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We establish new inequalities similar to Hardy-Pachpatte-Copson’s type inequalities. These results in special cases yield some of
the recent results.

1. Introduction

The classical Hardy’s integral inequality is as follows.

Theorem A. If 𝑝 > 1, 𝑓(𝑥) ≥ 0 for 0 < 𝑥 < ∞, and 𝐹(𝑥) =

(1/𝑥) ∫
𝑥

0

𝑓(𝑡)𝑑𝑡, then

∫

∞

0

𝐹(𝑥)
𝑝

𝑑𝑥 < (
𝑝

𝑝 − 1
)

𝑝

∫

∞

0

𝑓(𝑥)
𝑝

𝑑𝑥, (1)

unless 𝑓 ≡ 0. The constant is the best possible.

Theorem A was first proved by Hardy [1], in an attempt
to give a simple proof of Hilbert’s double series theorem (see
[2]). One of the best known and interesting generalization of
the inequality (1) given by Hardy [3] himself can be stated as
follows.

Theorem B. If 𝑝 > 1, 𝑚 ̸= 1, 𝑓(𝑥) ≥ 0 for 0 < 𝑥 < ∞, and
𝐹(𝑥) is defined by

𝐹 (𝑥) = ∫

𝑥

0

𝑓 (𝑡) 𝑑𝑡, 𝑚 > 1;

𝐹 (𝑥) = ∫

∞

𝑥

𝑓 (𝑡) 𝑑𝑡, 𝑚 < 1,

(2)

then

∫

∞

0

𝑥
−𝑚

𝐹(𝑥)
𝑝

𝑑𝑥 < (
𝑝

|𝑚 − 1|
)

𝑝

∫

∞

0

𝑥
𝑝−𝑚

𝑓(𝑥)
𝑝

𝑑𝑥, (3)

unless 𝑓 ≡ 0. The constant is the best possible.

Inequalities (1) and (3) which later went by the name
of Hardy’s inequalities led to a great many papers dealing
with alternative proofs, various generalizations, and numer-
ous variants and applications in analysis (see [4–15]). In
particular, Pachpatte [4] established some generalizations of
Hardy inequalities (1) and (3). Very recently, Leng and Feng
[16] proved some newHardy-type integral inequalities. In the
present paper we establish new inequalities similar to Hardy’s
integral inequalities (1) and (3). These results provide some
new estimates to these types of inequalities and in special
cases yield some of the recent results.

2. Main Results

Our main results are given in the following theorems.

Theorem 1. Let 𝑎 < 𝑏 < 𝑅, 𝑐 < 𝑑 < 𝑅


, 𝑝 > 1, 𝑞 < 1,
and 𝛼 > 0 be constants. Let 𝑤(𝑥, 𝑦) be positive and locally
absolutely continuous in (𝑎, 𝑏) × (𝑐, 𝑑). Let ℎ(𝑥, 𝑦) be a positive
continuous function and let 𝐻(𝑥, 𝑦) = ∫

𝑥

𝑎

∫
𝑦

𝑐

ℎ(𝑠, 𝑡)𝑑𝑠 𝑑𝑡,
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for (𝑥, 𝑦) ∈ (𝑎, 𝑏) × (𝑐, 𝑑). Let 𝑓(𝑥, 𝑦) be nonnegative and
measurable on (𝑎, 𝑏) × (𝑐, 𝑑). If

𝐷(𝑥, 𝑦)

= 1 −
1

1 − 𝑞

𝐻 (𝑥, 𝑦)

ℎ (𝑥, 𝑦)

1

𝑤 (𝑥, 𝑦)

𝜕𝑤 (𝑥, 𝑦)

𝜕𝑥
log(

𝐻(𝑅, 𝑅


)

𝐻 (𝑥, 𝑦)
)

+
𝑝

1 − 𝑞

𝐻 (𝑥, 𝑦)

ℎ (𝑥, 𝑦)
×

1

𝑟 (𝑥, 𝑦)

𝜕𝑟 (𝑥, 𝑦)

𝜕𝑥
log(

𝐻(𝑅, 𝑅


)

𝐻 (𝑥, 𝑦)
)

≥
1

𝛼
,

(4)

for almost all (𝑥, 𝑦) ∈ (𝑎, 𝑏) × (𝑐, 𝑑), and if 𝐹(𝑥, 𝑦) is defined
by

𝐹 (𝑥, 𝑦) =
1

𝑟 (𝑥, 𝑦)
∫

𝑥

𝑎

∫

𝑦

𝑐

𝑟 (𝑠, 𝑡) ℎ (𝑠, 𝑡) 𝑓 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡 (5)

for (𝑥, 𝑦) ∈ (𝑎, 𝑏) × (𝑐, 𝑑), then

∫

𝑑

𝑐

∫

𝑏

𝑎

𝑤 (𝑥, 𝑦)𝐻(𝑥, 𝑦)
−1

ℎ (𝑥, 𝑦)

× (log(
𝐻(𝑅,R)
𝐻 (𝑥, 𝑦)

))

−𝑞

𝐹(𝑥, 𝑦)
𝑝

𝑑𝑥 𝑑𝑦

≤ [𝛼(
𝑝

1 − 𝑞
)]

𝑝

× ∫

𝑑

𝑐

∫

𝑏

𝑎

[

[

(log(
𝐻(𝑅, 𝑅



)

𝐻 (𝑥, 𝑦)
))

𝑝−𝑞

𝑤 (𝑥, 𝑦)𝐻(𝑥, 𝑦)
𝑝−1

× ℎ(𝑥, 𝑦)
1−𝑝

𝐺(𝑥, 𝑦)
𝑝]

]

𝑑𝑥𝑑𝑦,

(6)

where

ℎ (𝑥, 𝑦) = ∫

𝑦

𝑐

ℎ (𝑥, 𝑡) 𝑑𝑡,

𝐺 (𝑥, 𝑦) =
1

𝑟 (𝑥, 𝑦)
∫

𝑦

𝑐

𝑟 (𝑥, 𝑡) ℎ (𝑥, 𝑡) 𝑓 (𝑥, 𝑡) 𝑑𝑡.

(7)

Remark 2. Let 𝑓(𝑥, 𝑦), 𝑤(𝑥, 𝑦), ℎ(𝑥, 𝑦), and 𝑟(𝑥, 𝑦) reduce to
𝑓(𝑥), 𝑤(𝑥), ℎ(𝑥), and 𝑟(𝑥), respectively, and with suitable

modifications in Theorem 1, (6) changes to the following
result:

∫

𝑏

𝑎

𝑤 (𝑥)𝐻(𝑥)
−1

ℎ (𝑥) (log(𝐻 (𝑅)

𝐻 (𝑥)
))

−𝑞

𝐹(𝑥)
𝑝

𝑑𝑥

≤ [𝛼(
𝑝

1 − 𝑞
)]

𝑝

× ∫

𝑏

𝑎

[(log(𝐻 (𝑅)

𝐻 (𝑥)
))

𝑝−𝑞

× 𝑤 (𝑥)𝐻(𝑥)
𝑝−1

ℎ (𝑥) 𝑓(𝑥)
𝑝

]𝑑𝑥.

(8)

This is just a new inequality established by Pachpatte [4].
Moreover, we note that the inequality established in

Theorem 1 is the further generalizations of the inequality
established by Copson [17].

Taking for 𝑤(𝑥) = 𝑟(𝑥) = 1, 𝐻(𝑅) = 𝑅, and 𝛼 = 1 in (8),
(8) changes to the following result:

∫

𝑏

𝑎

𝐻(𝑥)
−1

ℎ (𝑥) (log( 𝑅

𝐻 (𝑥)
))

−𝑞

𝐹(𝑥)
𝑝

𝑑𝑥

≤ (
𝑝

1 − 𝑞
)

𝑝

× ∫

𝑏

𝑎

[(log( 𝑅

𝐻 (𝑥)
))

𝑝−𝑞

𝐻(𝑥)
𝑝−1

ℎ (𝑥) 𝑓(𝑥)
𝑝

]𝑑𝑥.

(9)

This is just a new inequality established by Love [7].
Let ℎ(𝑥) = 1, 𝑎 → 0, 𝑏 → ∞, and log (𝑅/(𝑥 − 𝑎)) = 1

in (9); then (9) changes to the following result:

∫

∞

0

𝑥
−1

𝐹(𝑥)
𝑝

𝑑𝑥 ≤ (
𝑝

1 − 𝑞
)

𝑝

∫

∞

0

𝑥
𝑝−1

𝑓(𝑥)
𝑝

𝑑𝑥. (10)

This result is obtained in (3) stated in the Introduction.

Theorem 3. Let 𝑎 < 𝑏 < 𝑅, 𝑐 < 𝑑 < 𝑅


, 𝑝 > 1, 𝑞 > 1, and 𝛽 >

0 be constants. Let 𝑤(𝑥, 𝑦) be positive and locally absolutely
continuous in (𝑎, 𝑏)×(𝑐, 𝑑). Let ℎ(𝑥, 𝑦) be a positive continuous
function and let 𝐻(𝑥, 𝑦) = ∫

𝑥

𝑎

∫
𝑦

𝑐

ℎ(𝑠, 𝑡)𝑑𝑠 𝑑𝑡, for (𝑥, 𝑦) ∈

(𝑎, 𝑏) × (𝑐, 𝑑). Let 𝑓(𝑥, 𝑦) be nonnegative and measurable on
(𝑎, 𝑏) × (𝑐, 𝑑). Let

𝐸 (𝑥, 𝑦)

= 1 −
1

𝑞 − 1

𝐻 (𝑥, 𝑦)

ℎ (𝑥, 𝑦)

1

𝑤 (𝑥, 𝑦)

𝜕𝑤 (𝑥, 𝑦)

𝜕𝑦
log(

𝐻(𝑅, 𝑅


)

𝐻 (𝑥, 𝑦)
)

+
𝑝

𝑞 − 1

𝐻 (𝑥, 𝑦)

ℎ (𝑥, 𝑦)
×

1

𝑟 (𝑥, 𝑦)

𝜕𝑟 (𝑥, 𝑦)

𝜕𝑦
log(

𝐻(𝑅, 𝑅


)

𝐻 (𝑥, 𝑦)
)

≥
1

𝛽
,

(11)
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for almost all (𝑥, 𝑦) ∈ (𝑎, 𝑏) × (𝑐, 𝑑). If 𝐹(𝑥, y) is defined by

𝐹 (𝑥, 𝑦) =
1

𝑟 (𝑥, 𝑦)
∫

𝑏

𝑥

∫

𝑑

𝑦

𝑟 (𝑠, 𝑡) ℎ (𝑠, 𝑡) 𝑓 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡 (12)

for (𝑥, 𝑦) ∈ (𝑎, 𝑏) × (𝑐, 𝑑), then

∫

𝑑

𝑐

∫

𝑏

𝑎

𝑤 (𝑥, 𝑦)𝐻(𝑥, 𝑦)
−1

ℎ̃ (𝑥, 𝑦)

× (log(
𝐻(𝑅, 𝑅



)

𝐻 (𝑥, 𝑦)
))

−𝑞

𝐹(𝑥, 𝑦)
𝑝

𝑑𝑥 𝑑𝑦

≤ [𝛽(
𝑝

𝑞 − 1
)]

𝑝

× ∫

𝑑

𝑐

∫

𝑏

𝑎

[

[

(log(
𝐻(𝑅, 𝑅



)

𝐻 (𝑥, 𝑦)
))

𝑝−𝑞

𝑤 (𝑥, 𝑦)𝐻(𝑥, 𝑦)
𝑝−1

× ℎ(𝑥, 𝑦)
1−𝑝

𝐿(𝑥, 𝑦)
𝑝]

]

𝑑𝑥𝑑𝑦,

(13)

where

ℎ̃ (𝑥, 𝑦) = ∫

𝑥

𝑎

ℎ (𝑠, 𝑦) 𝑑𝑠,

(14)

Remark 4. Let 𝑓(𝑥, 𝑦), 𝑤(𝑥, 𝑦), ℎ(𝑥, 𝑦), and 𝑟(𝑥, 𝑦) reduce
to 𝑓(𝑥), 𝑤(𝑥), ℎ(𝑥), and 𝑟(𝑥), respectively, and with suitable
modifications in Theorem 3, (13) changes to the following
result:

∫

𝑏

𝑎

𝑤 (𝑥)𝐻(𝑥)
−1

ℎ (𝑥) (log(𝐻 (𝑅)

𝐻 (𝑥)
))

−𝑞

𝐹(𝑥)
𝑝

𝑑𝑥

≤ [𝛽(
𝑝

𝑞 − 1
)]

𝑝

∫

𝑏

𝑎

[(log(𝐻(𝑅)

𝐻(𝑥)
))

𝑝−𝑞

× 𝑤 (𝑥)𝐻(𝑥)
𝑝−1

ℎ (𝑥) 𝑓(𝑥)
𝑝

]𝑑𝑥.

(15)

This is just a new inequality established by Pachpatte [4].
On the other hand, we note that the inequality established

in Theorem 3 is the further generalizations of the inequality
established by Copson [17].

Taking for𝑤(𝑥) = 𝑟(𝑥) = 1, 𝐻(𝑅) = 𝑅, and 𝛽 = 1 in (15),
(15) changes to the following result:

∫

𝑏

𝑎

𝐻(𝑥)
−1

ℎ (𝑥) (log( 𝑅

𝐻 (𝑥)
))

−𝑞

𝐹(𝑥)
𝑝

𝑑𝑥

≤ (
𝑝

𝑞 − 1
)

𝑝

∫

𝑏

𝑎

[(log( 𝑅

𝐻 (𝑥)
))

𝑝−𝑞

× 𝐻(𝑥)
𝑝−1

ℎ (𝑥) 𝑓(𝑥)
𝑝

]𝑑𝑥.

(16)

This is just a new inequality established by Love [7].

3. Proof of Theorems

Proof of Theorem 1. If we let 𝑢(𝑥, 𝑦) = 𝑤(𝑥, 𝑦)𝐹(𝑥, 𝑦)
𝑝 and

in view of

𝐹 (𝑥, 𝑦) =
1

𝑟 (𝑥, 𝑦)
∫

𝑥

𝑎

∫

𝑦

𝑐

𝑟 (𝑠, 𝑡) ℎ (𝑠, 𝑡) 𝑓 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡 (17)

for (𝑥, 𝑦) ∈ (𝑎, 𝑏) × (𝑐, 𝑑), then

𝜕𝑢 (𝑥, 𝑦)

𝜕𝑥

=
𝜕𝑤 (𝑥, 𝑦)

𝜕𝑥
𝐹(𝑥, 𝑦)

𝑝

+ 𝑤 (𝑥, 𝑦) 𝑝𝐹(𝑥, 𝑦)
𝑝−1

× (
1

𝑟 (𝑥, 𝑦)
∫

𝑦

𝑐

𝑟 (𝑥, 𝑡) ℎ (𝑥, 𝑡) 𝑓 (𝑥, 𝑡) 𝑑𝑡

−
𝜕𝑟 (𝑥, 𝑦) /𝜕𝑥

𝑟2 (𝑥, 𝑦)

×∫

𝑥

𝑎

∫

𝑦

𝑐

𝑟 (𝑠, 𝑡) ℎ (𝑠, 𝑡) 𝑓 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡) .

(18)

Let

𝜕V (𝑥, 𝑦)
𝜕𝑥

= 𝐻(𝑥, 𝑦)
−1

ℎ (𝑥, 𝑦) [log(
𝐻(𝑅, 𝑅



)

𝐻 (𝑥, 𝑦)
)]

−𝑞

, (19)

where ℎ(𝑥, 𝑦) = ∫
𝑦

𝑐

ℎ(𝑥, 𝑡)𝑑𝑡 and in view of 𝐻(𝑥, 𝑦) =

∫
𝑥

𝑎

∫
𝑦

𝑐

ℎ(𝑠, 𝑡)𝑑𝑠 𝑑𝑡, for (𝑥, 𝑦) ∈ (𝑎, 𝑏) × (𝑐, 𝑑), then

V (𝑥, 𝑦) = −
[log (𝐻 (𝑅, 𝑅



) /𝐻 (𝑥, 𝑦))]
−𝑞+1

(−𝑞 + 1)
. (20)
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From (18), (20), and integrating by parts for 𝑥, we have

∫

𝑑

𝑐

∫

𝑏

𝑎

𝑤 (𝑥, 𝑦)𝐻(𝑥, 𝑦)
−1

ℎ (𝑥, 𝑦)

× (log(
𝐻(𝑅, 𝑅



)

𝐻 (𝑥, 𝑦)
))

−𝑞

𝐹(𝑥, 𝑦)
𝑝

𝑑𝑥 𝑑𝑦

= −∫

𝑑

𝑐

{{

{{

{

𝑤(𝑥, 𝑦) 𝐹(𝑥, 𝑦)
𝑝

×
[log (𝐻 (𝑅, 𝑅



) /𝐻 (𝑥, 𝑦))]
−𝑞+1

−𝑞 + 1



𝑥=𝑏

𝑥=𝑎

− ∫

𝑏

𝑎

[log (𝐻 (𝑅, 𝑅


) /𝐻 (𝑥, 𝑦))]
−𝑞+1

−𝑞 + 1

× [
𝜕𝑤 (𝑥, 𝑦)

𝜕𝑥
𝐹(𝑥, 𝑦)

𝑝

+ 𝑤 (𝑥, 𝑦) 𝑝𝐹(𝑥, 𝑦)
𝑝−1

× (𝐺 (𝑥, 𝑦) −
𝜕𝑟 (𝑥, 𝑦) /𝜕𝑥

𝑟2 (𝑥, 𝑦)

× ∫

𝑥

𝑎

∫

𝑦

𝑐

𝑟 (𝑠, 𝑡) ℎ (𝑠, 𝑡)

×𝑓(𝑠,𝑡)𝑑𝑠 𝑑𝑡)]𝑑𝑥

}}

}}

}

𝑑𝑦,

(21)

where

𝐺 (𝑥, 𝑦) =
1

𝑟 (𝑥, 𝑦)
∫

𝑦

𝑐

𝑟 (𝑥, 𝑡) ℎ (𝑥, 𝑡) 𝑓 (𝑥, 𝑡) 𝑑𝑡. (22)

If 𝑞 < 1, then we observe that

∫

𝑑

𝑐

∫

𝑏

𝑎

𝐷(𝑥, 𝑦)𝑤 (𝑥, 𝑦)𝐻(𝑥, 𝑦)
−1

ℎ (𝑥, 𝑦)

× (log(
𝐻(𝑅, 𝑅



)

𝐻 (𝑥, 𝑦)
))

−𝑞

𝐹(𝑥, 𝑦)
𝑝

𝑑𝑥 𝑑𝑦

≤
𝑝

1 − 𝑞
∫

𝑑

𝑐

∫

𝑏

𝑎

[

[

𝑤 (𝑥, 𝑦)(log(
𝐻(𝑅, 𝑅



)

𝐻 (𝑥, 𝑦)
))

−𝑞+1

× 𝐺 (𝑥, 𝑦) 𝐹(𝑥, 𝑦)
𝑝−1]

]

𝑑𝑥𝑑𝑦

=
𝑝

1 − 𝑞

× ∫

𝑑

𝑐

∫

𝑏

𝑎

[
[

[

{

{

{

(log(
𝐻(𝑅, 𝑅



)

𝐻 (𝑥, 𝑦)
))

−𝑞

}

}

}

1/𝑝

× log(
𝐻(𝑅, 𝑅



)

𝐻 (𝑥, 𝑦)
)𝑤(𝑥, 𝑦)

1/𝑝

× 𝐻(𝑥, 𝑦)
(𝑝−1)/𝑝

× ℎ(𝑥, 𝑦)
−(𝑝−1)/𝑝

𝐺 (𝑥, 𝑦)
]
]

]

×
[
[

[

{

{

{

(log(
𝐻(𝑅, 𝑅



)

𝐻 (𝑥, 𝑦)
))

−𝑞

}

}

}

(𝑝−1)/𝑝

× 𝑤(𝑥, 𝑦)
(𝑝−1)/𝑝

× [𝐻(𝑥, 𝑦)
−1

× ℎ (𝑥, 𝑦)]
(𝑝−1)/𝑝

× 𝐹(𝑥, 𝑦)
𝑝−1]

]

]

𝑑𝑥𝑑𝑦.

(23)

By applying Hölder’s inequality with indices 𝑝, 𝑝/(𝑝 − 1) on
the right side of (23), we obtain

∫

𝑑

𝑐

∫

𝑏

𝑎

𝑤 (𝑥, 𝑦)𝐻(𝑥, 𝑦)
−1

ℎ (𝑥, 𝑦)

× (log(
𝐻(𝑅, 𝑅



)

𝐻 (𝑥, 𝑦)
))

−𝑞

𝐹(𝑥, 𝑦)
𝑝

𝑑𝑥 𝑑𝑦

≤ 𝛼(
𝑝

1 − 𝑞
)

×
{

{

{

∫

𝑑

𝑐

∫

𝑏

𝑎

[

[

(log(
𝐻(𝑅, 𝑅



)

𝐻 (𝑥, 𝑦)
))

−𝑞

× (log(
𝐻(𝑅, 𝑅



)

𝐻 (𝑥, 𝑦)
))

𝑝

× 𝑤 (𝑥, 𝑦)𝐻(𝑥, 𝑦)
𝑝−1

× ℎ(𝑥, 𝑦)
−(𝑝−1)

𝐺(𝑥, 𝑦)
𝑝]

]

𝑑𝑥𝑑𝑦
}

}

}

1/𝑝
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×
{

{

{

∫

𝑑

𝑐

∫

𝑏

𝑎

[

[

(log(
𝐻(𝑅, 𝑅



)

𝐻 (𝑥, 𝑦)
))

−𝑞

𝑤 (𝑥, 𝑦)𝐻(𝑥, 𝑦)
−1

× ℎ (𝑥, 𝑦) 𝐹(𝑥, 𝑦)
𝑝]

]

𝑑𝑥𝑑𝑦
}

}

}

(𝑝−1)/𝑝

.

(24)

Dividing both sides of (24) by the second integral factor on
the right side of (24) and raising both sides to the 𝑝th power,
we obtain

∫

𝑑

𝑐

∫

𝑏

𝑎

𝑤 (𝑥, 𝑦)𝐻(𝑥, 𝑦)
−1

ℎ (𝑥, 𝑦)

× (log(
𝐻(𝑅, 𝑅



)

𝐻 (𝑥, 𝑦)
))

−𝑞

𝐹(𝑥, 𝑦)
𝑝

𝑑𝑥 𝑑𝑦

≤ [𝛼(
𝑝

1 − 𝑞
)]

𝑝

× ∫

𝑑

𝑐

∫

𝑏

𝑎

[

[

(log(
𝐻(𝑅, 𝑅



)

𝐻 (𝑥, 𝑦)
))

𝑝−𝑞

× 𝑤 (𝑥, 𝑦)𝐻(𝑥, 𝑦)
𝑝−1

× ℎ(𝑥, 𝑦)
−(𝑝−1)

𝐺(𝑥, 𝑦)
𝑝]

]

𝑑𝑥𝑑𝑦.

(25)

Proof of Theorem 3. If we let 𝑢(𝑥, 𝑦) = 𝑤(𝑥, 𝑦)𝐹(𝑥, 𝑦)
𝑝 and in

view of

𝐹 (𝑥, 𝑦) =
1

𝑟 (𝑥, 𝑦)
∫

𝑏

𝑥

∫

𝑑

𝑦

𝑟 (𝑠, 𝑡) ℎ (𝑠, 𝑡) 𝑓 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡 (26)

for (𝑥, 𝑦) ∈ (𝑎, 𝑏) × (𝑐, 𝑑), then

𝜕𝑢 (𝑥, 𝑦)

𝜕𝑦

=
𝜕𝑤 (𝑥, 𝑦)

𝜕𝑦
𝐹(𝑥, 𝑦)

𝑝

+ 𝑤 (𝑥, 𝑦) 𝑝𝐹(𝑥, 𝑦)
𝑝−1

× (−
1

𝑟 (𝑥, 𝑦)
∫

𝑑

𝑦

𝑟 (𝑥, 𝑡) ℎ (𝑥, 𝑡) 𝑓 (𝑥, 𝑡) 𝑑𝑡

−
𝜕𝑟 (𝑥, 𝑦) /𝜕𝑦

𝑟2 (𝑥, 𝑦)
∫

𝑏

𝑥

∫

𝑑

𝑦

𝑟 (𝑠, 𝑡) ℎ (𝑠, 𝑡) 𝑓 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡) .

(27)

Let

𝜕V (𝑥, 𝑦)
𝜕𝑦

= 𝐻(𝑥, 𝑦)
−1

ℎ̃ (𝑥, 𝑦) [log(
𝐻(𝑅, 𝑅



)

𝐻 (𝑥, 𝑦)
)]

−𝑞

,

(28)

where ℎ̃(𝑥, 𝑦) = ∫
𝑥

𝑎

ℎ(𝑠, 𝑦)𝑑𝑠 and in view of 𝐻(𝑥, 𝑦) =

∫
𝑥

𝑎

∫
𝑦

𝑐

ℎ(𝑠, 𝑡)𝑑𝑠 𝑑𝑡, for (𝑥, 𝑦) ∈ (𝑎, 𝑏) × (𝑐, 𝑑), then

V (𝑥, 𝑦) = −
[log (𝐻 (𝑅, 𝑅



) /𝐻 (𝑥, 𝑦))]
−𝑞+1

(−𝑞 + 1)
. (29)

From (27), (29), and integrating by parts for 𝑦, we have

∫

𝑑

𝑐

∫

𝑏

𝑎

𝑤 (𝑥, 𝑦)𝐻(𝑥, 𝑦)
−1

ℎ̃ (𝑥, 𝑦)

× (log(
𝐻(𝑅, 𝑅



)

𝐻 (𝑥, 𝑦)
))

−𝑞

𝐹(𝑥, 𝑦)
𝑝

𝑑𝑥 𝑑𝑦

= −∫

𝑏

𝑎

{{

{{

{

𝑤(𝑥, 𝑦) 𝐹(𝑥, 𝑦)
𝑝

×
[log (𝐻 (𝑅, 𝑅



) /𝐻 (𝑥, 𝑦))]
−𝑞+1

−𝑞 + 1



𝑦=𝑑

𝑦=𝑐

− ∫

𝑑

𝑐

[log (𝐻 (𝑅, 𝑅


) /𝐻 (𝑥, 𝑦))]
−𝑞+1

−𝑞 + 1

× [
𝜕𝑤 (𝑥, 𝑦)

𝜕𝑦
𝐹(𝑥, 𝑦)

𝑝

+ 𝑤 (𝑥, 𝑦) 𝑝𝐹(𝑥, 𝑦)
𝑝−1

× (𝐿 (𝑥, 𝑦) −
𝜕𝑟 (𝑥, 𝑦) 𝜕𝑦

𝑟2 (𝑥, 𝑦)

× ∫

𝑏

𝑥

∫

𝑑

𝑦

𝑟 (𝑠, 𝑡) ℎ (𝑠, 𝑡)

×𝑓(𝑠, 𝑡)𝑑𝑠 𝑑𝑡)]𝑑𝑦

}}

}}

}

𝑑𝑥,

(30)

where

𝐿 (𝑥, 𝑦) = −
1

𝑟 (𝑥, 𝑦)
∫

𝑏

𝑥

𝑟 (𝑠, 𝑦) ℎ (𝑠, 𝑦) 𝑓 (𝑠, 𝑦) 𝑑𝑠. (31)

If 𝑞 > 1, then we observe that

∫

𝑑

𝑐

∫

𝑏

𝑎

𝐸 (𝑥, 𝑦)𝑤 (𝑥, 𝑦)𝐻(𝑥, 𝑦)
−1

ℎ̃ (𝑥, 𝑦)

× (log(
𝐻(𝑅, 𝑅



)

𝐻 (𝑥, 𝑦)
))

−𝑞

𝐹(𝑥, 𝑦)
𝑝

𝑑𝑥 𝑑𝑦



6 The Scientific World Journal

≤
𝑝

𝑞 − 1
∫

𝑑

𝑐

∫

𝑏

𝑎

[

[

𝑤 (𝑥, 𝑦)(log(
𝐻(𝑅, 𝑅



)

𝐻 (𝑥, 𝑦)
))

−𝑞+1

× 𝐿 (𝑥, 𝑦) 𝐹(𝑥, 𝑦)
𝑝−1]

]

𝑑𝑥𝑑𝑦

=
𝑝

𝑞 − 1

× ∫

𝑑

𝑐

∫

𝑏

𝑎

[
[

[

{

{

{

(log(
𝐻(𝑅, 𝑅



)

𝐻 (𝑥, 𝑦)
))

−𝑞

}

}

}

1/𝑝

× log(
𝐻(𝑅, 𝑅



)

𝐻 (𝑥, 𝑦)
)𝑤(𝑥, 𝑦)

1/𝑝

𝐻(𝑥, 𝑦)
(𝑝−1)/𝑝

× ℎ(𝑥, 𝑦)
−(𝑝−1)/𝑝

𝐿 (𝑥, 𝑦)
]
]

]

×
[
[

[

{

{

{

(log(
𝐻(𝑅, 𝑅



)

𝐻 (𝑥, 𝑦)
))

−𝑞

}

}

}

(𝑝−1)/𝑝

× 𝑤(𝑥, 𝑦)
(𝑝−1)/𝑝

× [𝐻(𝑥, 𝑦)
−1

× ℎ (𝑥, 𝑦)]
(𝑝−1)/𝑝

× 𝐹(𝑥, 𝑦)
𝑝−1]

]

]

𝑑𝑥𝑑𝑦.

(32)

By applying Hölder’s inequality with indices 𝑝, 𝑝/(𝑝 − 1) on
the right side of (32), we obtain

∫

𝑑

𝑐

∫

𝑏

𝑎

𝑤 (𝑥, 𝑦)𝐻(𝑥, 𝑦)
−1

ℎ̃ (𝑥, 𝑦)

×(log(
𝐻(𝑅, 𝑅



)

𝐻 (𝑥, 𝑦)
))

−𝑞

𝐹(𝑥, 𝑦)
𝑝

𝑑𝑥 𝑑𝑦

≤ 𝛽(
𝑝

𝑞 − 1
)

×
{

{

{

∫

𝑑

𝑐

∫

𝑏

𝑎

[

[

(log(
𝐻(𝑅, 𝑅



)

𝐻 (𝑥, 𝑦)
))

−𝑞

× (log(
𝐻(𝑅, 𝑅



)

𝐻 (𝑥, 𝑦)
))

𝑝

𝑤 (𝑥, 𝑦)𝐻(𝑥, 𝑦)
𝑝−1

× ℎ(𝑥, 𝑦)
−(𝑝−1)

𝐿(𝑥, 𝑦)
𝑝]

]

𝑑𝑥𝑑𝑦
}

}

}

1/𝑝

×
{

{

{

∫

𝑑

𝑐

∫

𝑏

𝑎

[

[

(log(
𝐻(𝑅, 𝑅



)

𝐻 (𝑥, 𝑦)
))

−𝑞

× 𝑤 (𝑥, 𝑦)𝐻(𝑥, 𝑦)
−1

× ℎ (𝑥, 𝑦) 𝐹(𝑥, 𝑦)
𝑝]

]

𝑑𝑥𝑑𝑦
}

}

}

(𝑝−1)/𝑝

.

(33)

Dividing both sides of (33) by the second integral factor on
the right side of (33) and raising both sides to the 𝑝th power,
we obtain

∫

𝑑

𝑐

∫

𝑏

𝑎

𝑤 (𝑥, 𝑦)𝐻(𝑥, 𝑦)
−1

ℎ̃ (𝑥, 𝑦)

× (log(
𝐻(𝑅, 𝑅



)

𝐻 (𝑥, 𝑦)
))

−𝑞

× 𝐹(𝑥, 𝑦)
𝑝

𝑑𝑥 𝑑𝑦

≤ [𝛽(
𝑝

𝑞 − 1
)]

𝑝

× ∫

𝑑

𝑐

∫

𝑏

𝑎

[

[

(log(
𝐻(𝑅, 𝑅



)

𝐻 (𝑥, 𝑦)
))

𝑝−𝑞

𝑤 (𝑥, 𝑦)𝐻(𝑥, 𝑦)
𝑝−1

× ℎ(𝑥, 𝑦)
−(𝑝−1)

𝐿(𝑥, 𝑦)
𝑝]

]

𝑑𝑥𝑑𝑦.

(34)
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