO, but not IOD, within the 1–2 yr band around
1963; ENSO was in a weak warm phase (El Niño) in that
year. Statistically, a weak Indian monsoon may be related
to an El Niño period (Torrence and Webster, 1999). How-
ever, the lower SST during summer in the tropical Pacific,

the weaker the convective activities may be around southern
China (Huang and Wu, 1989). Both these conditions might
have been responsible for the limited precipitation over the
Pearl River basin in 1963 and, consequently, for the severe
drought in the basin.

It is observed that soil moisture was in a dry condition
around 1963 (see Fig. 7). The general geographic feature
of the Pearl River basin is that elevation decreases from the
northwest to the southeast. Moreover, the insufficient precip-
itation condition in 1963 is also noticeable downstream of the
Pearl River (Niu, 2013). The precipitation deficit in conjunc-
tion with the basin geography features are responsible for the
serious dry state in both the northwestern and the southeast-
ern parts, resulting in the severe drought in 1963 over the
basin. Drought events normally occur when precipitation is
insufficient over a long period (or even a short one) in an al-
ready dry state of soil moisture over a long time period. The
precipitation deficit in 1989 is comparable to that in 1963, es-
pecially for the first and third modes (Niu, 2010). However,
the long-term dry condition around 1989 is not comparable
to that around 1963 (see Fig. 7). Therefore, the probability
of a severe drought event occurrence in 1989 was less than
in 1963, as the long-term dry condition around 1963 is more
noticeable.
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6 Conclusions

In this study, VIC-model-simulated runoff and soil moisture
data over the Pearl River basin, southern China, were ana-
lyzed using wavelets to examine the teleconnections between
such processes and two large-scale climatic patterns, ENSO
and IOD. The results indicate that the hydrological variabili-
ties in the basin have undergone considerable changes in vari-
ance and coherence with these two climatic patterns over the
study period 1952–2000.

The wavelet power spectrum shows that the distinctive
mode of runoff variability is dominant at the low-frequency
band (DLVB) of 0.83–5.21 yr. The bandpass-filtered time se-
ries displays the intervals of high or low variance for dif-
ferent coherent regions in the basin. The variance evolution
of runoff is essentially influenced by IOD, especially for the
second and third modes (i.e., the eastern and the central parts
of the basin), according to the rank correlation analysis for
the scale-averaged wavelet power series. In addition, the sec-
ond mode of runoff in the eastern part of the basin displays
more significant coherence with ENSO within the DLVB.

The soil moisture at the headwater basin area (i.e., regions
with relatively high altitudes) shows an isolated high vari-
ability at longer timescales (2–4 yr), which is well correlated
with the low-frequency variability of IOD for both the di-
vided 10 yr periods and the total studied period (49 yr). The
soil moisture has the capability to memorize the variability of
climatic signals, as had previously been demonstrated (Chen
and Kumar, 2002). This capability of soil moisture results
in more significant wavelet-based correlations at relatively
longer timescales when compared to those for runoff.

The identifiable relations with significant coherence at
>95 % confidence level in a time–frequency domain suggest
that the variability in local runoff and soil moisture variabil-
ity is triggered by large-scale atmospheric circulation and in-
fluenced by climatic patterns. These underlying correlations,
coupled with the bandpass-filtered time series of hydrolog-
ical variables, provide valuable information to draw infer-
ences regarding the occurrence of basin-featured extreme
hydrological events (i.e., flood or drought). Such an under-
standing, as evidenced by the current study, is paramount for
providing skillful long-term prediction of hydrological pro-
cesses for large-scale river basins (such as the Pearl River
basin) that are of interest at national, and even international,
levels. With increasing concerns on the impacts of global cli-
mate change on our water resources in the future (see, for
instance, Sivakumar, 2011, for a more recent account), this
understanding becomes all the more important.
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