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Abstract

In this paper, we consider the optimal proportional reinsurance strategy in a risk model with

two dependent classes of insurance business, where the two claim number processes are correlated

through a common shock component. Under the criterion of maximizing the expected exponential

utility with the variance premium principle, we adopt a nonstandard approach to examining the

existence and uniqueness of the optimal reinsurance strategy. Using the technique of stochastic

control theory, closed-form expressions for the optimal strategy and the value function are derived

for the compound Poisson risk model as well as for the Brownian motion risk model. From the

numerical examples, we see that the optimal results for the compound Poisson risk model are very

different from those for the diffusion model. The former depends not only on the safety loading,

time, and the interest rate, but also on the claim size distributions and the claim number processes,

while the latter only depends on the safety loading, time, and the interest rate.

Keywords: Brownian motion; Common shock; Compound Poisson process; Diffusion process;

Exponential utility; Hamilton-Jacobi-Bellman equation; Proportional reinsurance
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1 Introduction

With reinsurance, insurers are able to transfer some of their risks to another party at the expense

of making less potential profit, and hence finding optimal reinsurance strategy to balance their risk

and profit is of great interest to them. In fact, optimal reinsurance problems have gained much

interest in the actuarial literature in the past few years, and the technique of stochastic control

theory and the Hamilton-Jacobi-Bellman equation are frequently used to cope with these problems.

See, for example, Schmidli (2001), Irgens and Paulsen (2004), Promislow and Young (2005), Liang

et al. (2011), and Liang and Young (2012).

In the study of optimal reinsurance contracts, a few objective functions are commonly seen

in the literature. Browne (1995), Schmidli (2002), Liang (2007), and Luo et al. (2008) consider

the objective function that minimizes ruin probability. Kaluszka (2001, 2004) study the optimal

reinsurance problem under various mean-variance premium principles of the reinsurer. Since explicit

expression for the ruin probability is difficult to derive when the underlying risk follows a compound

Poisson process, some papers including Centeno (1986, 2002), Hald and Schmidli (2004), and

Liang and Guo (2007, 2008) focus on constructing optimal contracts that maximize the adjustment

coefficient by the martingale approach. Moreover, Cai and Tan (2007), Cai et al. (2008), and

Bernard and Tian (2009) adopt the criteria of minimizing tail risk measures such as value at risk

and conditional tail expectation. In this paper, our objective is to maximize the expected utility

of terminal wealth which is another popular criterion for various optimization problems in finance

and modern risk theory. For example, see Liang et al. (2012) and references therein.

Although research on optimal reinsurance is increasing rapidly, only a few papers deal with

the problem in relation to dependent risks. Under the criteria of maximizing the expected utility

of terminal wealth and maximizing the adjustment coefficient, Centeno (2005) studies the optimal

excess of loss retention limits for two dependent classes of insurance risks. Bai et al. (2012) also seek

the optimal excess of loss reinsurance to minimize the ruin probability for the diffusion risk model.

Under the variance premium principle, the optimal reinsurance contract is not necessarily an excess

of loss reinsurance but a proportional reinsurance (see Proposition 7 in Hipp and Taksar (2010)).

These papers motivate us to consider the optimal proportional reinsurance with dependent risks

under the variance premium principle. By a nonstandard approach, we investigate the conditions

of existence and uniqueness of the optimal reinsurance strategies. Using the technique of stochastic

control theory, closed-form expressions for the optimal reinsurance strategy and the value function
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are derived for the compound Poisson risk model as well as for the diffusion risk model. From

the numerical examples, we find that the optimal results in the compound Poisson case are very

different from those in the diffusion case. The former depends not only on the safety loading, time,

and interest rate, but also on the claim size distributions and the counting processes, while the

latter only depends on the safety loading, time, and interest rate.

The rest of the paper is organized as follows. In Section 2, the models and assumptions are

presented. In Sections 3 and 4, we discuss the optimal strategies in both the compound Poisson and

diffusion cases, and derive closed form expressions for the optimal results. In Section 5, numerical

examples are carried out to assess the impact of some model parameters on the optimal strategies.

Finally, we conclude the paper in Section 6.

2 Model formulation

Suppose that an insurance company has two dependent classes of insurance business such as motor,

health, and life insurance. Let Xi be the claim size random variables for the first class with common

distribution FX(x) and Yi be the claim size random variables for the second class with common

distribution FY (y). Their means are denoted by µ1 = E(Xi) and µ2 = E(Yi). Assume that

FX(x) = 0 for x ≤ 0, FY (y) = 0 for y ≤ 0, 0 < FX(x) < 1 for x > 0, 0 < FY (y) < 1 for y > 0,

and that their moment generating functions, MX(r) and MY (r), exist. Then, the aggregate claims

processes for the two classes are given by

S1(t) =

M1(t)∑
i=1

Xi and S2(t) =

M2(t)∑
i=1

Yi,

where Mi(t) is the claim number process for class i (i = 1, 2). It is assumed that Xi and Yi are

independent claim size random variables, and that they are independent of M1(t) and M2(t).

The two claim number processes are correlated in the way that

M1(t) = N1(t) +N(t) and M2(t) = N2(t) +N(t),

with N1(t), N2(t), and N(t) being three independent Poisson processes with parameters λ1, λ2, and

λ, respectively. Therefore, the aggregate claims process generated from the two classes of business

has the form

St =

N1(t)+N(t)∑
i=1

Xi +

N2(t)+N(t)∑
i=1

Yi.
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We assume that both E(XerX) = M ′X(r) and E(Y erY ) = M ′Y (r) exist for 0 < r < ζ, and that

both limr→ζ E(XerX) and limr→ζ E(Y erY ) tend to ∞ for some 0 < ζ ≤ +∞. It is obvious that

the dependence of the two classes of business is due to a common shock governed by the counting

process N(t). This model has been studied extensively in the literature; see for example, Yuen et

al. (2002, 2006).

As usual, we define the surplus process

Rt = u+ ct− St,

where u is the amount of initial surplus, and c is the rate of premium. Moreover, we allow the

insurance company to continuously reinsure a fraction of its claim with the retention levels q1t ∈

[0, 1] and q2t ∈ [0, 1] for Xi and Yi, respectively. Let the reinsurance premium rate at time t be

δ(q1t, q2t). Furthermore, the company is allowed to invest all its surplus in a risk free asset with

interest rate r. Let {Rq1,q2t , t ≥ 0} denote the associated surplus process, i.e., Rq1,q2t is the wealth

of the insurer at time t under the strategy (q1t, q2t). This process then evolves as

dRq1,q2t = [rRq1,q2t + (c− δ(q1t, q2t))]dt− q1tdS1(t)− q2tdS2(t). (2.1)

From Grandell (1991), we know that the Brownian motion risk model given by

Ŝ1(t) = a1t− σ1B1t,

with a1 = (λ1 + λ)E(X) and σ2
1 = (λ1 + λ)E(X2) can be seen as a diffusion approximation to the

compound Poisson process S1(t). Similarly,

Ŝ2(t) = a2t− σ2B2t,

with a2 = (λ2 + λ)E(Y ) and σ2
2 = (λ2 + λ)E(Y 2) can be treated as a diffusion approximation to

the compound Poisson process S2(t). Here, B1t and B2t are standard Brownian motions with the

correlation coefficient

ρ =
λE(X)E(Y )√

(λ1 + λ)E(X2)(λ2 + λ)E(Y 2)
,

So, E[B1tB2t] = ρt. Replacing Si(t) (i = 1, 2) of (2.1) by Ŝi(t) (i = 1, 2), one can obtain the

following surplus process

dR̂q1,q2t = [rR̂q1,q2t + (c− δ(q1t, q2t))− q1ta1 − q2ta2]dt+ q1tσ1dB1t + q2tσ2dB2t,
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or equivalently,

dR̂q1,q2t = [rR̂q1,q2t + (c− δ(q1t, q2t))− q1ta1 − q2ta2]dt

+
√
σ2

1q
2
1t + σ2

2q
2
2t + 2σ1σ2q1tq2tρdBt,

= [rR̂q1,q2t + (c− δ(q1t, q2t))− q1ta1 − q2ta2]dt

+
√
σ2

1q
2
1t + σ2

2q
2
2t + 2q1tq2tλµ1µ2dBt,

(2.2)

where Bt is a standard Brownian motion.

Remark 2.1. It follows from Yuen et al. (2002) or Wang and Yuen (2005) that St is also a com-

pound Poisson process with parameter λ̃ = λ1 +λ2 +λ, and that the distribution of the transformed

claim size random variable X ′ is given by

FX′(x) =
λ1

λ̃
FX(x) +

λ2

λ̃
FY (x) +

λ

λ̃
FX+Y (x).

Therefore, the Brownian motion risk model given by

Ŝt = (a1 + a2)t−
√
σ2

1 + σ2
2 + 2λµ1µ2Bt

can be seen as a diffusion approximation to the compound Poisson process St. On the other hand,

Ŝ1(t) + Ŝ2(t) = (a1 + a2)t− (σ1B1t + σ2B2t),

which can be replaced by

Ŝ1(t) + Ŝ2(t) = (a1 + a2)t−
√
σ2

1 + σ2
2 + 2σ1σ2ρBt,

as the two forms have the same distributional properties. Hence, the sum Ŝ1(t) + Ŝ2(t) can also be

regarded as a diffusion approximation to the compound Poisson process St when

ρ =
λE(X)E(Y )√

(λ1 + λ)E(X2)(λ2 + λ)E(Y 2)
=
λµ1µ2

σ1σ2
.

Assume now that the insurer is interested in maximizing the expected utility of terminal wealth,

say at time T . The utility function is u(x), which satisfies u′ > 0 and u′′ < 0. Then, the objective

functions are

Jq1,q2(t, x) = E[u(Rq1,q2T )|Rq1,q2t = x], (2.3)

and

Jq1,q2(t, x) = E[u(R̂q1,q2T )|R̂q1,q2t = x]. (2.4)
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Since (2.3) and (2.4) will be discussed separately, the use of the same notation Jq1,q2(t, x) will not

cause any confusion. The corresponding value function is then given by

V (t, x) = sup
q1,q2

Jq1,q2(t, x). (2.5)

We assume that the insurer has an exponential utility function

u(x) = −m
ν
e−νx,

for m > 0 and ν > 0. This utility has constant absolute risk aversion (CARA) parameter ν.

Such a utility function plays an important role in insurance mathematics and actuarial practice as

this is the only function under which the principle of “zero utility” gives a fair premium that is

independent of the level of reserve of an insurance company (see Gerber (1979)).

Let C1,2 denote the space of φ(t, x) such that φ and its partial derivatives φt, φx, φxx are

continuous on [0, T ]×R. To solve the above problem, we use the dynamic programming approach

described in Fleming and Soner (2006). From the standard arguments, we see that if the value

function V ∈ C1,2, then V satisfies the following Hamilton-Jacobi-Bellman (HJB) equation

sup
q1,q2
Aq1,q2V (t, x) = 0, (2.6)

for t < T with the boundary condition

V (T, x) = u(x), (2.7)

where

Aq1,q2V (t, x) = Vt + [rx+ c− δ(q1, q2)]Vx

+λ1E[V (t, x− q1X)− V (t, x)]

+λ2E[V (t, x− q2Y )− V (t, x)]

+λE[V (t, x− q1X − q2Y )− V (t, x)],

for the risk process (2.1), and

Aq1,q2V (t, x) = Vt + [rx+ c− δ(q1, q2)− q1a1 − q2a2]Vx

+1
2(σ2

1q
2
1 + σ2

2q
2
2 + 2q1q2λµ1µ2)Vxx,

for the risk process (2.2).

Using the standard methods of Fleming and Soner (2006) and Yang and Zhang (2005), we have

the following verification theorem:
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Theorem 2.1. Let W ∈ C1,2 be a classical solution to (2.6) that satisfies (2.7). Then, the value

function V given by (2.5) coincides with W . That is,

W (t, x) = V (t, x).

Furthermore, set (q∗1, q
∗
2) such that

Aq∗1 ,q∗2V (t, x) = 0

holds for all (t, x) ∈ [0, T )×R. Then, (q∗1(t, R∗t ), q
∗
2(t, R∗t )) is the optimal strategy. Here, R∗t is the

surplus process under the optimal strategy.

Remark 2.2. In this paper, we assume that continuous trading is allowed and that all assets are

infinitely divisible. We work on a complete probability space (Ω,F , P ) on which the process Rq1,q2t

is well defined. The information at time t is given by the complete filtration Ft generated by Rq1,q2t .

The strategy (q1t, q2t) is Ft-predictable.

3 Optimal results for the compound Poisson model

In this section, we consider the optimization problem for the risk model (2.1). Throughout the

paper, we assume that the reinsurance premium is calculated according to the variance principle.

That is,

δ(q1, q2) = (1− q1)a1 + (1− q2)a2 + Λh̃(q1, q2). (3.1)

Here, Λ > 0 is the safety loading of the reinsurer, and

h̃(q1, q2) = (1− q1)2σ2
1 + (1− q2)2σ2

2 + 2(1− q1)(1− q2)λµ1µ2.

To solve the equation

supq1,q2{ Vt + [rx+ c− δ(q1, q2)]Vx + λ1E[V (t, x− q1X)− V (t, x)]

+λ2E[V (t, x− q2Y )− V (t, x)] + λE[V (t, x− q1X − q2Y )− V (t, x)]} = 0,

with the boundary condition V (T, x) = u(x), inspired by Browne (1995), we try to fit a solution

with the form

V (t, x) = −m
ν
exp[−νxer(T−t) + h(T − t)], (3.2)

where h(·) is a suitable function such that (3.2) is a solution to (2.6). The boundary condition

V (T, x) = u(x) implies that h(0) = 0.

8



From (3.2), we get

Vt = V (t, x)[νxrer(T−t) − h′(T − t)],

Vx = V (t, x)[−νer(T−t)],

Vxx = V (t, x)[ν2e2r(T−t)],

E[V (t, x− q1X)− V (t, x)] = V (t, x)[MX(νq1e
r(T−t))− 1],

E[V (t, x− q2Y )− V (t, x)] = V (t, x)[MY (νq2e
r(T−t))− 1],

E[V (t, x− q1X − q2Y )− V (t, x)]

= V (t, x)[MX(νq1e
r(T−t))MY (νq2e

r(T−t))− 1].

(3.3)

Putting (3.3) into the equation (2.6) and rearranging terms yield

infq1,q2 {−h′(T − t)− cνer(T−t) − λ1 − λ2 − λ+ δ(q1, q2)νer(T−t)

+λ1MX(νq1e
r(T−t)) + λ2MY (νq2e

r(T−t))

+λMX(νq1e
r(T−t))MY (νq2e

r(T−t))} = 0,

(3.4)

for t < T . Let

f̃(q1, q2) = δ(q1, q2)νer(T−t) + λ1MX(νq1e
r(T−t))

+λ2MY (νq2e
r(T−t)) + λMX(νq1e

r(T−t))MY (νq2e
r(T−t)).

For any t ∈ [0, T ], we have
∂f̃(q1,q2)
∂q1

= (∂δ(q1,q2)
∂q1

+M ′X(νq1e
r(T−t))(λ1 + λMY (νq2e

r(T−t)))) · νer(T−t),

∂f̃(q1,q2)
∂q2

= (∂δ(q1,q2)
∂q2

+M ′Y (νq2e
r(T−t))(λ2 + λMX(νq1e

r(T−t)))) · νer(T−t).

Moreover, since

δ(q1, q2) = (1− q1)a1 + (1− q2)a2 + Λh̃(q1, q2),

we obtain 

∂f̃(q1,q2)
∂q1

= (−a1 − Λ(2(1− q1)σ2
1 + 2(1− q2)λµ1µ2)

+M ′X(νq1e
r(T−t))(λ1 + λMY (νq2e

r(T−t)))) · νer(T−t),

∂f̃(q1,q2)
∂q2

= (−a2 − Λ(2(1− q2)σ2
2 + 2(1− q1)λµ1µ2)

+M ′Y (νq2e
r(T−t))(λ2 + λMX(νq1e

r(T−t)))) · νer(T−t),
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and 

∂2f̃(q1,q2)
∂q21

= M ′′X(νq1e
r(T−t))(λ1 + λMY (νq2e

r(T−t))) · ν2e2r(T−t)

+2Λσ2
1 · νer(T−t) > 0,

∂2f̃(q1,q2)
∂q22

= M ′′Y (νq2e
r(T−t))(λ2 + λMX(νq1e

r(T−t))) · ν2e2r(T−t)

+2Λσ2
2 · νer(T−t) > 0,

∂2f̃(q1,q2)
∂q1∂q2

= ∂2f̃(q1,q2)
∂q2∂q1

= 2Λλµ1µ2νe
r(T−t)

+λM ′X(νq1e
r(T−t)) ·M ′Y (νq2e

r(T−t))) · ν2e2r(T−t).

Lemma 3.1. f̃(q1, q2) is a convex function with respect to q1 and q2.

Proof: To prove f̃(q1, q2) is a convex function with respect to q1 and q2, it is sufficient to

prove that the Hessian matrix of f̃(q1, q2) is positive definite.

Let

A =

 σ2
1 λµ1µ2

λµ1µ2 σ2
2

 , B =

 λ1M
′′
X(νq1e

r(T−t)) 0

0 λ2M
′′
Y (νq2e

r(T−t))

 ,

and

C =

 M ′′X(νq1e
r(T−t)) ·MY (νq2e

r(T−t)) M ′X(νq1e
r(T−t)) ·M ′Y (νq2e

r(T−t))

M ′X(νq1e
r(T−t)) ·M ′Y (νq2e

r(T−t)) M ′′Y (νq2e
r(T−t)) ·MX(νq1e

r(T−t))

 .

Then, the Hessian matrix can be decomposed as ∂2f̃(q1,q2)
∂q21

∂2f̃(q1,q2)
∂q1∂q2

∂2f̃(q1,q2)
∂q2∂q1

∂2f̃(q1,q2)
∂q22

 = A · νer(T−t) + (B + λ ·C) · ν2e2r(T−t).

It is easy to see that B is a nonnegative definite matrix. Furthermore, by the Cauchy−Schwarz

inequality, it is not difficult to prove that A is a positive definite matrix, and that C is a nonnegative

definite matrix. Thus, the Hessian matrix is a positive definite matrix. 2

Therefore, the minimizer (q1(T − t), q2(T − t)) of f̃(q1, q2) satisfies the following equations
a1 + Λ(2(1− q1)σ2

1 + 2(1− q2)λµ1µ2) = M ′X(νq1e
r(T−t))(λ1 + λMY (νq2e

r(T−t))),

a2 + Λ(2(1− q2)σ2
2 + 2(1− q1)λµ1µ2) = M ′Y (νq2e

r(T−t))(λ2 + λMX(νq1e
r(T−t))).

(3.5)

Moreover, we have
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Lemma 3.2. For any t ∈ [0, T ], if both (q11, q21) and (q12, q22) are the solution to the equations

(3.5), then we have q11 = q12 and q21 = q22.

Proof: Assume that q11 6= q12 or q21 6= q22. By Taylor’s Theorem, we have

f̃(q11, q21) = f̃(q12, q22) + (h ∂
∂q1

+ k ∂
∂q2

)f̃(q12, q22)

+ 1
2!(h

∂
∂q1

+ k ∂
∂q2

)2f̃(q12 + θh, q22 + θk)

= f̃(q12, q22) + 1
2∆1,

where h = q11 − q12, k = q21 − q22 and

∆1 = (h2 ∂2

∂q1
2

+ 2hk
∂2

∂q1∂q2
+ k2 ∂2

∂q2
2
)f̃(q12 + θh, q22 + θk).

From Lemma 3.1, we know that the Hessian matrix is a positive definite matrix, and thus√
∂2f̃

∂q2
1

· ∂
2f̃

∂q2
2

> | ∂
2f̃

∂q1∂q2
|.

Therefore, when h 6= 0 and k 6= 0,

∆1 ≥ 2|hk|

√
∂2f̃

∂q2
1

· ∂
2f̃

∂q2
2

+ 2hk
∂2f̃

∂q1∂q2
> 0,

which implies that

f̃(q11, q21) = f̃(q12, q22) +
1

2
∆1 > f̃(q12, q22). (3.6)

Along the same lines, one can obtain

f̃(q12, q22) > f̃(q11, q21),

which is contrary to (3.6). 2

For notational convenience, we rewrite equation (3.5) as
a1 + Λ(2(1− n

ν e
−r(T−t))σ2

1 + 2(1− m
ν e
−r(T−t))λµ1µ2) = M ′X(n)(λ1 + λMY (m)),

a2 + Λ(2(1− m
ν e
−r(T−t))σ2

2 + 2(1− n
ν e
−r(T−t))λµ1µ2) = M ′Y (m)(λ2 + λMX(n)),

(3.7)

where n = νq1e
r(T−t) and m = νq2e

r(T−t). To prove the existence and uniqueness of the solution

to (3.7), we need the following two more lemmas.
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Lemma 3.3. For any t ∈ [0, T ], there is a unique positive solution to each of the following equations

λµ1MY (m) = λµ1 + 2Λσ2
1 + 2Λλµ1µ2(1− m

ν
e−r(T−t)), (3.8)

and

(λ1 + λ)M ′X(n) = a1 + 2Λλµ1µ2 + 2Λσ2
1(1− n

ν
e−r(T−t)). (3.9)

Proof: We first discuss the equation (3.8). Let

g1(m) = λµ1 + 2Λσ2
1 + 2Λλµ1µ2(1− m

ν
e−r(T−t)),

and

g2(m) = λµ1MY (m).

Then, we have

g2(0) = λµ1,

g′2(m) = E(Y emY ) > 0,

g′′2(m) = E(Y 2emY ) > 0.

That is, for any t ∈ [0, T ], g2(m) is an increasing convex function with g2(0) = λµ1. Furthermore,

g1(m) is a decreasing linear function with

g1(0) = λµ1 + 2Λσ2
1 + 2Λλµ1µ2 > g2(0).

Therefore, g1(m) and g2(m) have a unique point of intersection at some m1(t) > 0. That is,

equation (3.8) has a unique positive root.

We now consider the equation (3.9). Let

g3(n) = (λ1 + λ)M ′X(n),

and

g4(n) = a1 + 2Λλµ1µ2 + 2Λσ2
1(1− n

ν
e−r(T−t)).

Then, we have

g3(0) = a1,

g′3(n) = E(X2enX) > 0,

g′′3(n) = E(X3enX) > 0.

That is, for any t ∈ [0, T ], g3(n) is an increasing convex function with g3(0) = a1. Furthermore,

g4(n) is a decreasing linear function with

g4(0) = a1 + 2Λλµ1µ2 + 2Λσ2
1 > g3(0).
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Therefore, g3(n) and g4(n) have a unique point of intersection at some n1(t) > 0. That is, the

equation (3.9) has a unique positive root. 2

Lemma 3.4. For any t ∈ [0, T ], there is a unique positive solution to each of the following equations

(λ2 + λ)M ′Y (m) = a2 + 2Λλµ1µ2 + 2Λ(1− m

ν
e−r(T−t))σ2

2 (3.10)

and

λµ2MX(n) = λµ2 + 2Λσ2
2 + 2Λλµ1µ2(1− n

ν
e−r(T−t)). (3.11)

Proof: Similar to the proof of Lemma 3.3, one can show that the equation (3.10) ((3.11)) has a

unique positive root m2(t) (n2(t)). 2

The next lemma states the existence and uniqueness of the solution to the equation (3.7).

Lemma 3.5. Let m1(t), n1(t), m2(t) and n2(t) be the unique positive roots of the equations (3.8),

(3.9), (3.10), and (3.11), respectively. If
m1(t) > m2(t),

n1(t) < n2(t),

or 
m1(t) < m2(t),

n1(t) > n2(t),

hold for any t ∈ [0, T ], then the equation (3.7) has a unique positive root (n̄(T − t), m̄(T − t)).

Proof: Let

H1(n,m) = a1 + Λ(2(1− n
ν e
−r(T−t))σ2

1 + 2(1− m
ν e
−r(T−t))λµ1µ2)

−M ′X(n)(λ1 + λMY (m)),

and

H2(n,m) = a2 + Λ(2(1− m
ν e
−r(T−t))σ2

2 + 2(1− n
ν e
−r(T−t))λµ1µ2)

−M ′Y (m)(λ2 + λMX(n)).

Assume that H1(n,m) = 0 with m = f1(n), and that H2(n,m) = 0 with m = f2(n). Differentiating

both sides of H1(n,m) = 0 with respect to n yields

−2Λ(σ2
1 + µ1µ2f

′
1(n))

1

ν
e−r(T−t) = λf ′1(n)M ′Y (m)M ′X(n) + (λMY (m) + λ1)M ′′X(n),

13



and thus

f ′1(n) = −
(λMY (m) + λ1)M ′′X(n) + 2Λσ2

1
1
ν e
−r(T−t)

λM ′Y (m)M ′X(n) + 2Λµ1µ2
1
ν e
−r(T−t) < 0.

Furthermore, it follows from Lemma 3.3 that the equations H1(0,m) = 0 and H1(n, 0) = 0 have

unique positive solutions m1(t) and n1(t), respectively. Therefore, for any t ∈ [0, T ], function f1(n)

is a decreasing function with 
f1(0) = m1(t) > 0,

f−1
1 (0) = n1(t) > 0.

Along the same lines, from H2(n,m) = 0, we obtain

f ′2(n) = −
λM ′Y (m)M ′X(n) + 2Λµ1µ2

1
ν e
−r(T−t)

(λMX(n) + λ2)M ′′Y (m) + 2Λσ2
2

1
ν e
−r(T−t) < 0.

Using Lemma 3.4, one can show that the equations H2(0,m) = 0 and H2(n, 0) = 0 have unique

positive solutions m2(t) and n2(t), respectively. Therefore, for any t ∈ [0, T ], the function f2(n) is

also a decreasing function with 
f2(0) = m2(t) > 0,

f−1
2 (0) = n2(t) > 0.

Note that, in the above equations, f−1
i (i = 1, 2) is the inverse function of fi, M

′′
X(r) = E(X2erX),

and M ′′Y (r) = E(Y 2erY ).

Therefore, for any t ∈ [0, T ], if the following inequalities
f1(0) > f2(0),

f−1
1 (0) < f−1

2 (0),

or 
f1(0) < f2(0),

f−1
1 (0) < f−1

2 (0),

hold, the functions f1(n) and f2(n) have at least one point of intersection at some n̄(T − t) > 0.

Then, it follows from Lemma 3.2 that the equation (3.7) has a unique positive root (n̄(T−t), m̄(T−

t)) with m̄(T − t) = f1(n̄(T − t)) = f2(n̄(T − t)). 2

14



From Lemma 3.5, we get νq1(T − t)er(T−t) = n̄(T − t) and νq2(T − t)er(T−t) = m̄(T − t), and

thus 
q1(T − t) = n̄(T−t)

ν e−r(T−t),

q2(T − t) = m̄(T−t)
ν e−r(T−t).

(3.12)

Assume that q̂1(T − t) and q̂2(T − t) are the unique positive solutions to the following equations:

a1 + 2Λ(1− q1)σ2
1 = M ′X(νq1e

r(T−t))(λ1 + λMY (νer(T−t)), (3.13)

and

a2 + 2Λ(1− q2)σ2
2 = M ′Y (νq2e

r(T−t))(λ2 + λMX(νer(T−t)), (3.14)

respectively. Let t1(t01) and t2(t02) be the time points at which q1(T − t) = 1 (q̂1(T − t) = 1)

and q2(T − t) = 1 (q̂2(T − t) = 1), respectively. By the convexity of the function f̃ , we derive the

optimal reinsurance strategy

(q∗1(T − t), q∗2(T − t)) =



(q1(T − t), q2(T − t)), 0 < t < t2,

(q̂1(T − t), 1), t2 ≤ t < t01,

(1, 1), t ≥ t01,

when t1 > t2, and

(q∗1(T − t), q∗2(T − t)) =



(q1(T − t), q2(T − t)), 0 < t < t1,

(1, q̂2(T − t)), t1 ≤ t < t02,

(1, 1), t ≥ t02,

when t1 ≤ t2.

Putting the optimal reinsurance strategies (q∗1(T − t), q∗2(T − t)) back into (3.4) yields

h1(T − t) = −1

r
cν(er(T−t) − 1)− (λ1 + λ2 + λ)(T − t) +

∫ T−t

0
K(s)ds, (3.15)

where

K(s) = δ(q∗1(s), q∗2(s))νers + λ1MX(νq∗1(s)es)

+(λ2 + λMX(νq∗1(s)es))MY (νq∗2(s)es).

To summarize, we have
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Theorem 3.1. Let (q1(T − t), q2(T − t))) be given in the equation (3.12), and q̂1(T − t) and

q̂2(T − t) be the unique positive solution to the equations (3.13) and (3.14), respectively. Then, for

any t ∈ [0, T ], the optimal reinsurance strategy for the risk model (2.1) is

(q∗1(T − t), q∗2(T − t)) =



(q1(T − t), q2(T − t)), 0 < t < t2,

(q̂1(T − t), 1), t2 ≤ t < t01,

(1, 1), t ≥ t01,

for t1 > t2, and

(q∗1(T − t), q∗2(T − t)) =



(q1(T − t), q2(T − t)), 0 < t < t1,

(1, q̂2(T − t)), t1 ≤ t < t02,

(1, 1), t ≥ t02,

for t1 ≤ t2. Moreover, the value function is given by

V (t, x) = −m
ν
exp{−νxer(T−t) + h1(T − t)},

where h1(T − t) is defined in (3.15).

Remark 3.1. When the two compound Poisson processes S1(t) and S2(t) have the same distri-

bution, i.e., λ1 = λ2, µ1 = µ2, and σ1 = σ2, it is not difficult to see from (3.8)-(3.11) that

m1(t) = n2(t) and n1(t) = m2(t). By symmetry, we have m̄(T − t) = n̄(T − t), and therefore

q∗1(T − t) = q∗2(T − t).

4 Optimal results for the diffusion model

In this section, we discuss the optimization problem for the diffusion risk model. The surplus

process of the risk model (2.2) evolves as

dR̂q1,q2t = [rR̂q1,q2t + (c− δ(q1t, q2t))− q1ta1 − q2ta2]dt

+
√
σ2

1q
2
1t + σ2

2q
2
2t + 2q1tq2tλµ1µ2dBt,

and the corresponding HJB equation is

supq1,q2{ Vt + [rx+ c− δ(q1, q2)− q1a1 − q2a2]Vx

+1
2(σ2

1q
2
1 + σ2

2q
2
2 + 2q1q2λµ1µ2)Vxx}

(4.1)
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for t < T , with the boundary condition V (T, x) = u(x).

To derive the optimal reinsurance strategy which satisfies the HJB equation (4.1), we again

try to use a solution with the form (3.2). After substituting (3.3) into (4.1) and some algebraic

manipulation, we obtain

infq1,q2{ −h′(T − t)− [c− δ(q1, q2)− q1a1 − q2a2]νer(T−t)

+1
2(σ2

1q
2
1 + σ2

2q
2
2 + 2q1q2λµ1µ2)ν2e2r(T−t)} = 0.

(4.2)

Let

f̃1(q1, q2) = (δ(q1, q2) + q1a1 + q2a2)νer(T−t)

+1
2(σ2

1q
2
1 + σ2

2q
2
2 + 2q1q2λµ1µ2)ν2e2r(T−t).

Then, for any t ∈ [0, T ], we get

∂f̃1(q1,q2)
∂q1

= −(2Λ((1− q1)σ2
1 + (1− q2)λµ1µ2))νer(T−t)

+(q1σ
2
1 + λq2µ1µ2)ν2e2r(T−t),

∂2f̃1(q1,q2)
∂q21

= 2Λσ2
1νe

r(T−t) + σ2
1ν

2e2r(T−t) > 0,

∂f̃1(q1,q2)
∂q2

= −(2Λ((1− q2)σ2
2 + (1− q1)λµ1µ2))νer(T−t)

+(q2σ
2
2 + λq1µ1µ2)ν2e2r(T−t),

∂2f̃1(q1,q2)
∂q22

= 2Λσ2
2νe

r(T−t) + σ2
2ν

2e2r(T−t) > 0,

∂2f̃1(q1,q2)
∂q1∂q2

= 2Λλµ1µ2νe
r(T−t) + λµ1µ2ν

2e2r(T−t).

The Hessian matrix in this case is given by A · (2Λ + νer(T−t)), which is also a positive definite

matrix. Thus, f̃1(q1, q2) is a convex function with respect to q1 and q2. Therefore, the minimizer

(q̄1(T − t), q̄2(T − t)) of f̃1(q1, q2) satisfies the following equations
−(2Λ((1− q1)σ2

1 + (1− q2)λµ1µ2)) + (q1σ
2
1 + λq2µ1µ2)νer(T−t) = 0,

−(2Λ((1− q2)σ2
2 + (1− q1)λµ1µ2)) + (q2σ

2
2 + λq1µ1µ2)νer(T−t) = 0,

which can be rewritten as 
q1σ

2
1 + λq2µ1µ2 =

2Λσ2
1+2Λλµ1µ2

2Λ+νer(T−t) ,

q2σ
2
2 + λq1µ1µ2 =

2Λσ2
2+2Λλµ1µ2

2Λ+νer(T−t) .
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Then, it is not difficult to derive the following solution
q̄1(T − t) = 2Λ

2Λ+νer(T−t) ,

q̄2(T − t) = 2Λ
2Λ+νer(T−t) .

Since
2Λ

2Λ + νer(T−t)
∈ (0, 1),

we obtain the optimal reinsurance strategy

q∗1t = q∗2t =
2Λ

2Λ + νer(T−t)
.

Putting q∗1t = q∗2t = q̄1(T − t) into (4.2) yields

h3(T − t) =
1

r
(a0 − c)ν(er(T−t) − 1) +

∫ T−t

0
K̄1(s)ds, (4.3)

with

K̄1(s) = Λ(1− q̄1(s))σ2
0νe

rs +
1

2
q̄1(s)2σ2

0ν
2e2rs.

Finally, we summarize the result of this subsection in the following theorem.

Theorem 4.1. For any t ∈ [0, T ], the optimal reinsurance strategy for the risk model (2.2) is

q∗1t = q∗2t =
2Λ

2Λ + νer(T−t)
, (4.4)

and the value function is

V (t, x) = −m
ν
exp{−νxer(T−t) + h3(T − t)}.

where h3(T − t) is defined in (4.3).

Remark 4.1. From (4.4), we see that the optimal reinsurance strategy in this case is the same as

the one in Theorems 4.1 and 5.2 of Liang et al. (2011).

Remark 4.2. The optimal reinsurance strategies for the diffusion model depends only on the safety

loading Λ, time T−t, and interest rate r. That is, the claim size distributions as well as the counting

processes have no effect on the optimal reinsurance strategy. However, from the numerical results

shown in Section 5, the optimal results for the compound Poisson model depend not only on the

safety loading Λ, time T − t, and interest rate r, but also on the claim size distributions and the

counting processes.
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5 Numerical examples

In this section, we assume that the claim sizes Xi and Yi are exponentially distributed with pa-

rameters α1 and α2, respectively. Then, we have
MX(νq1e

r(T−t)) = α1

α1−νq1er(T−t) ,

MY (νq2e
r(T−t)) = α2

α2−νq2er(T−t) .

The minimizer (q1(T − t), q2(T − t)) of (3.3) satisfies the following equations
a1 + Λ(2(1− q1)σ2

1 + 2(1− q2)λµ1µ2) = α1

(α1−νq1er(T−t))2
(λ1 + λα2

α2−νq2er(T−t) ),

a2 + Λ(2(1− q2)σ2
2 + 2(1− q1)λµ1µ2) = α2

(α2−νq2er(T−t))2
(λ2 + λα1

α1−νq1er(T−t) ),

with µ1 = 1/α1, µ2 = 1/α2, σ2
1 = 2(λ1 + λ)/α2

1 and σ2
2 = 2(λ2 + λ)/α2

2.

Example 5.1. In this example, we set λ1 = 3, r = 0.05, T = 10, λ2 = 4, Λ = 2, λ = 2, α1 = 2,

and α2 = 3. The results are shown in Tables 5.1, 5.2 and 5.3.

Table 5.1 The effect of t on the optimal reinsurance strategies

t 1 2 3 4 5 6 7 8

q∗1 0.73625 0.75017 0.76353 0.77632 0.78854 0.80019 0.81127 0.82178

q∗2 0.77252 0.78397 0.79492 0.80540 0.81540 0.82493 0.83401 0.84265

Table 5.2 The effect of ν on the optimal reinsurance strategies

ν 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

q∗1 0.92604 0.88254 0.83618 0.78854 0.74123 0.69558 0.65249 0.61245

q∗2 0.93083 0.89324 0.85452 0.81540 0.77663 0.73883 0.70249 0.66794

Table 5.3 The effect of Λ on the optimal reinsurance strategies

Λ 1 2 3 4 5 6 8 9 10

q∗1 0.87869 0.78854 0.84280 0.87453 0.89547 0.91037 0.93019 0.93818 0.94472

q∗2 0.67927 0.81540 0.86604 0.89473 0.91325 0.92620 0.94316 0.94109 0.93940
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From Table 5.1 with ν = 0.5 and Λ = 2, we see that the optimal reinsurance strategies increase

as t increases. Note that ν is the constant absolute risk aversion parameter of the utility function,

a large value of ν means more risk averse. In Table 5.2 with t = 5 and Λ = 2, we observe that the

optimal reinsurance strategies decrease as ν increases. This implies that if the decision maker is

more risk averse, a larger portion of the underlying risk will be transferred to a reinsurer. Besides,

the results in Table 5.3 with t = 5 and ν = 0.5 indicate that the optimal reinsurance strategies do

not necessarily increase as the value of Λ increases. 2

Example 5.2. In this example, we put λ1 = 3, r = 0.05, T = 10, λ2 = 4, ν = 0.5, λ = 2,

t = 5, and Λ = 2. Tables 5.4 and 5.5 present the impact of α1 and α2 on the optimal reinsurance

strategies.

Table 5.4 The effect of α1 on the optimal reinsurance strategies

α1 1 2 3 4 5 6 7 9 10

q∗1 0.69452 0.78854 0.81495 0.82740 0.83487 0.84003 0.84392 0.84968 0.85197

q∗2 0.82599 0.81540 0.81647 0.81755 0.81832 0.81889 0.81931 0.81990 0.82012

Table 5.5 The effect of α2 on the optimal reinsurance strategies

α2 0.9 1 2 3 4 5 6 7 9

q∗1 0.78598 0.78378 0.78512 0.78854 0.79057 0.79185 0.79273 0.79337 0.79423

q∗2 0.66971 0.69245 0.78767 0.81540 0.82911 0.83781 0.84417 0.84926 0.85739

We see from Table 5.4 with α2 = 3 and Table 5.5 with α1 = 2 that a greater value of αi yields a

greater value of the optimal reinsurance strategy q∗i . However, q∗1 (q∗2) does not necessarily increase

as the value of α2 (α1) increases. We can also observe from Tables 5.4 and 5.5 that the value of

q∗1 is always smaller than the value of q∗2 when the inequality α1 < α2 holds, and vice versa. This

implies that the values of the optimal reinsurance strategies are more sensitive to the change in the

claim size distributions than to the change in the counting processes (see also Table 5.7). 2
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Example 5.3. For r = 0.05, T = 10, ν = 0.5, Λ = 2, t = 5, α1 = 2, and α2 = 3, the optimal

results are displayed in Tables 5.6 and 5.7.

Table 5.6 The effect of λ on the optimal reinsurance strategies

λ 1 2 3 4 5 6 7 8 9

q∗1 0.79189 0.78854 0.78643 0.78495 0.78387 0.78303 0.78236 0.78181 0.78135

q∗2 0.81770 0.81540 0.81413 0.81335 0.81284 0.81248 0.81223 0.81205 0.81191

Table 5.7 The effect of λ2 on the optimal reinsurance strategies

λ2 2 4 5 8 10 12 14 16 18

q∗1 0.78904 0.78854 0.78840 0.78815 0.78806 0.78799 0.78794 0.78790 0.78786

q∗2 0.81171 0.81540 0.81644 0.81832 0.81904 0.81956 0.81994 0.82024 0.82048

Table 5.6 with λ1 = 3 and λ2 = 4 shows that the optimal reinsurance strategies decrease while

the value of λ increases. This is consistent with the fact that the insurer would rather retain a

less share of each claim when the expected claim number becomes larger. On the other hand, the

numerical values in Table 5.7 with λ = 2 and λ1 = 3 indicate that a greater value of λ2 yields a

greater value of q∗2 but a smaller value of q∗1. Along the same lines, one can numerically show that a

greater value of λ1 yields a greater value of q∗1 but a smaller value of q∗2. Finally, Tables 5.6 and 5.7

also exhibit that the changes in the optimal reinsurance strategies are small. These suggest that

the optimal reinsurance strategies are kind of insensitive to the change in the counting processes. 2

6 Conclusion

We first recap the main results of the paper. From an insurer’s point of view, we consider the

optimal proportional reinsurance strategy in a risk model with two dependent classes of insurance

business, where the two claim number processes are correlated. By a nonstandard approach, we

investigate the existence and uniqueness of the optimal reinsurance strategy. Under the criterion of

maximizing the expected exponential utility together with the variance premium principle, closed-

form expressions for the optimal strategy and value function are given not only for the compound
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Poisson risk model but also for the diffusion model. Furthermore, we find that the optimal rein-

surance strategies in the diffusion risk model only depend on the safety loading, time, and interest

rate. However, from the numerical examples, we see that the optimal results for the compound

Poisson model depend not only on the safety loading, time, and interest rate, but also on the claim

size distributions and the counting processes.

In this paper, we may extend our work to the case of Centeno (2005) in which different safety

loadings are used for the two classes of insurance business. In this case, the reinsurance premium

rate becomes

δ(q1, q2) = (1− q1)a1 + Λ1(1− q1)2σ2
1 + (1− q2)a2 + Λ2(1− q2)2σ2

2. (6.1)

Since the dependence between S1(t) (Ŝ1(t)) and S2(t) (Ŝ2(t)) is not considered in (6.1), it is simpler

than (3.1) and results in a simpler version of the equation (3.5). Moreover, following the ideas and

steps in Section 3, one can investigate the existence and uniqueness of the optimal reinsurance

strategies, and derive closed form expressions for the optimal results for the compound Poisson risk

model. On the other hand, it can be shown that the optimal reinsurance strategies for the diffusion

risk model are given by
q∗1t =

2Λ1σ2
1σ

2
2(2Λ2+νer(T−t))−2Λ2σ2

2λµ1µ2νe
r(T−t)

σ1
1σ

2
2(2Λ2+νer(T−t))(2Λ1+νer(T−t))−λ2µ21µ22ν2e2r(T−t) ,

q∗2t =
2Λ2σ2

1σ
2
2(2Λ1+νer(T−t))−2Λ1σ2

1λµ1µ2νe
r(T−t)

σ1
1σ

2
2(2Λ2+νer(T−t))(2Λ1+νer(T−t))−λ2µ21µ22ν2e2r(T−t) .

It is obvious that the optimal reinsurance strategies are different in the diffusion risk model. They

depend not only on the safety loading, time, and interest rate, but also on the claim size distributions

and the counting processes.

Although the literature on optimal reinsurance is increasing rapidly, very few of these contribu-

tions deal with the problem in relation to dependent risks. Therefore, there are still some interesting

problems in this direction that can be further studied. For example, one may consider the optimal

reinsurance with dependent risks under the partial information, multi-criteria, or stochastic differ-

ential games. Moreover, the optimal reinsurance problem with expected utility under additional

constraints on the probability of ruin is a very challenging problem, especially for risk processes

with jumps.
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