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Abstract

In this paper, we propose a nonparametric estimator of ruin probability in a Lévy risk
model. The aggregate claims process X = {Xt,≥ 0} is modeled by a pure-jump Lévy
process. Assume that high-frequency observed data on X is available. The estimator is
constructed based on Pollaczeck-Khinchine formula and Fourier transform. Risk bounds
as well as a data-driven cut-off selection methodology are presented. Simulation studies
are also given to show the finite sample performance of our estimator.

Keywords: Fourier (inversion) transform, Risk bound, Cut-off selection, Ruin
probability.

1. Introduction

The surplus process of an insurance company is modeled by the following process

Ut = u+ ct−Xt, (1.1)

where u ≥ 0 is the initial surplus, c > 0 is the constant premium rate. Here the ag-
gregate claims process X = {Xt, t ≥ 0} with X0 = 0 is a pure-jump Lévy process with
characteristic function

ϕXt(ω) = E[exp(iωXt)] = exp

(
t

∫
(0,∞)

(eiωx − 1)ν(dx)

)
,
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where ν is the Lévy measure on (0,∞) satisfying the condition µ1 :=
∫
(0,∞) xν(dx) <∞.

Note that µ1 <∞ implies that the process X has a finite mean. In fact, we have

EX1 =

∫
(0,∞)

xν(dx) =

∫ ∞

0
ν(x,∞)dx,

where the second equality follows by integration by parts. The ruin probability is defined
by

ψ(u) = P
(

inf
0≤t<∞

Ut < 0|U0 = u

)
.

In order to guarantee that ruin is not a certain event, we suppose the following condition
holds.

Assumption S The safety loading condition holds, i.e. c > µ1.

In ruin theory, the study of ruin probability is one of the main topics for a long time
(see e.g. Rolski et al. (1999) and Asmussen and Albrecher (2010)). The classical risk
model plays the central role in the theoretical analysis in ruin theory, and lots of nice
results have been obtained by actuarial researchers. However, due to the calculation
complexity, it is hard to obtain exact closed-form expression for ruin probability in most
specific situations. One extension of the classical risk model is the Lévy risk model, where
the dynamics of the company’s surplus is modeled by a Lévy process with only downward
jumps. In the Lévy risk model, ruin related functions are usually expressed in terms of
the scale functions, which are determined by the Laplace exponent of the process. See e.g.
Section XI in Asmussen and Albrecher (2010). Note that the scale function is semi-explicit
because it has to be expressed in terms of Laplace inversion.

Instead of following the analytic approach to analyze ruin probability, some researchers
study it by statistical methods. See, for example, Frees (1986), Hipp (1989), Croux and
Vervaerbeke (1990), Pitts (1994) and Politis (2003). Statistical methodology has some
advantages over analytic and probabilistic methods. On the one hand, the model can be
more general. For example, no specific structure on the claim size distribution is assumed.
On the other hand, in practical situations, instead of knowing the specific model one can
only obtain the data on the surplus. Thus, statistical methodology can be directly used
to analyze the insurance’s risk from the data. For more recent contributions on statistical
estimate of the ruin probability, we refer the readers to Shimizu (2012), Masiello (2012)
and Zhang et al. (2012).

In Masiello (2012) and Zhang et al. (2012), ruin probability for the classical risk
model is estimated and the common key tool for estimation is the Pollaczeck-Khinchine
formula. However, they use different approaches to treat the infinite sum of convolution
powers in the Pollaczeck-Khinchine formula. In Masiello (2012), empirical distribution
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is used to estimate the convolution powers (see also Frees (1986)). Zhang et al. (2012)
apply Fourier method to transform the infinite sum of convolutions to a single integral
and then estimate the claim size distribution by kernel method. In this paper we will
estimate the ruin probability in the pure-jump Lévy risk model (1.1) that includes the
classical risk model as a special case. Note that in the Lévy risk model there may exist
infinite number of jumps of small size in finite time interval. For example, consider a
Lévy-Gamma risk model with c = 50 and ν(dx) = 20x−1e−0.5x1(x>0)dx. For any ϵ > 0,
we have

∫ ϵ
0 ν(dx) = ∞, which implies that in any finite time interval the number of jumps

of size less than ϵ is infinite with probability one. Figure 1 depicts a sample path of
the Lévy-Gamma risk model. For an insurance company, if the surplus has lots of small
fluctuations, it is not easy to capture the probability law of the inter-claim times. Hence,
even if we can estimate the individual claim size distribution, it is still not convenient to
estimate the ruin probability. One feasible way of dealing with this problem is to observe
the surplus process (or the aggregate claims process) at some discrete time points and
using the observed data to construct the estimator. Such a technique has been used by
Shimizu (2009) to estimate the adjustment coefficient in a compound Poisson model with
diffusion perturbation. In this paper, we assume that the premium rate c is known but
the Lévy measure is unknown. Similar to Shimizu (2009), we assume that the aggregate
claims process X is observed at discrete time points. We propose the estimator based on
the Pollaczeck-Khinchine formula and Fourier transform.

The reminder of this paper is organized as follows. In Section 2, we present the detailed
construction of the estimator ψ̂m which is expressed via a function χ̂m. In Section 3, we
provide the risk bounds for χ̂m and ψ̂m. A data-driven strategy to choose the parameter
m is given in Section 4. In Section 5, two simulation studies are presented to show the
finite sample size performance of the estimator. Finally, some conclusions are given in
Section 6.

2. The estimator

In the reminder of this paper, integrals without an indicated domain of integration
are taken over the whole real line. Let L1 and L2 denote the classes of functions that are
absolute integrable and square integrable, respectively. For g ∈ L1 we denote its Fourier
transform by

ϕg(ω) =

∫
eiωxg(x)dx.

For a random variable Y we denote its characteristic function by ϕY (ω). Note that under
some mild integrable conditions Fourier inversion transform gives

g(x) =
1

2π

∫
e−iωxϕg(ω)dω.
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Figure 1: A sample path of the Lévy-Gamma risk model
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The estimator we present is inspired by the Pollaczeck-Khinchine formula. Let

H(x) =
1

µ1

∫ x

0
ν(y,∞)dy

with density h(x) = ν(x,∞)/µ1. Then the Pollaczeck-Khinchine type formula for ruin
probability (see e.g. formula (1.3) in Huzak et al. (2004)) is given by

ψ(u) = 1− (1− ρ)
∞∑
j=0

ρjHj∗(u)

= ρ− (1− ρ)

∞∑
j=1

ρj
∫ u

0
hj∗(x)dx

= ρ− (1− ρ)

∫ u

0
χ(x)dx, (2.1)

where ρ = µ1/c, χ(x) =
∑∞

j=1 ρ
jhj∗(x) and the convolutions are defined as

Hj∗(x) =

∫ x

0
H(j−1)∗(x− y)H(dy), hj∗(x) =

∫ x

0
h(j−1)∗(x− y)h(y)dy

with H1∗(x) = H(x) and h1∗(x) = h(x).
It follows from (2.1) that we have to estimate the parameter ρ (or equivalently the

mean EX1) and the function χ(x). Suppose that the process X can be observed at a
sequence of discrete time points {k∆, k = 1, 2, . . .} with ∆ > 0 being the sampling
interval. We present the solution procedure based on the following r.v.’s

Zk = Z∆
k = Xk∆ −X(k−1)∆, k = 1, 2, . . . , n.

Furthermore, it is assumed that the sampling interval ∆ = ∆n tends to zero as n tends to
infinity. Thus, our estimator will be presented based on high frequency data. Immediately,
an unbiased estimator for ρ is given by

ρ̂ =
1

cn∆

n∑
k=1

Zk. (2.2)

Now we derive an alternative representation for χ(x) based on Fourier inversion trans-
form. By integration by parts it is readily seen that

ϕh(ω) =
1

µ1
A(ω),
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where

A(ω) =

∫ ∞

0
eiωxν(x,∞)dx =

∫ ∞

0

eiωx − 1

iω
ν(dx)

is the Fourier transform of ν(x,∞). Standard property of Fourier transform implies that

ϕχ(ω) =

∫
eiωx

∞∑
j=1

ρjhj∗(x)dx =
∞∑
j=1

ρj (ϕh(ω))
j =

A(ω)

c−A(ω)
.

Thus, Fourier inversion transform gives the following alternative representation for χ(x),

χ(x) =
1

2π

∫
e−iωx A(ω)

c−A(ω)
dω. (2.3)

Remark 1. The denominator c−A(ω) is bounded away from zero because by |eiωx−1| ≤
|ωx| we have

|c−A(ω)| ≥ c−
∫ ∞

0

∣∣∣∣eiωx − 1

iω

∣∣∣∣ ν(dx) ≥ c− µ1 > 0

thanks to Assumption S.

It follows from (2.3) that in order to get an estimator for χ(x) we can firstly estimate
A(ω). Note that {Zk} are i.i.d. with common characteristic function

ϕZ(ω) = exp

(
∆

∫ ∞

0

(
eiωx − 1

)
ν(dx)

)
.

By inverting the above characteristic function we obtain∫ ∞

0
(eiωx − 1)ν(dx) =

1

∆
Log (ϕZ(ω)) ,

where Log denotes the distinguished logarithm (see e.g. Theorem 7.6.2 in Chung(2001)).
We remark that the distinguished logarithm is well defined because ϕZ(ω) never vanishes

(see Theorem 7.6.1 and 7.6.2 in Chung(2001)). Using the fact that A(ω) = 1
∆

Log(ϕZ(ω))
iω ,

we know that a plausible estimator is

1

∆

Log(ϕ̂Z(ω))

iω
,

where ϕ̂Z(ω) = 1
n

∑n
k=1 e

iωZk is the empirical characteristic function. However, on the
one hand, the distinguished logarithm in the above formula is not well defined unless
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ϕ̂Z(ω) does not vanish; on the other hand, it is not preferable to deal with logarithm for
numerical calculation.

In order to overcome this drawback, we follow a different approach. Write A(ω) in
the following form,

A(ω) =
ϕZ(ω)− 1

iω∆
+

1

iω∆
[Log(ϕZ(ω))− (ϕZ(ω)− 1)] .

Using the inequality |eiωx − 1| ≤ |ωx|, we have |ϕZ(ω)− 1| ≤ |ω|∆µ1. Together with the
inequality |Log(1 + z)− z| ≤ |z|2 for |z| < 1

2 , we obtain

|Log(ϕZ(ω))− (ϕZ(ω)− 1)| ≤ (ω∆µ1)
2, (2.4)

provided that ∆|ω| is small enough. Then if ∆|ω| → 0, [Log(ϕZ(ω))− (ϕZ(ω)−1)]/(iω∆)
can be neglected, i.e.

A(ω) ≈ ϕZ(ω)− 1

iω∆
.

Hence, we propose the following estimator for A(ω),

Â(ω) =
ϕ̂Z(ω)− 1

iω∆
, (2.5)

where for ω = 0 (2.5) is interpreted as the limit Â(0) := 1
n∆

∑n
k=1 Zk.

Write En(ω) = {|c − Â(ω)| ≥ (n∆)−
1
2 }. Replacing A(ω) in (2.3) by Â(ω) gives the

following estimator

χ̂(x) =
1

2π

∫
e−iωx Â(ω)

c− Â(ω)
1En(ω)dω, (2.6)

where the indicator function 1En(ω) is used to guarantee that the denominator is bounded
away from zero. There is still no guarantee that the integral in (2.6) is finite. To deal
with this problem, we consider the following cut-off modification of (2.6)

χ̂m(x) =
1

2π

∫ mπ

−mπ
e−iωx Â(ω)

c− Â(ω)
1En(ω)dω, (2.7)

where m is a positive cur-off parameter.
Finally, combining (2.1), (2.2) and (2.7) yields the following estimator for ruin prob-

ability

ψ̂m(u) = ρ̂− (1− ρ̂)

∫ u

0
χ̂m(x)dx (2.8)

= ρ̂− 1− ρ̂

2π

∫ mπ

−mπ

1− e−iωu

iω

Â(ω)

c− Â(ω)
1En(ω)dω,

where the second step follows from Fubini’s theorem.
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3. Risk bounds

Throughout this paper we denote by v the complex conjugate of v . For v, v1, v2 ∈
L1 ∩ L2 let

∥ v ∥2=
∫

|v(x)|2dx, ⟨v1, v2⟩ =
∫
v1(x)v2(x)dx,

where |v|2 = vv. Note that ⟨v1, v2⟩ = 1
2π ⟨ϕv1 , ϕv2⟩. In particular, Parseval identity states

that ∥v∥2 = 1
2π∥ϕv∥

2. Let C be a generic positive constant that can take different values
from line to line.

To continue with, we need the following moment condition.

Assumption H(k) For integer k, µk :=
∫∞
0 xkν(dx) <∞.

We present a useful lemma that will be used frequently in the reminder of this paper.

Lemma 1. Let p ≥ 1 be an integer. Suppose that n∆ → ∞ and assumptions S and
H(2p) hold. Then we have

E

∣∣∣∣∣ 1En(ω)

c− Â(ω)
− 1

c− EÂ(ω)

∣∣∣∣∣
2p

≤ C(n∆)−p

|c− EÂ(ω)|4p
,

where the constant C does not depend on ω.

Proof. Firstly, we have

E

∣∣∣∣∣ 1En(ω)

c− Â(ω)
− 1

c− EÂ(ω)

∣∣∣∣∣
2p

=
1∣∣∣c− EÂ(ω)

∣∣∣2pP (En(ω)
c) + E

[
1En(ω)

|Â(ω)− EÂ(ω)|2p

|c− Â(ω)|2p|c− EÂ(ω)|2p

]
. (3.1)

It is easily seen that the following equalities hold (see e.g. Proposition 2.2 in Comte and
Genon-Catalot (2009)),

EZ1 = ∆µ1, EZ2
1 = ∆µ2 +∆2µ21. (3.2)

By assumption S we have

|c− EÂ(ω)| ≥ c−
∣∣∣∣ϕZ(ω)− 1

iω∆

∣∣∣∣ ≥ c− 1

∆
E|Z1| = c− µ1 > 0,
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where in the equality we have used the fact Z1 ≥ 0 a.s. because X is a subordinator.
Thus, when n large enough we have |c− EÂ(ω)| > 2(n∆)−

1
2 . For such n we have

P (En(ω)
c)

≤ P
(
|Â(ω)− EÂ(ω)| > |c− EÂ(ω)| − (n∆)−

1
2

)
≤ P

(
|Â(ω)− EÂ(ω)| > 1

2
|c− EÂ(ω)|

)
≤ 22p

|c− EÂ(ω)|2p
E|Â(ω)− EÂ(ω)|2p, (3.3)

where the last step follows from Markov’s inequality.
By Cr inequality we have

1

|c− Â(ω)|2p
≤ C

 1∣∣∣c− EÂ(ω)
∣∣∣2p +

|Â(ω)− EÂ(ω)|2p

|c− Â(ω)|2p|c− EÂ(ω)|2p

 ,

which leads to

E

[
1En(ω)

|Â(ω)− EÂ(ω)|2p

|c− Â(ω)|2p|c− EÂ(ω)|2p

]

≤ C

|c− EÂ(ω)|4p
(
E|Â(ω)− EÂ(ω)|2p + (n∆)pE|Â(ω)− EÂ(ω)|4p

)
. (3.4)

Next, by Marcinkiewicz-Zygmund inequality we have

E|Â(ω)− EÂ(ω)|2p = E

∣∣∣∣∣ ϕ̂Z(ω)− ϕZ(ω)

iω∆

∣∣∣∣∣
2p

≤ C

(n∆)2p

 n∑
k=1

E

∣∣∣∣∣eiωZk − ϕ(ω)

ω

∣∣∣∣∣
2
p

=
C

np∆2p

(
E
∣∣∣∣eiωZ1 − ϕZ(ω)

ω

∣∣∣∣2
)p

.

Using the inequality |eiωx − 1| ≤ |ωx| we obtain

E|eiωZ1 − ϕZ(ω)|2 ≤ 2E|eiωZ1 − 1|2 + 2|1− ϕZ(ω)|2

≤ 2|ω|2(EZ2
1 + (EZ1)

2) = 2|ω|2(µ2∆+ o(∆)),
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where we have used (3.2). Then we have

E|Â(ω)− EÂ(ω)|2p ≤ C

(n∆)p
. (3.5)

Finally, by (3.1), (3.3)-(3.5) we have

E

∣∣∣∣∣ 1En(ω)

c− Â(ω)
− 1

c− EÂ(ω)

∣∣∣∣∣
2p

≤ C

|c− EÂ(ω)|4p
(
E|Â(ω)− EÂ(ω)|2p + (n∆)pE|Â(ω)− EÂ(ω)|4p

)
≤ C

|c− EÂ(ω)|4p
(n∆)−p.

This completes the proof. 2

Now we derive risk bounds for χ̂m. Write

χm(x) =
1

2π

∫ mπ

−mπ
e−iωx A(ω)

c−A(ω)
dω.

By Parseval’s theorem and Pythagoras theorem we have

∥χ̂m − χ∥2 =
1

2π
∥ϕχ̂m − ϕχ∥2

=
1

2π
∥ϕχ̂m − ϕχm + ϕχm − ϕχ∥2

=
1

2π
∥ϕχ̂m − ϕχm∥2 +

1

2π
∥ϕχm − ϕχ∥2

= ∥χ̂m − χm∥2 + ∥χm − χ∥2. (3.6)

On the ground of (3.6) we can obtain the following result.

Proposition 1. Suppose that assumptions S and H(4) hold. For fixed positive constant
m we have

E∥χ̂m − χ∥2 ≤ ∥χm − χ∥2 + C

(
m

n∆
+

m

(n∆)2
+

∫ mπ

−mπ
|EÂ(ω)−A(ω)|2dω

)
. (3.7)

Proof. It follows from (3.6) that we only need to study E∥χ̂m − χm∥2. Note that

ϕχm(ω) =
A(ω)

c−A(ω)
1[−mπ,mπ](ω), ϕχ̂m(ω) =

Â(ω)

c− Â(ω)
1{En(ω), ω∈[−mπ,mπ]}.
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We can write

χ̂m(x)− χm(x) =
1

2π

5∑
j=1

∫ mπ

−mπ
e−iωxTj(ω)dω, (3.8)

where

T1(ω) =
c

[c− EÂ(ω)]2
(Â(ω)− EÂ(ω)),

T2(ω) = (Â(ω)− EÂ(ω))

(
1En(ω)

c− Â(ω)
− 1

c− EÂ(ω)

)
,

T3(ω) =
EÂ(ω)

c− EÂ(ω)
(Â(ω)− EÂ(ω))

(
1En(ω)

c− Â(ω)
− 1

c− EÂ(ω)

)
,

T4(ω) =

(
EÂ(ω)

c− EÂ(ω)
− A(ω)

c−A(ω)

)
, T5(ω) = − EÂ(ω)

c− EÂ(ω)
1Ec

n(ω)
.

By Parseval’s theorem we have

∥χ̂m − χ∥2 =
1

2π

∫ mπ

−mπ

∣∣∣∣∣∣
5∑

j=1

Tj(ω)

∣∣∣∣∣∣
2

dω ≤ 5

2π

5∑
j=1

∫ mπ

−mπ
|Tj(ω)|2dω. (3.9)

By (3.5) with p = 1, and the inequality |c− EÂ(ω)| ≥ c− µ1, we can obtain

E
∫ mπ

−mπ
|T1(ω)|2dω ≤ C

m

n∆
.

By Cauchy-Schwarz inequality, Lemma 1 and (3.5) with p = 2 we can obtain

E
∫ mπ

−mπ
|T2(ω)|2dω ≤

∫ mπ

−mπ
E

1
2 |Â(ω)− EÂ(ω)|4 · E

1
2

∣∣∣∣∣ 1En(ω)

c− Â(ω)
− 1

c− EÂ(ω)

∣∣∣∣∣
4

dω

≤ C
m

(n∆)2
.

Similarly,

E
∫ mπ

−mπ
|T3(ω)|2dω ≤ C

m

(n∆)2
,∫ mπ

−mπ
|T4(ω)|2dω ≤ C

∫ mπ

−mπ
|EÂ(ω)−A(ω)|2dω.
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By (3.3) and (3.5) with p = 2 we have

E
∫ mπ

−mπ
|T5(ω)|2dω ≤ C

∫ mπ

−mπ
P(Ec

n(ω))dω ≤ C
m

(n∆)2
.

After combining the above results we complete the proof. 2

Now we study the convergence rate of the estimator χ̂m based on Proposition 1. We
assume that the cut-off parameter m depending on n such that m → ∞ as n → ∞. We
need the following assumption on the Levy measure.

Assumption V A ∈ L1 ∩ L2, and for some a, L > 0∫
(1 + ω2)a |A(ω)|2 dω < L.

Proposition 2. Suppose that assumptions S, H(4) and V hold and assume that ∆ → 0,
m∆ → 0 and n∆ → ∞, then

E∥χ̂m − χ∥2 = O
(
m(n∆)−1 +m−2a

)
.

In particular, when m = O((n∆)
1

2a+1 ) and n∆2a+2 → 0, we have

E∥χ̂m − χ∥2 = O
(
(n∆)−

2a
2a+1

)
.

Proof. Under the condition m∆ → 0, we know that |ω∆A(ω)| → 0 uniformly for
ω ∈ [−mπ,mπ]. Using the inequality

|ex − 1− x| ≤ x2, |x| < 1

2
,

for n large enough we have∫ mπ

−mπ
|EÂ(ω)−A(ω)|2dω =

∫ mπ

−mπ

∣∣eiω∆A(ω) − 1− iω∆A(ω)
∣∣2

|ω∆|2
dω

≤ ∆2

∫ mπ

−mπ
ω2|A(ω)|4dω

≤ µ21∆
2(mπ)2−2a

∫
(1 + ω2)a|A(ω)|2dω

≤ C∆2m2−2a.

By Parseval’s theorem

∥χm − χ∥2 =
1

2π
∥ ϕχm − ϕχ ∥2= 1

2π

∫
|ω|>mπ

∣∣∣∣ A(ω)

c−A(ω)

∣∣∣∣2 dω
≤

∫
|ω|>mπ |A(ω)|

2dω

2π(c− µ1)2
≤ L

2π(mπ)2a(c− µ1)2
.
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Thus, Proposition 1 gives

E∥χ̂m − χ∥2 = O
(
m(n∆)−1 +∆2m2−2a +m−2a

)
= O(m(n∆)−1 +m−2a).

The remainder of the proof follows immediately. 2

Remark 2. Let us consider the convergence rate presented in Proposition 2. If X is a
compound Poisson subordinator, then

|A(ω)| ≤
∫ ∞

0

∣∣∣∣eiωx − 1

iω

∣∣∣∣ ν(dx) ≤ ∫ ∞

0
(x ∧ 2

|ω|
)ν(dx) ≤ µ1 ∧

2ν(0,∞)

|ω|
,

which implies that in Assumption V we have to choose 0 < a < 1
2 . When X is a Lévy-

Gamma process with with parameters (α, β), then we have

ϕZ(ω) =

(
α

α− iω

)β∆

.

It follows from the construction of the distinguish logarithm (see Theorem 7.6.2 in Chung
(2001)), we have

|A(ω)| =

∣∣∣∣∣ 1∆ Log(ϕ̂(ω))

iω

∣∣∣∣∣ ≤ C(1 ∧ | log |ω||
|ω|

)

for some constant C > 0. Again, we have to choose 0 < a < 1
2 in Assumption V. For

these two examples, by Proposition 2 we have

E∥χ̂m − χ∥2 ≤ C(n∆)−
1
2
(1−ϵ)

for any 0 < ϵ < 1.

We return to study the estimator ψ̂m. It follows from (2.1) and (2.8) that

ψ̂m(u)− ψ(u) = (ρ̂− ρ)

(
1−

∫ u

0
χ(x)dx

)
− (1− ρ̂)

∫ u

0
(χ̂m(x)− χ(x))dx.

Thus, we have

E|ψ̂m(u)− ψ(u)| ≤
(
1−

∫ u

0
χ(x)dx

)
E|ρ̂− ρ|

+E
∣∣∣∣(1− ρ̂)

∫ u

0
(χ̂m(x)− χ(x))dx

∣∣∣∣
≤

(
1−

∫ u

0
χ(x)dx

)
E

1
2 (ρ̂− ρ)2

+E
1
2 (1− ρ̂)2 · E

1
2

(∫ u

0
(χ̂m(x)− χ(x))dx

)2

,

13



where Cauchy-Schwarz inequality is used in the second step. It follows from Theorem 2.1
in Conte and Genon-Catalot (2009) that

E(ρ̂− ρ)2 =
1

c2
E

(
1

n∆

n∑
k=1

(Zk − EZ1)

)2

≤ C

n∆
.

Then

E(1− ρ̂)2 ≤ 2(1− ρ)2 + 2E(ρ̂− ρ)2 ≤ 2(1− ρ)2 +
C

n∆
.

By Jensen’s inequality,(∫ u

0
(χ̂m(x)− χ(x))dx

)2

≤ u

∫ u

0
(χ̂m(x)− χ(x))2dx ≤ u∥χ̂m − χ∥2.

Finally, combining above results gives

E|ψ̂m(u)− ψ(u)| ≤ C

(
1√
n∆

+
√
uE

1
2 ∥χ̂m − χ∥2

)
. (3.10)

Theorem 1. Suppose that the assumptions in Proposition 2 hold. Then form = O((n∆)
1

2a+1 )
we have

E|ψ̂m(u)− ψ(u)| ≤ C
√
u(n∆)−

a
2a+1 . (3.11)

Proof. The result follows from (3.10) and Proposition 2 with m = O((n∆)
1

2a+1 ), 2

By Remark 2, when X is either a compound Poisson subordinator or a Lévy-Gamma
subordinator, we can choose 0 < a < 1

2 in (3.11). Hence, in these two examples, we have

E|ψ̂m(u)− ψ(u)| ≤ C
√
u(n∆)−

1
4
(1−ϵ), 0 < ϵ < 1. (3.12)

Note that one drawback of the above risk bound is that it is an increasing function of u.
However, simulation studies given in Section 5 show that the estimator also performs well
for large initial surplus.

4. Cut-off selection

From Section 3 we know that the estimator depends heavily on the cut-off parameter
m. In this section, we propose a data-driven strategy to choose m.

First, introduce

ζ(x) =
sin(πx)

πx
, (with ζ(0) = 1),

14



which has fourier transform 1[−π,π](ω). Define the following closed subset of L2

Sm = {v ∈ L2, supp(ϕv) ⊂ [−mπ,mπ]} .

It is well known that {ζm,j}j∈Z, defined by

ζm,j(x) =
√
mζ(mx− j), ϕζm,j

(ω) =
eiωj/m√

m
1[−mπ,mπ](ω),

is an orthonormal basis of the space Sm. For v ∈ L2, let vm denote its orthogonal
projection on Sm. Obviously, we have ϕvm = ϕv1[−mπ,mπ] and

vm(x) =
∑
j∈Z

⟨vm, ζm,j⟩ζm,j(x),

where the inner product is given by

⟨vm, ζm,j⟩ =
1

2π

∫
ϕζm,j

(−ω)ϕvm(ω)dω.

An alternative formula for χ̂m is given by

χ̂m =
∑
j∈Z

âm,jζm,j , (4.1)

where

âm,j =
1

2π

∫
ϕζm,j

(−ω) Â(ω)

c− Â(ω)
1En(ω)dω.

Note that Parseval’s theorem gives

∥ χ̂m ∥2=
∑
j∈Z

|âm,j |2. (4.2)

Also, we have

χm =
∑
j∈Z

am,jζm,j

with

am,j =
1

2π

∫
ϕζm,j

(−ω) A(ω)

c−A(ω)
dω.

For v ∈ Sm, define

γn(v) = ∥ v ∥2 − 1

π

∫
ϕv(−ω)

Â(ω)

c− Â(ω)
1En(ω)dω

= ∥ v ∥2 −2⟨χ̂m, v⟩
= ∥ v − χ̂m ∥2 − ∥ χ̂m ∥2 .
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Then we have
χ̂m = arg min

v∈Sm

γn(v)

and γn(χ̂m) = −∥χ̂m∥2. Now consider a collection (Sm,m = 1, 2, . . . ,mn) where mn is
restricted to satisfy mn ≤ n∆. Here we remak that the parameter m need not be integers
and can be taken from a discrete set with a finer or larger step than 1.

We select adaptively the parameter m as follows:

m̂ = arg min
m∈{1,2,...,mn}

{γn(χ̂m) + pen(m)}, (4.3)

where the penalty function pen is defined as

pen(m) = 96c2
E(Z2

1/∆)

(c− E[Z1/∆])4
m

n∆
.

The motivation of the above selection criterion is as follows. It follows from (3.6) that

∥χ̂m − χ∥2 = ∥χ̂m − χm∥2 + ∥χm − χ∥2 = ∥χ̂m − χm∥2 + ∥χ∥2 − ∥χm∥2.

We estimate the bias term −∥χm∥2 (up to a constant ∥χ∥2) by γn(χ̂m). Then a compro-
mise is made between this term and the variance term E∥χ̂m − χm∥2 that is estimated
by the penalty function pen(m). Here we remark that the exact formula for the variance
term is hard to obtain and the penalty function is only constructed by approximating the
leading order of the variance.

Theorem 2. Suppose that the assumptions S and H(4) hold. Then

E ∥ χ̂m̂ − χ ∥2 ≤ inf
m∈{1,2,...,mn}

(
3 ∥ χm − χ ∥2 +4pen(m)

)
+

C

n∆

+C

∫ mnπ

−mnπ
|A(ω)− EÂ(ω)|2dω,

where the constant C does not depend on n.

Proof. For v1, v2 ∈ Sm, we have

γn(v1)− γn(v2)

= ∥ v1 − χ ∥2 − ∥ v2 − χ ∥2 +2⟨v1 − v2, χ− χ̂m⟩

= ∥ v1 − χ ∥2 − ∥ v2 − χ ∥2 −2
5∑

j=1

Rn,j(v1 − v2), (4.4)
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where, for j = 1, 2, . . . , 5, Rn,j(v) =
1
2π

∫
ϕv(−ω)Tj(ω)dω with Tj ’s defined in the proof of

Proposition 1. Note that we have used the fact that ⟨v, χ⟩ = ⟨v, χm⟩ for v ∈ Sm.
By the definition of m̂, we have

γn(χ̂m̂) + pen(m̂) ≤ γn(χ̂m) + pen(m) ≤ γn(χm) + pen(m).

Thus, using (4.4) we obtain

∥χ̂m̂ − χ∥2

≤ ∥χm − χ∥2 + pen(m)− pen(m̂) + 2

5∑
j=1

Rn,j(χ̂m̂ − χm)

≤ ∥χm − χ∥2 + pen(m)− pen(m̂) + 2∥χ̂m̂ − χm∥
5∑

j=1

sup
v∈B(m,m̂)

Rn,j(v),

where, for all m,m′, B(m,m′) = {v ∈ Sm∨m′ , ∥ v ∥= 1}. Employing the inequalities
2xy ≤ x2/4 + 4y2 and ∥χ̂m̂ − χm∥2 ≤ 2∥χ̂m̂ − χ∥2 + 2∥χm − χ∥2, we have

2 ∥ χ̂m̂ − χm ∥
5∑

j=1

sup
v∈B(m,m̂)

Rn,j(v) ≤ 1

2
∥ χ̂m̂ − χ ∥2 +1

2
∥ χm − χ ∥2

+24

5∑
j=1

sup
v∈B(m,m̂)

R2
n,j(v).

Combining above results we find

∥χ̂m̂ − χ∥2 ≤ 3 ∥ χm − χ ∥2 +2pen(m)− 2pen(m̂) + 48

5∑
j=1

sup
v∈B(m,m̂)

R2
n,j(v)

≤ 3 ∥ χm − χ ∥2 +2pen(m)− 2pen(m̂)

+48

(
sup

v∈B(m,m̂)
R2

n,1(v)− p(m, m̂)

)
+

+48

5∑
j=2

sup
v∈B(m,m̂)

R2
n,j(v) + 48p(m, m̂),

where the functions p(·, ·), j = 1, 2, are defined in Lemma 2 in Appendix A. It is easily
seen that

24p(m,m′) ≤ pen(m) + pen(m′) (4.5)
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for all m and m′. Then we have

E∥χ̂m̂ − χ∥2 ≤ 3 ∥ χm − χ ∥2 +4pen(m)

+48E

(
sup

v∈B(m,m̂)
R2

n,1(v)− p(m, m̂)

)
+

+48

5∑
j=2

E sup
v∈B(m,m̂)

R2
n,j(v). (4.6)

We will study the terms on the right hand side of (4.6) one by one. By Lemma 2 we
have

E

(
sup

v∈B(m,m̂)
R2

n,1(v)− p(m, m̂)

)
+

≤ C

n∆
.

For j = 2, 3, 4, 5, by Cauchy-Schwarz inequality and Parseval’s theorem we obtain

sup
v∈B(m,m̂)

R2
n,j(v) ≤ 1

4π2

(
sup

v∈B(m,m̂)

∫
|ϕv(−ω)|2dω

)(∫ mnπ

−mnπ
|Tj(ω)|2dω

)
=

1

2π

∫ mnπ

−mnπ
|Tj(ω)|2dω.

Then using the results given in the proof of Proposition 1 we have for j = 2, 3, 5

E

(
sup

v∈B(m,m̂)
R2

n,j(v)

)
≤ E

1

2π

∫ mnπ

−mnπ
|Tj(ω)|2dω ≤ C

mn

(n∆)2
≤ C

n∆

thanks to mn ≤ n∆. Finally, for j = 4 we have

E

(
sup

v∈B(m,m̂)
R2

n,4(v)

)
≤ E

1

2π

∫ mnπ

−mnπ
|T4(ω)|2dω ≤ C

∫ mnπ

−mnπ
|A(ω)− EÂ(ω)|2dω.

Thus, the proof is complete. 2

We can not use (4.3) directly to determine m because the penalty function is still
unknown. To this end, we replace the theoretical penalty function by a empirical type

pem∗(m) =


96c2

1
n∆

∑n
j=1 Z

2
j

(c− 1
n∆

∑n
j=1 Zj)

4
m
n∆ , if

∣∣∣c− 1
n∆

∑n
j=1 Zj

∣∣∣ ≥ ϵn,

m
n∆ , if

∣∣∣c− 1
n∆

∑n
j=1 Zj

∣∣∣ < ϵn,
(4.7)

where 0 < ϵn < 1 and ϵn → 0 as n → ∞. We select adaptively the parameter m as
follows:

m̂∗ = arg min
m∈{1,2,...,mn}

{γn(χ̂m) + pen∗(m)}. (4.8)
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The threshold parameter ϵn is just used to study the risk bounds ( see the proof of
Theorem 3). In practical applications, we can set it to be a fixed constant as small as
enough by hand.

Theorem 3. Suppose that assumptions S and H(8) hold. Then

E ∥ χ̂m̂∗ − χ ∥2 ≤ inf
m∈{1,2,...,mn}

(
3 ∥ χm − χ ∥2 +4.05pen(m)

)
+

C

n∆

+C

∫ mnπ

−mnπ
|A(ω)− EÂ(ω)|2dω,

where the constant C does not depend on n.

Proof. Let

Ω1 =

{∣∣∣∣∣c−
1
n∆

∑n
j=1 Zj

c− E[Z1/∆]
− 1

∣∣∣∣∣ ≤ a1

}
, Ω2 =

{∣∣∣∣∣
1
n

∑n
j=1 Z

2
j

EZ2
1

− 1

∣∣∣∣∣ ≤ a2

}
,

Ω3 =


∣∣∣∣∣∣c− 1

n∆

n∑
j=1

Zj

∣∣∣∣∣∣ ≥ ϵn

 ,

where 0 < a1, a2 < 1. Set Ω = ∩3
j=1Ωj . Define

f(x, y) =
96c2y

(c− x)4
, x, y > 0.

Then we have
pen(m) = f(E[Z1/∆], E[Z2

1/∆])
m

n∆
,

and on Ω,

pen∗(m) = f(
1

n∆

n∑
j=1

Zj ,
1

n∆

n∑
j=1

Z2
j )
m

n∆
.

Note that on Ω1

(1− a1)(c− E[Z1/∆]) ≤ c− 1

n∆

n∑
j=1

Zj ≤ (1 + a1)(c− E[Z1/∆]),

and on Ω2

(1− a2)E[Z2
1/∆] ≤ 1

n∆

n∑
j=1

Z2
j ≤ (1 + a2)E[Z2

1/∆].
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Using these results with a1 = a2 = 0.01 we find that on Ω

0.94pen(m) ≤ pen∗(m) ≤ 1.08pen(m) (4.9)

for all m > 0.
Applying the same arguments as in the proof of Theorem 2, we know that on Ω

∥ χ̂m̂∗ − χ ∥2 ≤ 3 ∥ χm − χ ∥2 +2pen∗(m)− 2pen∗(m̂∗)

+48

(
sup

v∈B(m,m̂∗)
R2

n,1(v)− p∗(m, m̂∗)

)
+

+48
5∑

j=2

sup
v∈B(m,m̂∗)

R2
n,j(v) + 48p∗(m, m̂∗),

where the functions p∗(·, ·) = 0.94p(·, ·). After applying (4.5) and (4.9) to the above
inequality we find that

∥ χ̂m̂∗ − χ ∥2 1Ω ≤ 3 ∥ χm − χ ∥2 +4.05pen(m)

+48

(
sup

v∈B(m,m̂∗)
R2

n,1(v)− p∗(m, m̂∗)

)
+

1Ω

+48
5∑

j=2

sup
v∈B(m,m̂∗)

R2
n,j(v)1Ω.

Then similar to Theorem 2 we can prove that

E[∥ χ̂m̂∗ − χ ∥2 1Ω] ≤ inf
m∈{1,2,...,mn}

(
3 ∥ χm − χ ∥2 +4.05pen(m)

)
+

C

n∆
.

Now we bound the the expectation E[∥ χ̂m̂∗ − χ ∥2 1Ωc ]. Firstly, note that

P(Ωc) ≤
3∑

j=1

P(Ωc
j).

By Markov’s inequality and Theorem 2.1 in Comte and Genon-Catalot (2009) we have

P(Ωc
2) ≤ 1(

a2E[Z2
1/∆]

)2pE
 1

n∆

n∑
j=1

Z2
j − E[Z2

1/∆]

2p

≤ C

(n∆)p
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Similarly, P(Ωc
1) ≤ C

(n∆)p . Because ϵn → 0, we have Ωc
3 ⊆ Ωc

1 for large n. Thus, we also

have P(Ωc
3) ≤ C

n∆ . From these results we conclude that

P(Ωc) ≤ C

(n∆)p
. (4.10)

Note that

∥ χ̂m̂∗ − χ ∥2=∥ χ̂m̂∗ − χm̂∗ ∥2 + ∥ χm̂∗ − χ ∥2≤∥ χ̂m̂∗ − χm̂∗ ∥2 + ∥ χ ∥2

By (4.10) with p = 1 we obtain E[∥ χ ∥2 1Ωc ] ≤ C
n∆ . By Cauchy-Schwarz inequality we

have
E[∥ χ̂m̂∗ − χm̂∗ ∥2 1Ωc ] ≤ E

1
2 [∥ χ̂m̂∗ − χm̂∗ ∥4]P

1
2 (Ωc). (4.11)

By Cauchy-Schwarz inequality and Lemma 1 we have

E ∥ χ̂m̂∗ − χm̂∗ ∥4 ≤ E

 1

2π

∫ mnπ

−mnπ

∣∣∣∣∣ Â(ω)

c− Â(ω)
1En(ω) −

A(ω)

c−A(ω)

∣∣∣∣∣
2

dω

2

≤ mn

2π

∫ mnπ

−mnπ
E

∣∣∣∣∣ Â(ω)

c− Â(ω)
1En(ω) −

A(ω)

c−A(ω)

∣∣∣∣∣
4

dω

≤ C
m2

n

(n∆)2
= O(1)

thanks to mn ≤ n∆. Then by (4.10) with p = 2 and (4.11) we get

E[∥ χ̂m̂∗ − χm̂∗ ∥2 1Ωc ] ≤ C

n∆
.

Hence, we have proved that

E[∥ χ̂m̂∗ − χ ∥2 1Ωc ] ≤ C

n∆
.

This completes the proof. 2

Under the conditions in Proposition 2, we have∫ mnπ

−mnπ
|A(ω)− EÂ(ω)|2dω = o(m−2a

n ),

and consequently Theorem 2 yields

E ∥ χ̂m̂∗ − χ ∥2≤ inf
m∈{1,2,...,mn}

(
3 ∥ χm − χ ∥2 +4.05pen(m)

)
+ C((n∆)−1 +m−2a

n ).
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5. Simulation studies

In this section, we provide two simulation studies to show the performance of our
estimator with finite sample size.

We first describe the calculation procedure. Instead of using formula (2.7), we will
use (4.1) to calculate χ̂m. The cut-off parameter m is selected base on the strategy given
in (4.8). Since we can only compute a finite number of âm,j ’s, we truncate the infinite
sum in (4.1) by a sufficiently large integer Kn, i.e. we use the following approximation

χ̂m(x) ≈
∑

|j|≤Kn

âm,jζm,j(x), (5.1)

where the coefficients âm,j are calculated by IFFT. We remark that this approximation
has little affect on the estimator, and at least it does not change the rate of convergence.
We refer the readers to Comte et al. (2006) for theoretical arguments on such truncation.
Now we summarize the solution steps as follows.

• Apply IFFT to compute the coefficients âm,j form = 1, 2, . . . , n∆ and j = −Kn,−Kn+
1, . . . , 1, . . . ,Kn − 1,Kn;

• For each m ∈ {1, 2, . . . , n∆}, compute γn(χ̂m) + pen∗(m);

• Choose m̂∗ according to (4.8);

• Compute ρ̂ by (2.2);

• Apply (2.8) to obtain ψ̂m̂∗(u) ≈ ρ̂− (1− ρ̂)
∑

|j|≤Kn
âm̂∗,j

∫ u
0 ζm̂∗,j(x)dx.

Now, we consider two specific cases of X. One is a compound Poisson process, and the
other is a Lévy-Gamma process. In the following two examples, the truncation parameter
Kn = 216 − 1.

Example 1 (Compound Poisson Process). Assume that the Lévy measure is given
by ν(dx) = 20e−xdx. Then X is a compound Poisson process where the Poison intensity
is 20 and the individual claim sizes are exponentially distributed with mean 1. Set the
premium rate c = 25.

Example 2 (Lévy-Gamma Process ). Assume that the Lévy measure is given by ν(dx) =
20x−1e−0.5x1(x>0)dx. Then X is a Lévy-Gamma process with EX1 = 40. Set the premium
rate c = 50.

In example 1, the true ruin probability is ψ(u) = 0.8e−0.2u. In example 2, we use IFFT
to approximate the run probability and then compare the estimator with this approxi-
mation. Firstly, for each example, 20 estimated curves are given in Figure 2 and Figure
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Figure 2: Estimation of the ruin probability in the compound Poisson risk model with exponential claim
sizes. True ruin probability ( red line) and 20 estimated curves ( blue lines). Sample size n = 40000,
sampling interval ∆ = 0.005.

4, respectively, where we set n = 40000, ∆ = 0.005. In each example, we find the little
variability of the estimator. Next, we study the impact of the sample size n. We consider
three cases: (1) n = 5000, ∆ = 0.02 (n∆ = 100); (2) n = 15000, ∆ = 0.01 (n∆ = 150);
(3) n = 40000, ∆ = 0.005 (n∆ = 200). In each case, 1000 experiments are performed.
We plot the means in Figure 3 and Figure 5 based on the 1000 estimated curves. As is
expected, the results improve as the sample size increases. Finally, we compute the mean
squared errors (M̂SE) and present some results in Table 1. The results are computed
based on the above 1000 experiments. Again, we find that for fixed initial surplus the
mean squared errors decrease w.r.t. the sample size. We also observe that the problem is
easier for smaller or larger initial surplus. This may be due to the fact that the curve of
the ruin probability has smaller curvature when the initial surplus is smaller or larger.

6. Conclusions

In this paper we present a nonparametric estimator of the ruin probability in a pure-
jump Lévy risk model. By high-frequency observation of the aggregate claims process,
we use Pollaczeck-Khinchine formula and Fourier transform to construct the estimator.
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estimator with n∆=100

estimator with n∆=150

estimator with n∆=200

Figure 3: Estimation of the ruin probability in the compound Poisson risk model with exponential claim
sizes. Sample size n = 5000, 15000, 40000, sampling interval ∆ = 0.02, 0.01, 0.005.

M̂SE (Compound Poisson) M̂SE (Lévy-Gamma)

u n∆ = 100 n∆ = 150 n∆ = 200 n∆ = 100 n∆ = 150 n∆ = 200

0 0.0002938 0.0002470 0.0001885 0.0003682 0.0001897 0.0001738
5 0.0137545 0.0046167 0.0022288 0.0131979 0.0044545 0.0024117
10 0.0077125 0.0018827 0.0007069 0.0087679 0.0025835 0.0013761
15 0.0028048 0.0005094 0.0001587 0.0036593 0.0009388 0.0005172
20 0.0006815 7.9191e-5 3.5201e-5 0.0011041 0.0002243 0.0001337
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Figure 4: Estimation of the ruin probability in the Lévy-Gamma risk model. IFFT approximation to the
ruin probability (red line) and 20 estimated curves (blue lines). Sample size n = 40000, sampling interval
∆ = 0.005.
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IFFT approximation to the true value

estimator with n∆=100
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Figure 5: Estimation of the ruin probability in the compound Poisson risk model with exponential claim
sizes. Sample size n = 5000, 15000, 40000, sampling interval ∆ = 0.02, 0.01, 0.005.

Risk bounds are given and an adaptive strategy to select the cut-off parameter m is also
presented. Simulation studies show that the estimator performs well when the sample
size is finite.

There are also some open problems for further study, for example, how to estimate
the ruin probability in a more general Lévy risk model and how to estimate other risk
measures such as the discounted penalty function of the surplus before ruin and the deficit
at ruin.

Appendix A. Lemma and Proof

Lemma 2. Define

p(m,m′) = 4c2
E(Z2

1/∆)

(c− E[Z1/∆])4
m ∨m′

n∆
,

and suppose that assumptions S and H(4) hold. For Rn,1 defined in the proof of Theorem
2, we have

E

(
sup

v∈B(m,m̂)
R2

n,1(v)− p(m, m̂)

)
+

≤ C

n∆
.

26



Proof. Write

τ1(ω) = E
(
eiωZ1 − 1

iω∆
1{|Z1|≤kn

√
∆}

)
, τ2(ω) = E

(
eiωZ1 − 1

iω∆
1{|Z1|>kn

√
∆}

)
and let τ̂1(ω) and τ̂2(ω) be their empirical counterparts, where the constant kn will be
specified later. We decompose Rn,1(v) as Rn,1(v) = Rn,1,1(v) +Rn,1,2(v), where

Rn,1,j(v) =
1

2π

∫
cϕv(−ω)

[c− EÂ(ω)]2
(τ̂j(ω)− τj(ω))dω, j = 1, 2.

Then we have

E

(
sup

v∈B(m,m̂)
R2

n,1(v)− p(m, m̂)

)
+

≤ E

(
sup

v∈B(m,m̂)
R2

n,1,1(v)− p(m, m̂)

)
+

+E

(
sup

v∈B(m,m̂)
R2

n,1,2(v)

)
.

We use Talagrand inequality to bound the first expectation on the right hand side of
the above inequality. Write Rn,1,1(v) in the following form

Rn,1,1(v) =
1

n

n∑
j=1

(fv(Zj)− Efv(Zj)) ,

where

fv(z) =
1

2π

∫
cϕv(−ω)

[c− EÂ(ω)]2
eiωz − 1

iω∆
1{|z|≤kn

√
∆}dω.

We need to specify the constants M1,H1, c1 (see the Talagrand inequality in Appendix
B).

By Cauchy-Schwarz inequality we obtain

sup
|z|∈R,v∈B(m,m′)

|fv(z)| ≤ 1

2π

(∫
|ϕv(−ω)|2dω

) 1
2

×

(∫ m′′π

−m′′π

c2

|c− EÂ(ω)|4

∣∣∣∣eiωz − 1

iω∆

∣∣∣∣2 1{|z|≤kn
√
∆}dω

) 1
2

≤ c√
2π(c− µ1)2

(∫ m′′π

−m′′π

∣∣∣∣eiωz − 1

iω∆

∣∣∣∣2 1{|z|≤kn
√
∆}dω

) 1
2

(A.1)

≤ kn
√
m′′

(c− µ1)2
√
∆
,
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where m′′ = m∨m′, and the last step follows from the inequality |eiωz − 1| ≤ |ωz|. Thus,
we can set

M1 =
kn

√
m′′

(c− µ1)2
√
∆
.

Again, by Cauchy-Schwarz inequality we have

E

(
sup

v∈B(m,m′)
R2

n,1,1(v)

)
≤ 1

2π
E
∫ m′′π

−m′′π

c2∣∣∣c− EÂ(ω)
∣∣∣4 |τ̂1(ω)− Eτ̂1(ω)|2 dω

≤ c2

2π(c− µ1)4n

∫ m′′π

−m′′π
E
∣∣∣∣eiωZ1 − 1

iω∆

∣∣∣∣2 dω
≤ c2E[Z2

1/∆]

(c− µ1)4
m′′

n∆
= H2

1 .

Note that E[Z2
1/∆] in the above formula is bounded.

By (A.1) we have

sup
v∈B(m,m′)

V ar(fv(Z1)) ≤ sup
v∈B(m,m′)

E|fv(Z1)|2

=
c2

2π(c− µ1)4

∫ m′′π

−m′′π
E
∣∣∣∣eiωZ1 − 1

iω∆

∣∣∣∣2 dω
=

c2

2π(c− µ1)4

(∫
|ω|≤ln(m′′π)

+

∫
ln(m′′π)<|ω|≤m′′π

E
∣∣∣∣eiωZ1 − 1

iω∆

∣∣∣∣2 dω
)
.

For the first integral, using the inequality |eiωx − 1| ≤ |ωx| gives∫
|ω|≤ln(m′′π)

E
∣∣∣∣eiωZ1 − 1

iω∆

∣∣∣∣2 dω ≤ 2 ln(m′′π)E(Z2
1/∆)

∆
.

While for the second integral we have∫
ln(m′′π)<|ω|≤m′′π

E
∣∣∣∣eiωZ1 − 1

iω∆

∣∣∣∣2 dω ≤
∫
ln(m′′π)<|ω|≤m′′π

2

ω2∆2
E|eiωZ1 − 1|dω

≤ 4E[Z1/∆]

∆

∫
ln(m′′π)<ω≤m′′π

1

ω
dω

≤ 4µ1 ln(m
′′π)

∆
.

Thus,

V ar(fv(Z1)) ≤ c2(E(Z2
1/∆) + 2µ1)

π(c− µ1)4
ln(m′′π)

∆
:= c1.
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By Talagrand inequality with ϵ21 =
1
2 we have

E

(
sup

v∈B(m,m′)
R2

n,1,1(v)− p(m,m′)

)
+

≤ C

(
lnm′′

n∆
e−C′m′′/ lnm′′

+
k2nm

′′

n2∆
e−C′′√n/kn

)
.

Choosing

kn =
C

4

√
n

ln(n∆)

and using the same arguments as in Proposition A.1 of Comte and Genon-Catalot (2009),
we can obtain

E

(
sup

v∈B(m,m̂)
R2

n,1(v)− p(m, m̂)

)
+

≤ C

n∆
.

For Rn,1,2(v) we have

E

(
sup

v∈B(m,m̂)
R2

n,1,2(v)

)

≤ 1

2π
E
∫ mnπ

−mnπ

c2

|c− EÂ(ω)|4
|τ̂2(ω)− Eτ̂2(ω)|2dω

≤ c2

2π(c− µ1)4n

∫ mnπ

−mnπ
E
∣∣∣∣eiωZ1 − 1

iω∆
1{|Z1|>kn

√
∆}

∣∣∣∣2 dω
≤ c2

2π(c− µ1)4n∆3k2n

(∫
|ω|≤ln(mnπ)

+

∫
ln(mnπ)<|ω|≤mnπ

E
∣∣∣∣Z1

eiωZ1 − 1

iω

∣∣∣∣2 dω
)

Again, it is easily seen that∫
|ω|≤ln(mnπ)

E
∣∣∣∣Z1

eiωZ1 − 1

iω

∣∣∣∣2 dω ≤ 2E[Z4
1 ] ln(mnπ)

and ∫
ln(mnπ)<|ω|≤mnπ

E
∣∣∣∣Z1

eiωZ1 − 1

iω

∣∣∣∣2 dω ≤ 4E[Z3
1 ] ln(mnπ).

Thus, with kn = C
4

√
n

ln(n∆) , we have

E

(
sup

v∈B(m,m̂)
R2

n,1,2(v)

)
≤ c2(E[Z4

1/∆] + 2E[Z3
1/∆])

π(c− µ1)4
ln(mnπ)

n∆2k2n
≤ C

ln3(n∆)

(n∆)2
≤ C

n∆

thanks to mn ≤ n∆. Note that E[Z3
1/∆] and E[Z4

1/∆] are both bounded. This completes
the proof.
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Appendix B. Useful inequalities

Marcinkiewicz-Zygmund inequality. Let (Yj)j=1,...,n be independent centered random
variables, such that E|Yj |p <∞ for some integer p ≥ 1. Then

BpE

 n∑
j=1

Y 2
j

p/2

≤ E

∣∣∣∣∣∣
n∑

j=1

Yj

∣∣∣∣∣∣
p

≤ CpE

 n∑
j=1

Y 2
j

p/2

where Bp and Cp are positive constants depending only on p. In particular, we can choose
Cp = (4 + 2p)p/2.

Talagrand Inequality. Let (Yj)j=1,...,n be independent random variables and νn,Y (f) =
1
n

∑n
j=1[f(Yj)−Ef(Yj)] and let F be a countable class of uniformly bounded measurable

functions. Then for ϵ21 > 0

E

[
sup
f∈F

|νn,Y (f)|2 − 2(1 + 2ϵ21)H
2
1

]
+

≤ 4

K1

(
c1
n
e
−K1ϵ21

nH2
1

c1 +
98M2

1

K1n2Q2(ϵ21)
e
− 2K1Q(ϵ21)ϵ1

7
√

2

nH1
M1

)
,

where Q(ϵ21) =
√

1 + ϵ21 − 1, K1 = 1/6, and

sup
f∈F

∥f∥∞ ≤M1, E

[
sup
f∈F

|νn,Y (f)|

]
≤ H1, sup

f∈F

1

n

n∑
j=1

V ar(f(Yj)) ≤ c1.

Standard density arguments show that the above result can be extended to the case where
F is a unit ball of a linear normed space. For more about the Talagrand inequality, we
refer the readers to Massart (2000, 2007) and Comte and Genon-Catalot (2009).
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