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Abstract

This paper studies the theory of discrete-time backward stochastic difference e-
quations (also called BSDEs) with a random terminal time, which is not a stopping
time. We follow Cohen and Elliott [2] and consider a reference filtration generated by
a general discrete-time finite-state process. The martingale representation theorem for
essentially bounded martingales under progressively enlarged filtration is established.
Then we prove the existence and uniqueness theorem of BSDEs under enlarged fil-
tration using some weak assumptions of the driver. We also present conditions for
a comparison theorem. Applications to nonlinear expectations and optimal design of
dynamic default risk are explored.

Keywords: BSDE, Progressively enlarged filtration, Random terminal horizon,
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1 Introduction

In this paper, we focus on theory of discrete-time finite-state BSDEs under progressively enlarged
filtration. The motivation is an optimal design problem of dynamic risk measures of defaultable
contingent claims. The application of BSDEs in such problem was first studied by Barrieu and
El Karoui [1] in a Brownian setting. A related problem of optimal design of dynamic default risk
measures using BSDEs on a single jump process was explored by Shen and Elliott [8]. In [8],
the terminal payoff only depends on the occurrence of the default. However, in the real financial
market, the payoff of the defaultable contingent claims may depend not only on the default time,
but also on the paths of some risky assets. Therefore, in this paper, we use progressive enlargement
of discrete-time finite-state filtration and characterize the optimal design of dynamic risk measures
of such defaultable contingent claims using theory of BSDEs under enlarged filtration.

Sections of this paper are arranged as follows. We present assumptions on the financial risky
assets, default time and enlarged filtration in Section 2. Martingale representation theorem under
enlarged filtration is given in Section 3. Based on this theorem, we establish the existence and
uniqueness theorem of BSDEs under enlarged filtration in Section 4. A comparison theorem is
studied in Section 5. Applications of such BSDEs including nonlinear expectations and optimal
design of dynamic risk measures are explored in Section 6. Finally Section 7 concludes this paper.

2 Assumptions on reference market, default time and en-
larged filtration

We follow Cohen and Elliott [2] by considering a discrete-time finite-state process X as the under-
lying stochastic process. Suppose (Ω,F ,P) is a probability space and X = {Xt, t ∈ {0, 1, . . . , T}}
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is a finite state process. Without loss of generality we suppose for each t ∈ {0, 1, . . . , T},

Xt ∈ {e1, e2, . . . , eN},

where N is the number of the states and ei is the ith standard unit vector in RN . Consider a
filtered probability space (Ω,F , (Ft)0≤t≤T ,P), where

Ft = σ({Xs, s ≤ t}, A ∈ F : P(A) = 0).

Then, we can define the martingale process M by Mt := Xt − E(Xt|Ft−1).

We consider a problem of risk measure of a defaultable contingent claim which is associated
with a random default time τ , which is not an F-stopping time. The terminal payoff of the claim
at time τ ∧ T has the following form:

Q := V Iτ>T + CτIτ≤T , (1)

where V is FT -measurable, i.e. V depends on the paths of asset prices until time T , and C is an
F-predictable nonnegative process.

In this paper, we consider BSDEs with uncertain time horizon: the terminal time τ . The
default time does not depend entirely on the paths of the underlying financial assets. However,
at each time t, it should be observable whether the default τ has occurred or not. Therefore,
the information is not the filtration generated by the price processes (Ft)0≤t≤T , but is defined as
G = (Gt)0≤t≤T , where

Gt = Ft ∨ σ((t+ 1) ∧ τ), (2)

which is the completion of the smallest filtration that contains filtration (Ft)0≤t≤T and that makes
τ a stopping time.

In order to avoid arbitrage opportunities, we should work on a mathematical set up where (F ,P)
semi-martingales remain (G,P) semi-martingales. Initial time setting was adopted in continuous-
time cases. Similarly, in this paper, we consider the following hypothesis about conditional prob-
ability function.

Hypothesis H1. Assume that for all t, there exists an Ft × B(R+)-measurable function αt :
(ω, s)→ αt(ω, s) which satisfies for all s, P-a.s.

P(τ = s|Ft) := αt(s).

Remark 1. In the continuous-time setting in [6], density hypothesis guarantees that τ avoids
F-stopping times, which means τ does not share common jump with any F-adapted process.
However, in the discrete-time setting, Hypothesis H1 does not necessarily implies such property.
In this paper, we adopt the following hypothesis.

Hypothesis H2. τ does not share common jump with X, that is,

P(Xt+1 6= Xt, τ = t+ 1) = 0, ∀t ∈ [0, T ].

We define the conditional cumulative distribution function and conditional survival function:

Ft := P(τ ≤ t|Ft) =

t∑
s=0

αt(s), St = 1− Ft =

∞∑
s=t+1

αt(s).

We also consider the following hypothesis under which (F ,P)-martingales remain (G,P)-martingales.

Hypothesis H3. For all s ≤ t, αt(s) = αs(s).

Under Hypothesis H3, we can write the processes F and S as

Ft := P(τ ≤ t|Ft) =

t∑
s=0

αs(s), St = 1− Ft =

∞∑
s=t+1

αs(s).

We also assume that Ft < 1, for all t ∈ [0, T ]. Then regarding the discrete-time process as a simple
process in continuous-time setting, the following key lemma in [5] holds in our setting.
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Lemma 2. For any t ≥ s, let ξ ∈ L(Ft). Then,

E(ξIτ>t|Gs) =
Iτ>s
Ss

E(ξSt|Fs).

Based on the above lemma, we can obtain the following proposition.

Proposition 3. Under Hypothesises H1 and H3, we have the following properties:

(1). F is immersed in G, i.e. any (F ,P)-martingale is also a (G,P)-martingale.

(2). Define It := Iτ=t − Iτ≥t αt(t)
St−1

, then E[It+1|Gt] = 0 and E[Mt+1It+1|Gt] = 0.

Proof. (1): According to the martingale representation theorem in [2], all the (F ,P)-martingales
can be represented in terms of Mt. Therefore we need only to prove E[Mt+1|Gt] = 0, i.e.
E[Xt+1|Ft] = E[Xt+1|Gt], for all t, which is equivalent to that for all t, all At ∈ Gt, E[Xt+1IAt

] =
E[E[Xt+1|Ft]IAt ]. Define

Mt := {A : E[Xt+1IA] = E[E[Xt+1|Ft]IA]}.

With t fixed, it is obvious that the set

At := {{τ = s} ∩At, {τ = s} ∪At : s ≤ t, At ∈ Ft}

is a π-system that contains Ω and Gt = σ(At). Applying Monotone Class Theorem for functions,
we reduce ourselves to proving that At ⊂Mt. Since Ft ⊂Mt, we need only to prove that for all
s ≤ t and all At ∈ Ft, ({τ = s} ∩At) ∈Mt. In fact,

E[Xt+1Iτ=sIAt
] = E[E(Xt+1|Ft)Iτ=sIAt

]

⇔ E[Xt+1IAt
E(Iτ=s|Ft+1)] = E[E(Xt+1|Ft)IAt

E(Iτ=s|Ft)]
⇔ E[Xt+1IAt

αs(s)] = E[Xt+1IAt
αs(s)],

where the last equality results from Hypothesis H3.

(2):

E[It+1|Gt] = E
[
Iτ=t+1 − Iτ≥t+1

αt+1(t+ 1)

St
|Gt
]

= E[Iτ≥t+1 − Iτ>t+1|Gt]− Iτ>tE
[
αt+1(t+ 1)

St
|Gt
]

= Iτ>t −
Iτ>t
St

E[St+1|Ft]− Iτ>tE
[
αt+1(t+ 1)

St
|Ft
]

= 0,

where the last equality results from that St is Ft-measurable and St − St+1 = αt+1(t+ 1).

E[Mt+1It+1|Gt] = E
[
Xt+1

(
Iτ=t+1 − Iτ≥t+1

αt+1(t+ 1)

St

)
|Gt
]

= E[Xt+1(Iτ≥t+1 − Iτ>t+1)|Gt]− Iτ>tE
[
Xt+1αt+1(t+ 1)

St
|Gt
]

= Iτ>tE[Xt+1|Ft]−
Iτ>t
St

E[Xt+1St+1|Ft]− Iτ>tE
[
Xt+1αt+1(t+ 1)

St
|Ft
]

= 0.

�

Remark 4. Throughout this paper, we assume that Hypothesises H1, H2 and H3 hold.
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3 Martingale representation theorem under progressively
enlarged filtration

Martingale representation theorem plays an important role in establishing existence and uniqueness
theorem. Before giving the martingale representation theorem, we need the following definition.

Definition 5. For any G-adapted processes Z in R1×N and U in R, define the seminorms of Z
and U , ‖Z‖M and ‖U‖I , respectively by:

‖Z‖2M := E
∑

0≤s<T

(ZsMs+1)2, and ‖U‖2I := E
∑

0≤s<T

(UsIs+1)2.

We shall write Z1 ∼M Z2 if ‖Z1 − Z2‖2M = 0, and write U1 ∼I U2 if ‖U1 − U2‖2I = 0. Also we
shall write Z1

t ∼Mt+1
Z2
t if Z1

tMt+1 = Z2
tMt+1, and write U1

t ∼It+1
U2
t if U1

t It+1 = U2
t It+1.

Then we can obtain the following martingale representation theorem under progressively en-
larged filtration.

Theorem 6. For any G-adapted, R-valued martingale L, there exists a pair of G-adapted processes
Z ∈ R1×N and U ∈ R such that

Lt = L0 +
∑

0≤s<t

ZsMs+1 +
∑

0≤s<t

UsIs+1.

These processes are unique up to equivalence ∼M and equivalence ∼I respectively.

Proof. Existence: As L is G-adapted, applying the Doob-Dynkin Lemma in [9], for each t, there
exists some Borel-measurable function h : RN × RN × · · · × RN × R→ R such that

Lt+1 = Lt + h(X0, X1, . . . , Xt, Xt+1, τ ∧ (t+ 2)).

For simplicity, we take the terms X0, X1, . . . , Xt−1 as implicit. We define Z̃1 and Z̃2 as

Z̃1
t := [h(Xt, e1, τ ∧ (t+ 1)), h(Xt, e2, τ ∧ (t+ 1)), . . . , h(Xt, eN , τ ∧ (t+ 1))],

Z̃2
t := [h(Xt, e1, t+ 2), h(Xt, e2, t+ 2), . . . , h(Xt, eN , t+ 2)].

According to Hypothesis H2, it is easy to check that

Lt+1 = Lt + (Z̃1
t Iτ≤t + Z̃2

t Iτ>t)Xt+1 + (h(Xt, Xt, t+ 1)− h(Xt, Xt, t+ 2))Iτ=t+1.

Taking conditional expectation on both sides gives

(Z̃1
t Iτ≤t + Z̃2

t Iτ>t)E[Xt+1|Ft] + (h(Xt, Xt, t+ 1)− h(Xt, Xt, t+ 2))E[Iτ=t+1|Gt] = 0.

It follows that

Lt+1 = Lt+(Z̃1
t Iτ≤t+Z̃

2
t Iτ>t)Mt+1+(h(Xt, Xt, t+1)−h(Xt, Xt, t+2))

(
Iτ=t+1 − Iτ>t

αt(t+ 1)

St

)
.

Since {αs(t+ 1)}0≤s≤T is a F-martingale, according to the martingale representation theorem

in [2], there exists a process Ẑ such that

αt+1(t+ 1) = αt(t+ 1) + ẐtMt+1.

Then we can obtain that
Lt+1 = Lt + ZtMt+1 + UtIt+1,

where,

Zt = (Z̃1
t Iτ≤t + Z̃2

t Iτ>t) + (h(Xt, Xt, t+ 1)− h(Xt, Xt, t+ 2))Iτ>t
Ẑt
St
,

Ut = h(Xt, Xt, t+ 1)− h(Xt, Xt, t+ 2).

Uniqueness: If we had two possible solutions, (Z1, U1) and (Z2, U2), then it is obvious that[
(Z1

t − Z2
t )Mt+1 + (U1

t − U2
t )It+1

]2
= 0

Taking expectation on both sides gives Z1
tMt+1 = Z2

tMt+1 and U1
t It+1 = U2

t It+1, for all t. Hence,
Z1 ∼M Z2 and U1 ∼I U2. �
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4 Existence and uniqueness of BSDE solution

In this paper, we considered BSDEs of the following form:

Yt∧τ −
T∧τ−1∑
s=t∧τ

g(s, Ys, Zs, Us) +

T∧τ−1∑
s=t∧τ

ZsMs+1 +

T∧τ−1∑
s=t∧τ

UsIs+1 = Q, (3)

under progressively enlarged σ-algebra (Gt)0≤t≤T and with terminal condition Q ∈ L1(Ω,GT∧τ ,P).
We will study the solutions to Equation (3) defined as follows:

Definition 7. Consider T > 0 and Q ∈ L1(Ω,GT∧τ ,P). A solution to Equation (3) is a triple
G-adapted R× R1×N × R-valued process (Y,Z, U) such that

1. (Y,Z, U) is adapted and essentially bounded,

2. On the set of {t ≥ T ∧ τ}, we have Yt = Q, Zt = 0 and Ut = 0,

3. For all t ∈ [0, T ], we have

Yt∧τ −
T∧τ−1∑
s=t∧τ

g(s, Ys, Zs, Us) +

T∧τ−1∑
s=t∧τ

ZsMs+1 +

T∧τ−1∑
s=t∧τ

UsIs+1 = YT∧τ .

Remark 8. According to Definition 7, BSDE (3) is equivalent to the following one-step equation.
Iτ>tYt+1 = Iτ>t[Yt − g(t, Yt, Zt, Ut) + ZtMt+1 + UtIt+1], ∀t ∈ [0, T ]

Iτ≤tYt = Iτ≤tQ, ∀t ∈ [0, T ]

YT = Q.

(4)

And from (4), properties of solution to BSDE (3) only depend on Iτ>tg(t, y, z, u), i.e. we don’t
need the whole information about g, but only the part in {τ > t}.

Now, we establish the following theorem that guarantees the existence and uniqueness of solu-
tion to BSDE (3).

Theorem 9. Suppose g satisfies the following assumptions:

(i). If Z1
t ∼Mt+1

Z2
t and U1

t ∼It+1
U2
t , then for any Y , g(ω, t, Yt, Z

1
t , U

1
t ) = g(ω, t, Yt, Z

2
t , U

2
t )

P-a.s. for all t;

(ii). For any (z, u) ∈ R1×N × R, for all t, for P-almost all ω, the map

y 7→ y − g(ω, t, y, z, u)

is a bijection R→ R.

Then for any terminal condition Q which is essentially bounded, GT∧τ -measurable, and with values
in R, the BSDE (3) has an adapted solution (Y,Z, U). Moreover, this solution is unique up to
indistinguishability for Y , equivalence ∼M for Z and equivalence ∼I for U .

Proof. Analogous with [2], we can find an (adapted) solution YT = Q at time T , then construct
the solution for all t using backward induction.

Suppose we have a solution at time t + 1. Taking a conditional expectation on both sides of
the one-step equation (4) gives

Iτ>t[Yt − g(t, Yt, Zt, Ut)] = Iτ>tE(Yt+1|Gt), (5)

and the martingale difference term must be

Iτ>t[ZtMt+1 + UtIt+1] = Iτ>t[Yt+1 − E(Yt+1|Gt)].
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According to Theorem 6, there exists a unique Z̃t and Ũ up to equivalence ∼Mt+1 and equivalence
∼It+1 respectively such that

Z̃tMt+1 + ŨtIt+1 = Iτ>t[ZtMt+1 + UtIt+1] = Iτ>t[Yt+1 − E(Yt+1|Gt)].

It follows that Iτ>tZt = Z̃t and Iτ>tUt = Ũt up to equivalence ∼Mt+1
and equivalence ∼It+1

respectively. Since Iτ≤tZt = 0 and Iτ≤tUt = 0, we have Zt = Z̃t and Ut = Ũt, which is unique up
to equivalence ∼Mt+1 and equivalence ∼It+1 respectively.
Using such Zt and Ut, consider Equation (5). By Assumption (ii), for almost all ω ∈ {τ > t},
this equation has a unique solution Ỹt. Since Iτ≤tYt = Q, we have Yt = ỸtIτ>t +QIτ≤t. By such
backward induction, we can obtain a unique solution (Y, Z, U) up to indistinguishability for Y ,
equivalence ∼M for Z and equivalence ∼I for U . �

5 Comparison theorem

Comparison theorem is a key result in theory of BSDEs. It guarantees the monotonicity property
of nonlinear expectations and risk measures defined as solutions of BSDEs. We now present a
comparison theorem for discrete-time BSDEs with random terminal horizon. For ease of notation
we make the following definition:

Definition 10. Let It denote the Gt measurable set of indices of possible values of Xt+1 and
Iτ=t+1, given Gt, and Jt the Gt-measurable set of indices of possible values of Xt+1 when τ 6= t+ 1,
given Gt. That is,

It := {(i, j) : P(Iτ=t+1 = i,Xt+1 = ej |Gt) > 0},
Jt := {j : P(τ 6= t+ 1, Xt+1 = ej |Gt) > 0}

=

{
j : P(Xt+1 = ei|Ft)−

Iτ>t
St

E(αt+1(t+ 1)IXt+1=ej |Ft) > 0

}
.

Applying the Doob-Dynkin Lemma in [9], for Ft+1-measurable random variable αt+1(t + 1),
there exists some Borel-measurable function αt+1

t+1 : RN × RN × · · · × RN → R such that

αt+1(t+ 1) = αt+1
t+1(X0, X1, . . . , Xt, Xt+1).

For simplicity, we take the terms X0, X1, . . . , Xt as implicit if no ambiguity. Then we define, for
all Gt-measurable random variables Zkt and Ukt , k = 1, 2,

Φt(Z
1
t , U

1
t , Z

2
t , U

2
t )

:= min
(i,j)∈It

{
(Z1

t − Z2
t )(ej − E(Xt+1|F)) + (U1

t − U2
t )

[
i−

αt+1
t+1(ej)

St

]}

= min

{
min
j∈Jt

{
(Z1

t − Z2
t )(ej − E(Xt+1|F))− (U1

t − U2
t )
αt+1
t+1(ej)

St

}
,

(Z1
t − Z2

t )(Xt − E(Xt+1|F)) + (U1
t − U2

t )

[
1−

αt+1
t+1(Xt)

St

]}
, (6)

where the second equality results from Hypothesis H2, i.e. that if τ = t+ 1, Xt+1 = Xt.

Remark 11. In the case where τ is independent of F , for example if we consider τ as death time
of the insured, αs(t) = pt is a constant for all s, t ∈ [0, T ], where pt := E(τ = t). Then Φt could
have a simple form.

Φt(Z
1
t , U

1
t , Z

2
t , U

2
t )

= min

{
min
j∈Jt

{
(Z1

t − Z2
t )(ej − E(Xt+1|F))− (U1

t − U2
t )
pt+1

St

}
,

(Z1
t − Z2

t )(Xt − E(Xt+1|F)) + (U1
t − U2

t )

[
1− pt+1

St

]}
.
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Theorem 12. Consider two BSDEs as in (3) with drivers gi, i = 1, 2 and essentially bounded
terminal values Qi ∈ L1(GT∧τ ,P). Suppose that gi satisfies both Assumptions (i) and (ii) in
Theorem 9. Let (Y i, Zi, U i) be the associated solutions. Suppose the following conditions hold:

(i). Q1 ≥ Q2, P-a.s.

(ii). P-a.s., on {τ > t}, g1(ω, t, Y 2
t , Z

2
t , U

2
t ) ≥ g2(ω, t, Y 2

t , Z
2
t , U

2
t ).

(iii). P-a.s., on {τ > t}, g1 satisfies

g1(ω, t, Y 2
t , Z

1
t , U

1
t )− g1(ω, t, Y 2

t , Z
2
t , U

2
t ) ≥ Φt(Z

1
t , U

1
t , Z

2
t , U

2
t ).

(iv). P-a.s., on {τ > t}, if

Y 1
t − g1(ω, t, Y 1

t , Z
1
t , U

1
t ) ≥ Y 2

t − g1(ω, t, Y 2
t , Z

1
t , U

1
t ),

then Y 1
t ≥ Y 2

t .

Then Y 1 ≥ Y 2 P-a.s.

Proof. We will prove this theorem using backward induction. Throughout this proof, we omit ω
and t arguments for gi. For t = T , it is obvious that Y 1

T = Q1 ≥ Q2 = Y 2
T . For i = 1, 2, taking the

one-step equation (4), we have

Iτ>t[Y
i
t − gi(t, Y it , Zit , U it ) + ZitMt+1 + U it It+1] = Iτ>tY

i
t+1.

Suppose we have already obtained that Y 1
t+1 ≥ Y 2

t+1 P-a.s.. Then, on {τ > t},

Y 1
t − Y 2

t − g1(Y 1
t , Z

1
t , U

1
t ) + g2(Y 2

t , Z
2
t , U

2
t ) + (Z1

t − Z2
t )Mt+1 + (U1

t − U2
t )It+1

= Y 1
t+1 − Y 2

t+1 ≥ 0.

Note that Xt+1 takes values from the basis vector ei and that if τ = t + 1, Xt+1 = Xt, therefore
we can see

Y 1
t − Y 2 ≥ g1(Y 1

t , Z
1
t , U

1
t )− g2(Y 2

t , Z
2
t , U

2
t )− Φt(Z

1
t , U

1
t , Z

2
t , U

2
t ).

Then Assumptions (ii) and (iii) imply

Y 1
t − Y 2 − g1(Y 1

t , Z
1
t , U

1
t ) + g1(Y 2

t , Z
1
t , U

1
t )

≥ [g1(Y 2
t , Z

2
t , U

2
t )− g2(Y 2

t , Z
2
t , U

2
t )]

+ g1(Y 2
t , Z

1
t , U

1
t )− g1(Y 2

t , Z
2
t , U

2
t )− Φt(Z

1
t , U

1
t , Z

2
t , U

2
t ).

This implies
Y 1
t − g1(ω, t, Y 1

t , Z
1
t , U

1
t ) ≥ Y 2

t − g1(ω, t, Y 2
t , Z

1
t , U

1
t ).

By Assumption (iv), it follows that Y 1
t ≥ Y 2

t , P-a.s. on {τ > t}. Since Y 1
t Iτ≤t = Q1Iτ≤t ≥

Q2Iτ≤t = Y 2
t Iτ≤t, we conclude that Y 1

t ≥ Y 2
t P-a.s.. �

Corollary 13. Suppose g1 and g2 satisfy the assumptions in Theorem 12 and the inequality in
Assumption (iii) is strict, that is,

g1(ω, t, Y 2
t , Z

1
t , U

1
t )− g1(ω, t, Y 2

t , Z
2
t , U

2
t ) > Φt(Z

1
t , U

1
t , Z

2
t , U

2
t ),

unless Z1
t ∼Mt+1

Z2
t and U1

t ∼It+1
U2
t .

Then the comparison is strict in the sense that if on some A ∈ Gt, Y 1
t = Y 2

t P-a.s., then P-
a.s. on A, Q1 = Q2 and for all s ∈ {t, . . . , T}, Iτ>sg1(s, Y 2

s , Z
2
s , U

2
s ) = Iτ>sg

2(s, Y 2
s , Z

2
s , U

2
s ),

Z1
s ∼Ms+1 Z

2
s , U1

s ∼Is+1 U
2
s and Y 1

s = Y 2
s .
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Proof. Throughout this proof, we omit ω and t arguments for gi. For a given t, by the same
argument in the proof of Theorem 12, we can obtain, on A ∩ {τ > t},

Y 1
t − Y 2 − g1(Y 1

t , Z
1
t , U

1
t ) + g1(Y 2

t , Z
1
t , U

1
t )

= [Y 1
t+1 − Y 2

t+1] + [g1(Y 2
t , Z

2
t , U

2
t )− g2(Y 2

t , Z
2
t , U

2
t )]

+ g1(Y 2
t , Z

1
t , U

1
t )− g1(Y 2

t , Z
2
t , U

2
t )− (Z1

t − Z2
t )Mt+1 − (U1

t − U2
t )It+1

≥ [g1(Y 2
t , Z

2
t , U

2
t )− g2(Y 2

t , Z
2
t , U

2
t )]

+ g1(Y 2
t , Z

1
t , U

1
t )− g1(Y 2

t , Z
2
t , U

2
t )− Φt(Z

1
t , U

1
t , Z

2
t , U

2
t )

≥ 0,

where the last inequality is strict unless Z1
t ∼Mt+1

Z2
t and U1

t ∼It+1
U2
t by assumption. Hence,

if Y 1
t = Y 2

t , it is obvious that all the equalities holds, which is only the case if Z1
t ∼Mt+1

Z2
t and

U1
t ∼It+1 U

2
t .

If Z1
t ∼Mt+1 Z

2
t and U1

t ∼It+1 U
2
t , we have, P-a.s.

g1(Y 2
t , Z

1
t , U

1
t )− g1(Y 2

t , Z
2
t , U

2
t )− (Z1

t − Z2
t )Mt+1 − (U1

t − U2
t )It+1 = 0.

Then we have
0 ≥ −[Y 1

t+1 − Y 2
t+1] = g1(Y 2

t , Z
2
t , U

2
t )− g2(Y 2

t , Z
2
t , U

2
t ).

Since the final term is nonnegative, all the terms are 0, i.e.

g1(Y 2
t , Z

2
t , U

2
t ) = g2(Y 2

t , Z
2
t , U

2
t ), Y 1

t+1 = Y 2
t+1.

The argument on {τ ≤ t} follows by Definition 7. Then the proof can be finished by forward
induction. �

6 Applications

In this section, we focus on applications of BSDEs in nonlinear expectations, as in [7] and [2–4],
and optimal design of dynamic risk measures, as in [1] and [8].

6.1 Nonlinear expectations

The concept of nonlinear expectation was first introduced by Peng [7]. The classical nonlinear
expectation was defined as a system of operators mapping from L2(FT ) to L2(Ft), where (Ft)0≤t≤T
is the associated filtration. While, since we focus on the risk measures of defaultable contingent
claims in this paper, a subtle modification is needed as follows.

Definition 14. A system of operators

E(·|Gt) : L1(GT∧τ )→ L1(Gt∧τ ), 0 ≤ t ≤ T

is called a Gt∧τ -consistent nonlinear expectation if it satisfies the following properties:

(1). (Monotonicity) For any Q ≥ Q′ P-a.s.

E(Q|Gt∧τ ) ≥ E(Q′|Gt∧τ ),

P-a.s. with equality only if Q = Q′ P-a.s..

(2). (Gt∧τ -triviality) E(Q|Gt∧τ ) = Q P-a.s. for any Q ∈ L2(Gt∧τ ,P).

(3). (Recursivity) E(E(Q|Gt∧τ )|Gs∧τ ) = E(Q|Gs∧τ ) P-a.s. for any s ≤ t.

(4). (Regularity) For any A ∈ Gt∧τ , IAE(Q|Gt∧τ ) = E(IAQ|Gt∧τ ) P-a.s..

Definition 15. A Gt∧τ -consistent nonlinear expectation E(·|Gt∧τ ) is said to be (dynamically)
translation invariant if for any Q ∈ L1(GT∧τ ), any q ∈ L1(Gt∧τ ),

E(Q+ q|Gt∧τ ) = E(Q|Gt∧τ ) + q.

8



We make the following definition that guarantees a comparison theorem, and further the mono-
tonicity property of nonlinear expectations defined using BSDEs.

Definition 16. Consider a driver function g satisfying Assumptions (i) and (ii) of Theorem 9. Sup-
pose that, for each t, for any Q1, Q2 ∈ L1(GT∧τ ), the corresponding BSDE solutions (Y 1, Z1, U1),
(Y 2, Z2, U2) satisfy

(iii). P-a.s., on {τ > t},

g(ω, t, Y 2
t , Z

1
t , U

1
t )− g(ω, t, Y 2

t , Z
2
t , U

2
t ) ≥ Φt(Z

1
t , U

1
t , Z

2
t , U

2
t ),

with equality only if Z1
t ∼Mt+1

Z2
t and U1

t ∼It+1
U2
t .

(iv). P-a.s., on {τ > t}, if

Y 1
t − g(ω, t, Y 1

t , Z
1
t , U

1
t ) ≥ Y 2

t − g(ω, t, Y 2
t , Z

1
t , U

1
t ),

then Y 1
t ≥ Y 2

t .

(cf. Assumptions (iii) and (iv) of Theorem 12 and the assumption of Corollary 13). Then we shall
call g a balanced driver.

In the context of a discrete-time progressively enlarged filtration, we establish the following
theorem which relates BSDEs to nonlinear expectations.

Theorem 17. For some family of operators E(·|Gt∧τ ) : L1(GT∧τ ) → L1(Gt∧τ ), the following
conditions are equivalent:

(i). E(·|Gt∧τ ) is a Gt∧τ -consistent, dynamically translation invariant nonlinear expectation.

(ii). There exists a driver g, which is balanced, independent of y and satisfies Iτ>tg(t, y, 0, 0) = 0,
such that, for all Q, Yt = E(Q|Gt∧τ ) is the solution to a BSDE with terminal condition Q
and driver g.

Furthermore, these two statements are related by the equation

Iτ>tg(ω, t, y, z, u) = E(Iτ>t(zMt+1 + uIt+1)|Gt∧τ ).

Proof. (ii) implies (i): Let E(Q|Gt∧τ ) := Yt, the time t solution of the BSDE with terminal
value Q. We will prove that each property of a nonlinear expectation is satisfied.

(1). Monotonicity directly results from Theorem 12 and Corollary 13.

(2). By normalisation, the solution to the BSDE with Gt∧τ -measurable terminal condition Q will
be (Ys, Zs, Us) = (Q, 0, 0) for s ≥ t, i.e. E(Q|Gt∧τ ) = Q.

(3). Suppose the associated solution to the BSDE with driver g and terminal condition Q is
(Y,Z, U). Then it is obvious that (Ŷ , Ẑ, Û) defined as

(Ŷs, Ẑs, Ûs) =

{
(Yt, 0, 0), t < s ≤ T ;

(Ys, Zs, Us), 0 ≤ s ≤ t.

is the solution to the BSDE with deriver g and terminal condition Eg(Q|Gt∧τ ), which implies
Eg(Eg(Q|Gt∧τ )|Gs∧τ ) = Eg(Q|Gs∧τ ).

(4). By normalisation, multiplying by IA in Equation (3) gives

IAYt∧τ = IAQ+

T∧τ−1∑
s=t∧τ

g(s, IAZs, IAUs)

−
T∧τ−1∑
s=t∧τ

IAZsMs+1 −
T∧τ−1∑
s=t∧τ

IAUsIs+1,

which implies that (IAY, IAZ, IAU) is the solution to the BSDE with driver g and terminal
condition IAQ, as desired.
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Now we show that this nonlinear expectation is dynamically translation invariant. Simply
adding q on both sides of BSDE (3) gives Ỹt = Yt + q is the solution to BSDE with terminal
condition Q+ q.

Finally for any u ∈ R, z ∈ R1×N , Yt ∈ L1(Gt∧τ ) and Q ∈ L1(GT∧τ ), we define

Yt+1 := Iτ>t(Yt − g(t, z, u) + zMt+1 + uIt+1)

Taking a Gt-conditional expectation gives

Iτ>tg(t, z, u) = Yt − E(Yt+1|Gt)
= E(Yt+1|Gt∧τ )− E(Yt+1|Gt)
= E(Yt+1 − E(Yt+1|Gt)|Gt∧τ )

= E(Iτ>t(zMt+1 + uIt+1)|Gt∧τ ),

as desired.
(i) implies (ii): Define Yt := E(Q|Gt∧τ ) and driver g such that

Iτ>tg(t, y, z) = E(Iτ>t(zMt+1 + uIt+1)|Gt∧τ ).

Since Gt∧τ is finite-dimensional, by similar argument as in the proof of Theorem 7 in [2], we can
obtain, for any Gt-measurable random variables Zt and Ut,

Iτ>tg(ω, t, y, Zt(ω)) = E(Iτ>t(ZtMt+1 + UtIt+1)|Gt∧τ )(ω),

Iτ>tYt+1 = Iτ>t[Yt − g(t, Yt, Zt, Ut) + ZtMt+1 + UtIt+1].

It is obvious that Iτ≤tYt = E(Iτ≤tQ|Gt∧τ ) = Iτ≤tQ. According to Remark 8, E(Q|Gt∧τ ) satisfies
the BSDE with driver g.

Now, we need only to show that the driver g is balanced. Since g is independent of y, it remains
to prove g satisfies the assumption in Corollary 13. Let (Y i, Zi, U i), i = i, 2, the associated solution
to BSDE with driver g and terminal condition Qi. It is obvious that

Iτ>t[(Z
1
tMt+1 + U1

t It+1)− Φt(Z
1
t , U

1
t , Z

2
t , U

2
t )] ≥ Iτ>t(Z2

tMt+1 + U2
t It+1). (7)

By monotonicity of the nonlinear expectation,

E [Iτ>t((Z
1
tMt+1 + U1

t It+1)− Φt(Z
1
t , U

1
t , Z

2
t , U

2
t ))|Gt∧τ ]

≥ E [Iτ>t(Z
2
tMt+1 + U2

t It+1)|Gt∧τ ],

with equality only if the equality holds in Equation (7). By dynamic translation invariance of E ,
it follows that

E [Iτ>t(Z
1
tMt+1 + U1

t It+1)|Gt∧τ ]− E [Iτ>t(Z
2
tMt+1 + U2

t It+1)|Gt∧τ ]

≥ Iτ>tΦt(Z1
t , U

1
t , Z

2
t , U

2
t ).

with equality only if equality holds in Equation (7). If equality holds in Equation (7) on A ∈ Gt.
Taking Gt conditional expectation on both sides of Equation (7) on A gives

(Z1
t − Z2

t )Mt+1 + (U1
t + U2

t )It+1 = 0,

P-a.s. on A. Hence Z1
t ∼Mt+1

Z2
t and U1

t ∼It+1
U2
t as required. �

6.2 Optimal design of dynamic risk measures

The problem of default risk which is characterized by a single jump process was explored by Shen
and Elliott [8]. However, in that work, the payment at default time is a constant. In this subsection,
we will generalize this problem by considering F-adapted terminal payment at expiration time T
and F-predictable payment at default time.
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Definition 18. For any defaultable contingent claim with terminal payoff Q ∈ L1(GT∧τ ), the
static and dynamic entropic risk measure (with tolerance coefficient γ) of this claim at time t
are defined as

eγ(Q) := γ lnE exp

(
−Q
γ

)
and eγt (Q) := γ lnE

(
exp

(
−Q
γ

)
|Gt
)
.

We consider a problem about an optimal transaction between two economic agents, denoted
by A and B respectively. Agent A is exposed towards a non-hedgeable risk of a financial position
Q with terminal payment

Q := V Iτ>T + CτIτ≤T .

where V is FT -measurable, i.e. V depends on the paths of asset prices until time T , and C is an
F-predictable nonnegative process.

Thus, agent A wants to issue a financial product S and sell it to agent B for a forward price
at time T denoted by π to reduce his exposure.

Suppose both agents use entropic risk measures, with tolerance coefficients γ and γ′, to assess
the risk of their financial positions. Agent A wants to determine the structure (S, π) as to minimize
his global risk measure

inf
S,π

eγ(Q− S + π)

with the constraint
eγ
′
(S − π) ≤ eγ

′
(0) = 0.

Using the cash translation invariance property and binding the constraint at the optimum, the
pricing rule of the S-structure is fully determined by the buyer as

π∗(S) = −eγ
′
(S).

Using the cash translation invariance property again, the optimization problem simply becomes

inf
S

(
eγ(Q− S) + eγ

′
(S)
)
.

We have the following proposition.

Proposition 19. −eγt (Q) is an Gt∧τ -consistent, dynamically translation invariant nonlinear ex-
pectation.

Proof. Monotonicity, Gt∧τ -triviality, recursivity and dynamically translation invariance are obvi-
ous. We only show the proof for regularity. For any A ∈ Gt∧τ ,

− eγt (IAQ) = IA(−eγt (Q))

⇔ lnE
(

exp

(
−QIA

γ

)
|Gt
)

= IA lnE
(

exp

(
−Q
γ

)
|Gt
)

⇔ E
(

exp

(
−QIA

γ

)
|Gt
)

=

[
E
(

exp

(
−Q
γ

)
|Gt
)]IA

It is obvious that

E
(

exp

(
−QIA

γ

)
|Gt
)
IA =

[
E
(

exp

(
−Q
γ

)
|Gt
)]IA

IA = E
(

exp

(
−Q
γ

)
|Gt
)
IA,

and that

E
(

exp

(
−QIA

γ

)
|Gt
)
IAc =

[
E
(

exp

(
−Q
γ

)
|Gt
)]IA

IAc = IAc .

�
Then combining the above proposition and Theorem 17, We can obtain the following theorem,

which relates eγt (·) to BSDEs under progressively enlarged filtration.
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Theorem 20. (eγt (Q− S), Zγt , U
γ) is the solution of the following BSDE:

eγt (Q− S)−
T∧τ−1∑
s=t∧τ

gγ(s, Ys, Z
γ
s , U

γ
s ) +

T∧τ−1∑
s=t∧τ

ZγsMs+1 +

T∧τ−1∑
s=t∧τ

Uγs Is+1 = −(Q− S), (8)

where

Iτ>tg
γ(ω, t, z, u) = γ lnE

(
exp

(
Iτ>t(zMt+1 + uIt+1)

γ

)
|Gt
)
.

We now study for any t ∈ [0, T ] the inf-convolution of the dynamic entropic risk measures eγt
and eγ

′

t and the inf-convolution of the corresponding gγt and gγt . We define

(eγ�eγ
′
)t(Q) := inf

S
(eγt (Q− S) + eγ

′

t (S)) (9)

gγ�gγ
′
(ω, t, z, u) := inf

z′,u′
(gγ(ω, t, z − z′, u− u′) + gγ

′
(ω, t, z′, u′)) (10)

We finish this subsection by showing the following theorem, which characterizes (eγ�eγ
′
)t(Q)

and gγ�gγ
′
(ω, t, z, u) and gives the optimal solution.

Theorem 21. Inf-convolutions (9) and (10) have properties as follows:

Iτ>tg
γ�gγ

′
(ω, t, z, u) = Iτ>tg

γ+γ′(ω, t, z, u), (11)

(eγ�eγ
′
)t(Q) =

T∧τ−1∑
s=t∧τ

gγ+γ
′
(s, Ys, Zs, Us)−

T∧τ−1∑
s=t∧τ

ZsMs+1

−
T∧τ−1∑
s=t∧τ

UsIs+1 −Q = eγ+γ
′

t (Q).

(12)

The solution to the dynamic optimal design problem is

S∗ =
γ′

γ + γ′
Q+ c,

where c is an arbitrary constant.

Proof. Consider the function

f(z′, u′) := Iτ>tg
γ(ω, t, z − z′, u− u′) + Iτ>tg

γ′(ω, t, z′, u′)

= γ lnE
(

exp

(
Iτ>t

(z − z′)Mt+1 + (u− u′)It+1

γ

)
|Gt
)

+ γ′ lnE
(

exp

(
Iτ>t

z′Mt+1 + u′It+1

γ′

)
|Gt
)
.

It is obvious that

f∗(z′, u′) := lnE
(

exp

(
Iτ>t

z′Mt+1 + u′It+1

γ′

)
|Gt
)

is convex. It follows that f(z′, u′) is convex. Therefore for each ω the minimum of (10) with
respect to (z′, u′) occurs when

∇f(z′, u′) =
E
(
Iτ>t(M

∗
t+1, It+1) exp

(
z′Mt+1+u

′It+1

γ′

)
|Gt
)

E
(

exp
(
Iτ>t

z′Mt+1+u′It+1

γ′

)
|Gt
)

−
E
(
Iτ>t(M

∗
t+1, It+1) exp

(
(z−z′)Mt+1+(u−u′)It+1

γ

)
|Gt
)

E
(

exp
(
Iτ>t

(z−z′)Mt+1+(u−u′)It+1

γ

)
|Gt
) = 0.
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Denote by (z∗γ
′
, u∗γ

′
) the value at which the minimum is attained. It is obvious that (z∗γ

′
, u∗γ

′
)

is unique up to equivalence ∼Mt+1 and ∼It+1 , and

z∗γ
′

=
γ′

γ + γ′
z, u∗γ

′
=

γ′

γ + γ′
u.

Therefore

Iτ>tg
γ�gγ

′
(ω, s, z) = inf

z′
(Iτ>tg

γ(ω, t, z − z′, u− u′) + Iτ>tg
γ′(ω, t, z′, u′))

= Iτ>tg
γ(ω, t, z − z∗γ

′
, u− u∗γ

′
) + Iτ>tg

γ′(ω, t, z∗γ
′
, u∗γ

′
)

= (γ + γ′) lnE
(

exp

(
Iτ>t

zMt+1 + uIt+1

γ + γ′

)
|Gt
)

= Iτ>tg
γ+γ′(ω, s, z, u).

Similar to (8), we have

eγ
′

t (S)−
T∧τ−1∑
s=t∧τ

gγ
′
(s, Zγ

′

s , U
γ′

s ) +

T∧τ−1∑
s=t∧τ

Zγ
′

s Ms+1 +

T∧τ−1∑
s=t∧τ

Uγ
′

s Is+1 = −S. (13)

Adding (8) and (13), we have

eγt (Q− S) + eγ
′

t (S)

=

T∧τ−1∑
s=t∧τ

[gγ(s, Zγs , U
γ
s ) + gγ

′
(s, Zγ

′

s , U
γ′

s )]−
T∧τ−1∑
s=t∧τ

ZsMs+1 −
T∧τ−1∑
s=t∧τ

UsIs+1 −Q

=

T∧τ−1∑
s=t∧τ

[gγ(s, Zs − Zγ
′

s , Us − Uγ
′

s ) + gγ
′
(s, Zγ

′

s , U
γ
s )]−

T∧τ−1∑
s=t∧τ

ZsMs+1 −
T∧τ−1∑
s=t∧τ

UsIs+1 −Q

≥
T∧τ−1∑
s=t∧τ

gγ+γ
′
(s, Zs, Us)−

T∧τ−1∑
s=t∧τ

ZsMs+1 −
T∧τ−1∑
s=t∧τ

UsIs+1 −Q.

where Zs = Zγs +Zγ
′

s and Us = Uγs +Uγ
′

s . Thus, eγt (Q−S)+eγ
′

t (S) can be regarded as the solution
to the BSDE with terminal condition −Q and the driver

g(s, z, u) = gγ(s, z − Zγ
′

s , u− Uγ
′

s ) + gγ
′
(s, Zγ

′

s , U
γ′

s ).

Similar to (8), eγ+γ
′

t (Q) is the solution to the BSDE with terminal condition −Q and the driver
gγ+γ

′
. g ≥ gγ+γ′ implies that for any S,

eγt (Q− S) + eγ
′

t (S) ≥ eγ+γ
′

t (Q). (14)

Taking S∗ = γ′

γ+γ′Q, we can show that γZ∗s
γ′Ms+1 = γ′Z∗s

γMs+1 and γU∗s
γ′Is+1 = γ′U∗s

γIs+1.
Then

Z∗s
γ′Ms+1 =

γ′

γ + γ′
(Z∗s

γ′ + Z∗s
γ)Ms+1 =

γ′

γ + γ′
ZsMs+1.

U∗s
γ′Is+1 =

γ′

γ + γ′
(U∗s

γ′ + U∗s
γ)Is+1 =

γ′

γ + γ′
UsIs+1.

Consequently,

eγt (Q− S∗) + eγ
′

t (S∗) =

T∧τ−1∑
s=t∧τ

gγ+γ
′
(s, Zs, Us)−

T∧τ−1∑
s=t∧τ

ZsMs+1 −
T∧τ−1∑
s=t∧τ

UsIs+1 −Q.

This means eγt (Q− S∗) + eγ
′

t (S∗) is the solution to the BSDE with the driver function gγ+γ
′

and

the terminal condition −Q. Then it also equals to eγ+γ
′

t (Q) due to the uniqueness of the solution.
According to (14), we have

eγ+γ
′

t (Q) = inf
S

(eγt (Q− S) + eγ
′

t (S)) = (eγ�eγ
′
)t(Q).

�

13



7 Conclusion

We have constructed discrete-time finite-state BSDEs under progressively enlarged filtration and
established martingale representation theorem, existence and uniqueness theorem and a comparison
theorem. Relationship between nonlinear expectations and solutions of BSDEs has been given
under some mild assumptions. We have obtained the solution for optimal design of dynamic
entropic risk measures of a defaultable contingent claim, which generalizes the work of Shen and
Elliott [8].
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