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Abstract

Background: Poisson model has been widely applied to estimate the disease burden of influenza, but there has been little
success in providing reliable estimates for other respiratory viruses.

Methods: We compared the estimates of excess hospitalization rates derived from the Poisson models with different
combinations of inference methods and virus proxies respectively, with the aim to determine the optimal modeling
approach. These models were validated by comparing the estimates of excess hospitalization attributable to respiratory
viruses with the observed rates of laboratory confirmed paediatric hospitalization for acute respiratory infections obtained
from a population based study.

Results: The Bayesian inference method generally outperformed the classical likelihood estimation, particularly for RSV and
parainfluenza, in terms of providing estimates closer to the observed hospitalization rates. Compared to the other proxy
variables, age-specific positive counts provided better estimates for influenza, RSV and parainfluenza, regardless of
inference methods. The Bayesian inference combined with age-specific positive counts also provided valid and reliable
estimates for excess hospitalization associated with multiple respiratory viruses in both the 2009 H1N1 pandemic and
interpandemic period.

Conclusions: Poisson models using the Bayesian inference method and virus proxies of age-specific positive counts should
be considered in disease burden studies on multiple respiratory viruses.
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Introduction

Acute respiratory infections accounted for 11–22% of global

deaths of children under five, with a significant proportion caused

by respiratory viruses [1]. However, obtaining reliable population

based estimates for disease burden of respiratory viruses remains a

challenge. These viruses usually cause overlapping clinical

syndromes, making it difficult to assign viral aetiology based on

the clinical presentations of patients [2]. Moreover, laboratory

tests necessary for case confirmation are not always conducted in

clinical settings owing to limited laboratory capacity [3]. Previous

studies have used several statistical methods to quantify the

morbidity and mortality burden associated with influenza and

respiratory syncytial viruses (RSV) [4]. These methods first

established a baseline level with the assumption of no virus

circulation, and then defined the excess hospitalization or

mortality as the difference between the observed and baseline.

However, few of these methods were able to separately determine

the burden attributable to different respiratory viruses and even

fewer studies have assessed the burden of respiratory viruses other

than influenza and RSV. One commonly used method, Poisson

regression modeling, allows simultaneous assessment of co-

circulating viruses and has become increasingly popular recently.

But our previous study showed that the point estimates derived by

the classical maximum likelihood method for respiratory viruses

other than influenza were unrealistically small and even negative

[5]. The challenge lies in resolving the overlapping peaks of these

co-circulating viruses, and also in adjusting for the confounding

effects of other seasonal factors such as temperature or humidity

[6]. An alternative estimation method, Bayesian inference, could

be used as it has the advantage of incorporating the prior

knowledge on parameter distributions [7]. Another unsolved

problem in disease burden studies is the choice of virus proxy

variables. The numbers or proportions of specimens positive for

different viruses in all specimens tested have been widely used in

previous studies [8,9]. Other less frequently used proxies include
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influenza-like illness rates multiplied by laboratory-test positive

proportions (ILI6LAB) [10]. Although virus attack rates could be

different across age groups due to the heterogeneity in prior

immunity and exposure risks [11–13], no studies have hitherto

integrated age-specific virus data into the models, largely due to

the lack of such data in most regions. In this study we evaluated

the performance of various combinations of model assumption,

virus proxy variables and inference methods, in estimating excess

hospitalization attributable to several co-circulating respiratory

viruses. The estimates have been validated by comparison with

observed rates of laboratory confirmed paediatric hospitalization

rates for acute respiratory infections obtained from a population

based study.

Methods

Data source
Hospital admission records of the two major public hospitals on

the Hong Kong Island (Queen Mary Hospital (QMH) and Pamela

Youde Nethersole Eastern Hospital (PYNEH) were obtained from

the Hong Kong Hospital Authority during the study period of

October 2003–September 2010. We compiled weekly numbers of

hospital admissions with any listed discharge diagnosis of acute

respiratory diseases (ARD) for the age groups of ,1, 1–5 and 6–17

years, according to the International Classification of Diseases (9th

Revision, ICD9) codes 460–466 or 480–487. Age specific virology

data were obtained from the Microbiology Laboratory of QMH,

which provides virology diagnostic services for both QMH and

PYNEH, for influenza A (seasonal subtypes H3N2, sH1N1 and

pandemic strain pH1N1), influenza B, respiratory syncytial virus

(RSV), adenovirus and parainfluenza virus types 1–3. This

laboratory tested a total of 80 611 specimens collected from both

QMH and PYNEH during the study period, by using direct

immunofluorescence tests (IF) and viral culture. Reverse tran-

scription polymerase chain reaction (RT-PCR) was only routinely

carried out during the 2009 pandemic [14]. Meteorological data

were obtained from the Hong Kong Observatory.

Poisson model
Poisson models were first fitted to the age-stratified weekly

admission numbers of acute respiratory diseases. A typical form of

this model is

E½log Yt�~

b0zb1fluAtzb2fluBtzb3RSVtzb5adenotzb4paraflutzs(t)zs(Tempt)

zs(Humdt)

b1, b2, b3,b4,b5*Uniform½0,h� ðModel 1Þ

where Yt denotes the numbers of age-specific hospital admissions

at week t (t = 1,2,…,366), and follows a Poisson distribution with

mean mt and variance Qmt. Here Q is an over-dispersion factor to

adjust for the unequal mean and variance [15]. fluAt, fluBt, RSVt,

adenot and paraflut denote the age-specific weekly counts of

specimens positive for influenza A and B, RSV, adenovirus or

parainfluenza viruses, respectively. s(t), s(Tempt) and s(Humdt)
are the natural spline functions of time, weekly average

temperature and relative humidity, respectively. Five degrees of

freedom per year were used for the seasonal trend and two degrees

of freedom for temperature and relative humidity. We used a

Bayesian inference process based on Gibbs sampling (BUGS) [16]

to estimate the parameters. A variety of Bayesian approaches have

been widely applied to calculate the genetic distance in phyloge-

netic analysis [17] and to describe the transmission dynamics of

influenza viruses [18]. By incorporating prior knowledge on the

distribution of parameter with available data, the Bayesian

inference method could provide a posterior distribution closer to

the true underlying distribution [19]. Due to the known adverse

effects of the viruses on hospital admissions, we assumed that the

parameter of virus proxy variable followed a non-negative

distribution. Therefore the coefficients of these variables b1, b2,

b3, b4 and b5 were estimated by a Bayesian process, under the

distribution assumption of Uniform[0,h]. The posterior distribution

of each covariate parameter was estimated by repeating a Monte

Carlo Markov Chain simulation for 50,000 iterations with 25,000

burn-in iterations. Based on our previous findings [20], the starting

point of h was set to 10, to cover the range of excess risk from 0–

20% associated with 10% increase in virus proxies.

In addition to age-specific positive counts, we tried different

combinations of virus proxies with the Bayesian inference method

on virus coefficients: age-specific proportions of positive specimens

(Model 2), all-ages proportions (Model 3) or all-ages influenza-like

illness rates multiplied by all-ages proportions (ILI6LAB, model

4). Besides the commonly adopted log linear Poisson regression

models that assumed multiplicative effects of viruses, we also tried

linear Gaussian models that assumed additive effects of influenza

(Model 5) [10,21]. To compare the Bayesian approach with our

previous models based on classical likelihood estimation, we fitted

the classical log linear Poisson models with the proxies of age-

specific counts (Model 6), age-specific proportions (Model 7) and

all-ages proportions (Model 8).

Model validation
Baseline hospitalization for influenza A subtype H3N2 was first

calculated from the model as the expected weekly numbers of

admissions when the H3N2 proxy variable was set to zero and all

the other variables were kept as the observed values. Excess

hospitalization attributable to H3N2 was defined as the sum of

difference between the observed and baseline hospitalization [22].

Similar calculation was repeated for other subtypes of influenza A,

influenza B, RSV, adenovirus and parainfluenza, respectively.

Annual excess rate of hospitalization was separately calculated for

each year, by dividing the annual total number of excess

hospitalization by the mid-year age-specific population in the

Hong Kong Island obtained from the year 2006 census.

Annual excess rates estimated by these statistical methods were

then compared with the directly observed admission rates for a

population based systematic sample of laboratory confirmed cases

of respiratory virus infections, who were admitted into the QMH

and PYNEH with any listed diagnosis of ARD during the same

period. The details of data collection for the directly observed

virologically confirmed hospitalization rates have been described

elsewhere [23]. Briefly, nasopharyngeal aspirates from patients

who were younger than 18 years and admitted with symptoms of

acute respiratory infection on one chosen day (Wednesday or

Thursday) of each week, were all tested for five respiratory viruses

by IF. Since these two hospitals provide acute paediatric hospital

services for approximately 70% of the population in Hong Kong

Island, we could estimate the population based age-specific

hospitalization rates from this cohort. We calculated the mean of

absolute percentage difference between the annual age-specific

estimates and corresponding virologically confirmed observed

hospitalization rates, and chose the most optimal model as that

with the smallest mean difference. We also assessed the lag effects

of these viruses by replacing the virus proxy variables with the

proxies at the weeks up to three weeks before the current (lag1, 2
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and 3), to take into account of the potential delay between the

virus infection and hospital admissions. For simplicity, the same

lag was used for all the virus proxies in the model. In order to

assess whether our method could differentiate the impacts of

viruses during the interpandemic and pandemic periods, we

calculated the excess rates separately for the 2009 H1N1 influenza

pandemic period of May 2009 to August 2010, and for the

preceding interpandemic period of October 2003 to April 2009.

All the analysis was performed by the statistical packages R

(version 2.5.1) and WinBUGS (version 1.4.3).

Ethical approval was obtained from the Institutional Review

Board of the University of Hong Kong/Hospital Authority Hong

Kong West Cluster (UW 11-264). Informed consent was not

obtained because patient records were anonymized and de-

identified prior to analysis.

Results

The mean absolute percentage difference between the annual

age-specific rates of excess hospitalization derived from different

models and the corresponding observed rates is shown in Table 1.

In the models using the same virus proxies, the estimates from the

models using the Bayesian inference showed smaller deviations

from the observed rates than the classical likelihood estimates,

particularly for RSV, parainfluenza and adenovirus. In the models

using the Bayesian inference, compared to the other virus proxies,

age-specific counts provided the estimates with smaller deviation

from the true observed rates for most viruses (Table 1). The log-

link models (Model 1) offered the estimates closer to the observed

rates than the identity-link models (Model 5), with the exception of

parainfluenza. Overall, the log-link Poisson models using the

Bayesian inference and the proxies of age-specific counts (Model 1)

provided the most reliable estimates for the excess hospitalization

associated with influenza A and B, RSV, parainfluenza and

adenoviruses. Therefore we chose this model as the final one and

presented the estimates from this model in the rest part of this

paper. The lag effects up to three weeks were separately assessed

by replacing the age-specific positive counts virus at the current

week (lag 0) with those at one to three weeks before (lag 1–3).

These models with different lag week consistently provided the

estimates more deviant from the observed rates, compared to the

proxy variables at the current week (Table 2).

Annual excess rates of hospitalization were slightly lower than

the directly observed rates for influenza A subtypes sH1N1, H3N2,

pH1N1 and influenza B in all the age groups, without any pattern

of consistent under- or over-estimation observed in any of these

age groups (Figure 1). For RSV, excess rates tended to be higher

than the observed hospitalization rates, particularly for the ,1 age

groups. Most of the estimates for parainfluenza were smaller than

the observed rates. The greatest deviation from the observed rates

was found in adenovirus.

Compared to the interpandemic period, the 2009 H1N1

pandemic was associated with an obvious increase in the observed

rates of laboratory confirmed cases for RSV, but a decrease in

other viruses (Table 3). Overall the model provided the estimates

similar to the directly observed rates of all the viruses under study

Table 2. Mean absolute percentage difference of excess
hospitalization rates from annual hospitalization rates of
laboratory confirmed infections in a pediatric cohort.

Lag weeks Lag 1 Lag 2 Lag 3

Influenza A

sH1N1 52.5 70.9 81.5

H3N2 44.5 62.5 70.0

pH1N1 57.8 68.5 78.5

Influenza B 41.7 62.7 72.5

RSV 62.2 102.6 77.6

Parainfluenza 65.2 94.9 86.4

Adenovirus 65.4 71.6 62.8

Excess rates were estimated from the log-linear Poisson model using a Bayesian
approach with the virus proxies of age-specific positive counts at the different
lag weeks.
doi:10.1371/journal.pone.0090126.t002

Figure 1. Comparison of annual excess hospitalization rates
per 10,000 population and directly observed rates during each
of the seven seasons, for (A) sH1N1, (B) H3N2, (C) pH1N1, (D)
influenza B, (E) respiratory syncytial virus (RSV), (F) parainflu-
enza and (G) adenovirus. Excess hospitalization rates were derived
from the WinBUGS models with age-specific counts as virus proxy.
doi:10.1371/journal.pone.0090126.g001
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during the pandemic period, except slight overestimation in H3N2

and influenza B, and underestimation in adenovirus. The model

performance was comparable between the interpandemic and

pandemic periods for all the viruses.

Discussion

Time series models have widely adopted by recent studies to

estimate the disease burden of influenza and RSV [24,25]. In this

study we compared the Bayesian inference method with the

classical likelihood estimation, in terms of obtaining more reliable

estimates for the disease burden of co-circulating viruses including

influenza, RSV, parainfluenza and adenovirus. Under the

assumption of positive association between respiratory virus

activity and hospitalization, the Bayesian inference method

successfully separated the individual effects of multiple respiratory

viruses, which the previous models have not or only partially

achieved [5,26]. With the exception of adenovirus, the model

estimates closely matched the true hospitalization rates across

different age groups that were observed in a pediatric cohort under

a systematic surveillance for respiratory virus infections. We

speculated that underestimation in adenovirus was probably due

to its less clear seasonal pattern and relatively lower positive

isolation rate compared to the other viruses (Figure 2). Neverthe-

less, the models overall offered the satisfactory estimates which

were within the close range of true hospitalization rates without

exaggeration.

Taking the advantage of long standing virology data with linked

age information in Hong Kong, this study for the first time added

the age-specific virology data as proxy in the time series models for

disease burden studies. We found that age-specific counts showed

the best performance among all the proxies when combined with

either the Bayesian or classical likelihood inference methods. In

previous studies, we used all-ages proportion as proxy because it

took into account the temporal variations in total numbers of

specimens collected. However, this might not be the case for age-

specific virology data, as relatively small numbers of total

Table 3. Comparison of weekly directly observed rates (per 100,000 population) and excess rates of hospitalization associated
with influenza estimated by the Bayesian approach, during the interpandemic period (4 January 2004–25 April 2009) and
pandemic period (26 April 2009–14 August 2010).

Virus/Age group Interpandmic Pandemic

Directly observed
rates Excess rates (95% CI)

Directly observed
rates Excess rates (95% CI)

sH1N1

,1 4.2 3.2 (0.3, 6.6) 0.0 0.4 (0.0, 1.0)

1–5 3.9 2.9 (1.0, 4.6) 0.7 0.8 (0.3, 1.3)

6–17 0.6 0.6 (0.3, 0.9) 0.1 0.1 (0.0, 0.1)

H3N2

,1 8.9 12.0 (6.9, 17.3) 5.7 8.1 (4.6, 11.6)

1–5 6.2 9.0 (7.0, 11.0) 5.1 6.4 (4.9, 8.0)

6–17 0.7 0.9 (0.6, 1.2) 0.3 0.9 (0.6, 1.3)

pH1N1

,1 na na 17.2 11.3 (1.2, 21.9)

1–5 na na 12.4 12.2 (8.2, 16.3)

6–17 na na 2.9 2.6 (2.0, 3.2)

Influenza B

,1 2.8 1.9 (0.1, 5.1) 0.0 0.8 (0.0, 2.2)

1–5 5.6 5.9 (4.0, 8.0) 0.7 5.2 (3.4, 7.0)

6–17 1.0 1.1 (0.8, 1.4) 1.0 1.1 (0.8, 1.6)

RSV

,1 36.5 48.1 (38.7, 57.0) 45.8 48.3 (39.3, 57.9)

1–5 10.6 9.0 (5.1, 12.6) 12.7 12.4 (7.0, 17.2)

6–17 0.1 0.3 (0.0, 0.7) 0.2 0.4 (0.0, 1.1)

Parainfluenza

,1 24.8 15.9 (8.0, 23.7) 13.3 11.6 (5.7, 17.6)

1–5 9.9 5.0 (1.8, 8.0) 10.9 6.3 (2.2, 10.3)

6–17 0.1 0.2 (0.1, 0.4) 0.3 0.4 (0.1, 0.8)

Adenovirus

,1 10.3 2.4 (0.1, 5.4) 5.7 2.2 (0.1, 5.1)

1–5 9.6 1.7 (0.1, 4.3) 5.5 1.0 (0.0, 2.6)

6–17 0.6 0.5 (0.2, 0.9) 0.1 0.2 (0.1, 0.3)

Abbreviations: RSV, respiratory syncytial virus; NA, not available.
doi:10.1371/journal.pone.0090126.t003
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specimens tested in some age groups could have introduced

spurious peaks in age-specific proportions. We also evaluated the

performance of ILI6LAB proxy, which was found more closely

correlated with the true incidence of influenza during the

interpandemic or pandemic period [21,27]. We found this proxy

provides the estimates closer to the observed rates than age-specific

and all-ages proportions, but slightly worse than the proxy of age-

specific counts in most viruses (Table 1 and Figure 3). Taken

Figure 2. Weekly numbers of specimens positive for influenza A or B, RSV, parainfluenza and adenovirus in the age groups of ,1,
1–5 and 6–17 years.
doi:10.1371/journal.pone.0090126.g002
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together, age-specific counts shall be recommended as proxy

variables if such data are available. If age information is

unavailable, ILI6LAB is probably the proxy that shall be

considered.

The 2009 H1N1 pandemic was characterized with dramat-

ically increased attack rates among children and young adults,

but the severity of pandemic infections was comparable to the

seasonal virus strains [28,29]. ARD admission rates in our

pediatric cohort increased by a proportion ranging from 7% to

170% during the pandemic (Table 1), and many other studies

also reported a similar magnitude of increase [30–33].

However, the admissions due to non-influenza infections

decreased in the pandemic, except RSV. Our model estimates

were able to capture this trend, showing the same change

directions as the observed rates. However, large deviations

were also observed in some age-virus categories, such as

influenza B in the ,1 and 1–5 age groups. Further studies are

warranted to fine tune our modeling approach in order to

derive reliable estimates for different periods.

It has been widely accepted that Poisson distribution is

appropriate to fit the low-frequency count data, but the log-link

function commonly adopted in Poisson models has been criticized

for its assumption of exponential increase in health outcomes

along with one unit increase in virus proxies [8,34]. Some of recent

studies switched to a more ‘‘reasonable’’ assumption of linear

relation by adopting an identity-link function in Poisson models

[35,36]. In this study we found that the log-link function

yielded the estimates slightly closer to the true incidence of

influenza hospitalizations than the identity-link. However, the key

assumption on the association of virus proxies and health

outcomes in Poisson models still remain to be proved. Further

evidence on the mechanism of influenza transmission and

pathogenicity in human community could probably help resolve

this problem.

Our study has potential limitations. First, the Bayesian

estimates are sensitive to the prior distributions and the prior

assumption of nonnegative coefficient for virus proxy variables

needs to be carefully justified. Since our virology data were

obtained from the laboratory surveillance based on hospitalized

inpatients, it is reasonable to assume that these virology data were

positively associated with the increase of hospital admissions with

viral respiratory infections. However, overestimation might exist

if the assumption of prior distribution is not well justified, and

caution needs to be taken when extending this approach to

estimate the excess mortality of other respiratory viruses, as most

viruses other than influenza cause only mild symptoms that might

not necessarily lead to death [37]. Second, age-specific virus data

requires long standing and intensive virology surveillance for

multiple respiratory viruses, but such surveillance networks may

not be available for influenza in many countries. Nevertheless,

the importance of simultaneous assessment on other respiratory

viruses, particularly RSV, has started to be recognized [26,38].

So we can expect these data will become available in more and

more countries in the near future. Third, we only estimated the

excess hospitalization of five respiratory viruses due to limited

virology data. There are many other respiratory viruses (e.g.

rhinovirus) and bacteria (e.g. Streptococcus pneumonia) also contrib-

ute greatly to ARD hospitalization in children, although the

clinical significance of detection of some of these (e.g. rhinovirus)

remains unclear. Further studies are needed to assess whether

addition of more virology data could alter the performance of

models.

In conclusion, age-specific counts of positive specimens are

probably the best proxies for virus activity and should be used in

the disease burden models if such data are available. In the

absence of age-specific data, the Bayesian inference proposed in

this study is superior to the classical likelihood inference method,

as the former provides more reliable estimates on excess

hospitalization respectively associated with multiple respiratory

viruses.
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