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Abstract—An external web service may evolve without prior notification. In the course of the regression testing of a workflow-
based web service, existing test case prioritization techniques may only verify the latest service composition using the not-yet-
executed test cases, overlooking high-priority test cases that have already been applied to the service composition before the 
evolution. In this paper, we propose Preemptive Regression Testing (PRT), an adaptive testing approach to addressing this 
challenge. Whenever a change in the coverage of any service artifact is detected, PRT recursively preempts the current session of 
regression test and creates a sub-session of the current test session to assure such lately identified changes in coverage by 
adjusting the execution priority of the test cases in the test suite. Then, the sub-session will resume the execution from the 
suspended position. PRT terminates only when each test case in the test suite has been executed at least once without any 
preemption activated in between any test case executions. The experimental result confirms that testing workflow-based web 
service in the face of such changes is very challenging; and one of the PRT-enriched techniques shows its potential to 
overcome the challenge. 

Index Terms—Evolving service composition, adaptive regression testing 

——————————      —————————— 

1 INTRODUCTION 

workflow-based service [24] usually communicates 
with other web services [46] (referred to as external 

services [27], [43]) to implement all the required function-
ality. The service together with the external services 
constitutes a service-based application. Any change in the 
workflow-based service should be fully tested before its 
deployment, but testers are seldom able to enforce that 
every external service of a workflow-based service 
remains unchanged during a test session on the latter 
service. Hence, if the external services have evolved, the 
efforts spent on the workflow-based service working 
under the pre-evolved versions of the external services 
will not be realized as an assurance of the current service-

based application. Testing should be re-conducted. 
Regression testing [40] serves two purposes. First, it 

guards against regression faults [28]. Second, it verifies 
whether a web service working with external services 
behaves as expected even though it has not been modified 
since the “last” test session. To the best of our knowledge, 
the majority of existing regression testing research for 
web services only considers the scenarios for the first 
purpose. The study for the second purpose is still inade-
quately explored. 

Fig. 1 shows an execution trace of a web service P that 
contains a service port p1, which invokes an external 
service S twice. In the figure, Scenarios 1 and 2 are the 
classic situations where the environmental context of P is 
static. A vast majority of existing regression testing 
research (such as [11], [16], [26], [29], [31], [35], [40]) 
focuses on these scenarios. Scenario 3, identified by the 
preliminary version [27] of this paper, is a volatile situa-
tion that has not been explored by existing test case 
prioritization techniques. 

In Scenario 3, service S is bound to more than one ver-
sion along the execution trace. Existing techniques would 
consider the regression test session to be completed with-
out executing the whole test suite against the updated 
version s2 of S. Thus, although a test session targets to 
execute the entire test suite against the final service-based 
application (including external services), in reality, only 
some but not all test cases are applied. 

In this paper, we propose a novel approach known as 
Preemptive Regression Testing (PRT) for the regression 
testing of workflow-based services. We refer to a change 
detectable in a regression test session for a service under 
test as a late change. If a late change occurs, PRT preempts 
the current test session and creates a new test sub-session 
to assure immediately the workflow-based service with 
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respect to the change. After completing the assurance of 
changes, the sub-session will resume execution from the 
suspended point in the updated sequence of test cases. 
Finally, PRT terminates if the entire test suite has been 
executed without any sub-session occurring between any 
two executions of test cases in the test suite. 

We have conducted an experiment using all the bench-
marks in the experiments reported in [24], [28], and have 
included a comparison with peer techniques [28]. The 
result reveals that formulating effective test case 
prioritization in Scenario 3 can be challenging: Existing 
techniques may completely miss to reveal regression 
faults. One series of our PRT-enriched techniques has the 
potential to overcome the challenge, and one of them 
outperforms all the others studied in the experiment. 

A preliminary version of this paper was presented at 
the 36th Annual International Computer Software and 
Applications Conference (COMPSAC ’12) [27]. It outlined 
the PRT strategies and systematically formulated a family 
of workflow-based PRT test case prioritization tech-
niques. In the present paper, we detail the strategies and 
also systematically formulate a sister family of PRT test 
case prioritizations with additional experiments. 

The main contribution of the present paper, together 
with its preliminary version [27], is threefold: (i) To the 
best of our knowledge, this is the first work that identifies 
the problems of service regression testing in Scenario 3. 
(ii) We propose the first work on preemptive regression 
testing to test service-based applications in the presence 
of evolving external services. (iii) We present the first 
empirical study on the efficiency and effectiveness of 
techniques for preemptive regression testing of services. 

The remainder of this paper is organized as follows: 
Section 2 gives a motivating example. Section 3 presents 
our adaptive strategies and PRT-enriched techniques. 
Section 4 reports an empirical study, followed by 
discussions of the practicality issues in Section 5. Section 6 
reviews related work. Finally, Section 7 concludes the 
paper. 

2 MOTIVATING EXAMPLE 

When an external service of a service-based application is 
deemed unsuitable, the developers or an automated agent 
may modify the binding address linked to this external 
service to a replacement external service. Such a revision 
may occur during a regression test session, and repairing 
a system configuration is a popular approach to address-
ing issues by testers. Testers may stop the current test 
session after the repair and restart a new test session. In 
other times, they may continue the current test session 
followed by deciding whether or not to start a new test 
session. As we will illustrate in Section 2.3, PRT is a 
refined strategy for the latter case. 

2.1 Evolution Example 

We motivate our work via an example taken from the 
TripHandling project [1]. We denote the trip handling 
service by P, and refer to the external hotel price enquiry 
service by S. We follow [24] to use an activity diagram to 
show a scenario in which the developer modifies version 
v1 of P to version v2. Version v1 originally binds to 
version s1 of S. The binding of version s1 of S to version 
v2 of P is updated during the test session. Our target for 
regression testing is to assure the correctness of v2. 

In each activity diagram, a node and an edge represent 
a workflow process and a transition between two activi-
ties, respectively. We annotate the nodes with extracted 
program information, such as the input-output param-
eters of the activities and XPath [38]. We number the 
nodes as Ai (i = 1, 2, ..., 8). 

(a) A1 receives a hotel booking request from a user and 
stores it in the variable BookRequest. 

(b) A2 extracts the input room price and the number of 
persons via two XPaths //price/ and //persons/ from 
BookRequest, and stores these values in the variables 
Price and Num, respectively. 

(c) A3 invokes the service HotelPriceService to select 
available hotel rooms with prices not exceeding the 
input Price (that is, within budget), and keeps the 
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Fig. 1. Static and volatile testing environmental 
contexts. Traditional techniques are not aware 
of the changes in context as depicted in 
Scenario 3. 
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 Fig. 2. Example to illustrate a maintenance scenario for a workflow-based web service. 
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reply in HotelInformation. 
(d) A4 assigns a price via the XPath //room [@price≤’Price’ 

and @persons=’Num’]/price/ to RoomPrice. 
(e) A5 verifies whether the price in HotelInformation does 

not exceed the inputted Price. 
(f) If the verification at A5 passes, A7 executes HotelBook-

Service to book a room followed by A8 returning the 
result to the customer. 

(g) If RoomPrice is erroneous or HotelBookService in node 
A7 produces a failure, A6 will invoke a fault handler. 

Test cases t1 to t5 below each contains the price (Price) 
and the number of guests (Num) as parametric inputs: 

 Price, Num 
Test case t1: 200, 1 
Test case t2: 100, 5 
Test case t3: 125, 3 

 Price, Num 
Test case t4: 110, 1 
Test case t5:  −1, 1 

 

Suppose that only two types of rooms are available, 
namely, single rooms at a price of $105 and family rooms 
(for three persons) at a price of $150. 

Suppose a software engineer Jim decides to make the 
following changes to the precondition in node A4 of 
version v1 of P in Fig. 2: He attempts to allow customers 
to select any room that can accommodate the requested 
number of persons. However, he wrongly changes the 
precondition in the XPath by changing “and” to “or”. 

Although he intends to provide customers with more 
choices, the change does not support his intention 
(because the process is designed to immediately proceed 
to book rooms, rather than allowing customers to specify 
their preferences). This results in a fault (which we will 
call Fault A), as shown in version v2 of P in Fig. 2. 

Suppose further that s1 of S is an exact search, return-
ing all hotel rooms whose prices are smaller than Price (in 
ascending order of the room price). On the other hand, 
suppose s2 of S is a fuzzy search, which returns only one 
hotel room whose price is closest to Price, hoping that the 
customer will consider it as long as it is affordable. For 
example, when Price is 200, s2 will only return a family 
room. When Price is 100, s2 will return a single room, 
rather than returning no room. Replacing s1 by s2 in Fig. 2 
will result in another fault (called Fault B). 

Fig. 3a shows the execution traces of the five test cases 
against version v1 of P that uses version s1 of S as the 
hotel price enquiry service. Both test cases t1 and t4 result 
in the successful booking of a single room. Test cases t2 
and t5 result in unsuccessful bookings. The price valida-
tion process rejects t2 and t3. The price “−1” of t5 will 
trigger a fault in node A7. Fig. 3b shows the traces of 
version v2 of P using version s1 of S. Similarly, Fig. 3c 
shows the traces of v2 of P using s2 of S. In particular, 
only the execution traces of t3 are different among Fig. 3a, 
Fig. 3b, and Fig. 3c. The test case t3 aims to book a family 
room; however, owing to the modification, a single room 
is booked. This test case can detect a regression fault. 
Both t1 and t2 are failed test cases for s2 because of the 
fuzzy search, whereas they are both passed test cases in 
Fig. 3b. Test case t1 should book a single room, but it 
results in booking a triple room against v2 of P using s2. 
The execution of t2 should report no available room. 
However, executing t2 against v2 of P using s2 will report 
a validation failure of room price. 

2.2 Inadequacies of Existing Techniques 

This section analyzes the inadequacies of existing test 
case prioritization techniques. For brevity, let us concen-
trate our discussions on addtl-workflow-branch, which is a 
traditional strategy adopted from the addtl-statement test 
case prioritization technique [28]. Based on the coverage 
shown in Fig. 3a, we present two test case permutations 
T1 = t1, t3, t5, t4, t2 and T2 = t1, t2, t5, t3, t4 of addtl-
workflow-branch. Let us consider three evolution 
scenarios. 

Scenario 1: v1 evolves to v2 before executing T1 against 
s1 of S. The application of T1 to assure the correctness of 
v2 is shown in Fig. 4a. The second test case (t3) of T1 
detects a failure, thus revealing Fault A. 

Scenario 2: v1 evolves to v2 before executing T1, and s1 
evolves to s2 after executing t1. The second test case (t3) in 
T1 reveals Fault A. In theory, the first (t1) and fifth (t2) test 
cases can both reveal Fault B, but only t2 is executed (as 
the last test case). 

Scenario 3: v1 evolves to v2 before executing T2, and s1 
evolves to s2 after executing t5, as shown in Fig. 4b. The 
fourth test case (t3) in T2 reveals Fault A. In theory, the 
first (t1) and second (t2) test cases in T2 can also reveal 
Fault B, but neither of them is executed. 

A1

A2

A3

A4

A5

A8

Trace(t1)

A7

A1

A2

A3

A4

A5

A6

Trace(t2)

A1

A2

A3

A4

A5

Trace(t3)

A1

A2

A3

A4

A5

A8

Trace(t4)

A7A6

A1

A2

A3

A4

A5

A6

A7

Trace(t5)

A1

A2

A3

A4

A5

A8

Trace(t1)

A7

A1

A2

A3

A4

A5

A6

Trace(t2)

A1

A2

A3

A4

A5

Trace(t3)

A1

A2

A3

A4

A5

A8

Trace(t4)

A7

A1

A2

A3

A4

A5

A6

A7

Trace(t5)

A8

A7

(a) Traces of test cases against v1 of P using s1

(b) Traces of test cases against v2 of P using s1

Passed Passed Failed Passed Passed

A1

A2

A3

A4

A5

A8

Trace(t1)

A7

A1

A2

A3

A4

A5

A6

Trace(t2)

A1

A2

A3

A4

A5

Trace(t3)

A1

A2

A3

A4

A5

A8

Trace(t4)

A7

A1

A2

A3

A4

A5

A6

A7

Trace(t5)

A8

A7

(c) Traces of test cases against v2 of P using s2

Failed Failed Failed Passed Passed

 
 

Fig. 3. Traces of the test cases against different service versions. 
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Scenario 1 is the same as the classical setting for regres-
sion testing, and thus existing techniques work well. For 
Scenario 2, although the branch coverage missed by t3 
(namely, A5A6 and A6End) can be achieved by t2, 
existing prioritization techniques does not advance its 
execution. Better test case prioritization techniques 
should be used to fill the gap. 

Scenario 3 illustrates that existing techniques may fail 
to detect some faults (Fault B in this case). Intuitively, t1, 
t2, and t5 can be considered as being discarded when 
executing T2 against v2 and s2. This defies the objective of 
test case prioritization, in which test cases are to be 
reordered but not discarded. To fix this problem, more 
test cases need to be scheduled after the current test suite 
has been applied. 

2.3 Illustration of a PRT-Enriched Technique 

We now illustrate one technique that uses Strategy 1 (see 
Section 3.3 for details) to address the above challenge. 

We observe from Fig. 4b that, although t3 is targeted 
for covering A6, it actually covers A7 and A8. The PRT 
Strategy 1 then selects test cases from the prioritized test 
suite to assure the correctness of A6 immediately. Fig. 4b 
illustrates that Strategy 1 selects t2 as a replacement 
according to the given priority shown by the test suite T, 
and happens to reveal a failure. Then, it continues with 
the execution of every remaining prioritized test case 
after t2. After executing the remaining test cases in the 
prioritized test suite, the technique finds that t1 has been 
executed before the latest invocation of Strategy 1. Hence, 
the technique reruns t1 and reveals another failure. There 
is no need to suspend test case execution throughout the 
realization of Strategy 1. 

 

3 PREEMPTIVE REGRESSION TESTING STRATEGIES 

We present the Preemptive Regression Testing approach 
and formulate three corresponding strategies. 

3.1 Test Case Prioritization Revisited 

We would like to design techniques to make use of data 
obtained in previous software executions and to run test 
cases to achieve target goals in the regression testing of 
the next modified versions. Test case prioritization [27], 
[40] is an important aspect of regression testing. A well-
designed test case prioritization technique may increase 
the fault detection rate of a test suite. 

The test case prioritization problem [27] is: Given: T, a 
test suite; PT, the set of permutations of T; and f, a 
function from PT to real numbers. Objective: To find 
T’PT such that T’’PT, f(T’) ≥ f(T’’). 

3.2 Regression Testing Model 

Consider a service-based application divided into two 
parts. The first part is the workflow-based service under 
test, denoted by P. Following existing research [16], [28], 
our primary objective is to safeguard P from faulty modi-
fications of its implementations. Typically, the testers of P 
use a regression test suite T to test a given version v of P. 
They may conduct testing in laboratory so that they can 
collect the coverage information on v. 

The second part is a set of services outside the service 
P. P needs to communicate with them in order to 
compute its functions properly. We call them external 
services of P. In other words, in our setting, executing a 
test case against a given version v of P may involve the 
invocation of external services and obtaining their results. 
It would be too restrictive to assume that these external 

A1

A2

A3

A4

A5

A6

Trace(t1) Trace(t1, t3) Trace(t1, t3, t5) Trace(t4) Trace(t4, t2)

A8

A7

A1

A2

A3

A4

A5

A6
A8

A7

A1

A2

A3

A4

A5

A6

A8

A7

Coverage

reset

A1

A2

A3

A4

A5

A8

A7

A1

A2

A3

A4

A5

A8

A7

 
 

(a) Using the prioritized test suite t1, t3, t5, t4, t2 to apply the addtl-workflow-branch technique to test version v2 of P that binds to version s1 of S. 
The coverage information of each test case is from its previous round of execution. 
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(b) Applying Strategy 1 when v1  v2 and s1  s2 during a regression test session using the same prioritized test suite t1, t3, t5, t4, t2. 
The coverage information of each test case is from its latest execution. 

Fig. 4. Example to illustrate regression testing of workflow-based service with external service evolution. 
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services remain unchanged during any regression test 
session. We do not assume that the testers of P can always 
control the evolution of all external services either. 

To facilitate discussions, we first present a generalized 
regression testing model. 

Definition 1 (Generalized regression testing model). A 
generalized RT model for a service P under test is a five-
tuple V, T, ,  ,   such that: 
 V = (v1, v2, ..., vn) is a series of sequentially modified 

versions of P. 
 T is a regression test suite of P. 
 (vi, vi+1) is the time period between two consecutive 

versions vi, vi+1 ∈ V. 
  (t, v) is the time taken to execute t ∈ T against v ∈ V. 
 (t, v) is the set of coverage after executing t ∈ T against v 

∈ V. 

When we consider only two consecutively modified 
versions vi and vi+1 of P, we may or may not be able to 
completely execute all applicable test tests against vi, 
which results in either of the following inequalities that 
constrains the number of test cases applied to vi: 

                     
   
    (1) 

                     
   
    (2) 

Many existing test case prioritization techniques [40] 
implicitly assume that constraint (1) is satisfied. They 
cannot accurately model the values of  and  . However, 
a service composition may change rapidly, turning the 
regression testing scenario to fall within constraint (2). 

Continuous delivery (also known as DevOps) is a real-
life example satisfying constraint (2) and is very useful for 
the system integration phase. DevOps always requires the 
shipping of trunk code (branching code only for release). 
Code changes are minor and directly submitted to the 
trunk, which needs to be ready for incremental deploy-
ment that happens very frequently (in terms of hours 
rather than months). To achieve the goal of always 
shipping high-quality trunk code, continuous integration 
testing is thus necessary. During such testing, frequent 
minor changes may occur because different developers 
may continuously contribute to the debugging process, or 
because of small feature updates. Moreover, DevOps uses 
the real runtime environment or something highly similar 
(including application servers, system configurations, 
related data sources, external web services), which is also 
changing, and the changes may not always be control-
lable. Considering the continuous evolution in the code 
and the runtime environment, a regression test suite may 
not necessarily be fully executed against a stable version. 

To transfer test data among test sessions, we formalize 

in (3)–(6) below the relations between the existing 

coverage (based on the regression test session against 

version vj) and the new coverage (for the current test 

session against version vj+1).   denotes the empty set. The 

notation                 stands for the complementary set of 

      . Thus,                 comprises all the elements in the total 

coverage set outside of (t, v). 

                   
                            

                        (3) 

                   
                            

                        (4) 

                   
                            

                        (5) 

                   
                            

                        (6) 

In short, there are four types of relations for a test case: 
Relations (3), (4), and (5) mean, respectively, that the 
coverage achieved by the new execution of the test case ti 
are the same as, more than, and less than that achieved in 
the previous session. Relation (6) means that the existing 
coverage and the new coverage of the test case ti satisfy 
none of the above (such as when no existing coverage of 
the test case ti is available). We note that (3) indicates 
there is no coverage change. The remaining three equa-
tions indicate that some change has occurred, and hence 
regression testing should be conducted, which lead to our 
PRT strategies to be presented in the next section. 

3.3 PRT Strategies 

This section presents three adaptive strategies, namely, fix, 
reschedule, and a hybrid approach fix-and-reschedule. 

Strategy 1 (Fix). Suppose a test case t misses at least 
one coverage item that it has covered in its last execution. 
Let F be the set of missed coverage items of t. This 
strategy selects a sequence U of test cases in T such that 
the last execution of all the test cases in U can minimally 
cover all the missed coverage items in F. Moreover, this 
strategy records the coverage items achieved by each 
newly selected test case in U with respect to F. 

Because the coverage achieved by many not-yet-
executed test cases in T in their corresponding last 
executions may cover some item in F, Strategy 1 adopts 
the following criterion to construct U and run these test 
cases. For every missed coverage item in F, Strategy 1 
chooses and executes one test case among the not-yet-
executed test cases in T in a round-robin fashion (starting 
from the position of t in T) in descending order of the 
number of items covered by each test case. 

Executing such a replacement test case may discover 
additional coverage items that have been missed as well. 
In this case, Strategy 1 will preempt its current session, 
and invoke a new session. The new session will adjust the 
prioritized test cases, resume execution from the pre-
emption point, and then remove from F of the current 
session those coverage items already covered by the 
recursively invoked sessions of Strategy 1. 

Strategy 2 (Reschedule). If a test case covers new 
item(s) that have not been covered in its last execution, 
the strategy records the additional coverage items 
achieved by the test case, and reprioritizes the not-yet-
executed test cases according to the additional item cover-
age technique. 

Strategy 3 (Fix-and-Reschedule). This strategy is a 
hybrid of Strategies 1 and 2. If a test case does not cover 
some item(s) it has covered in its last execution, Strategy 3 
first invokes Strategy 1. After the completion of Strategy 
1, if there are any additional coverage items that have not 
been covered in the last execution of the test cases by 
Strategy 1, it will invoke Strategy 2. 
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The PRT strategies require additional storage so that 
they can mark the end of each session of iteration. In our 
implementation, we use an integer array (of the same 
length as the size of the test suite), which is sufficient to 
support the marking, and hence the incurred extra space 
requirement is light. 

Algorithm 1 (RegressionRun) and Algorithm 2 
(PRTRegressionRun) show the existing strategy and the 
PRT strategy, respectively. 

The algorithm RegressionRun accepts three input 
parameters: A test suite T, a baseline prioritization tech-
nique , and the set of execution traces  obtained from a 
given regression test session. We denote the ith test case 

in T by T(i), and the execution trace of a test case t by (t). 
The function sizeof(T) returns the number of test cases in 
T. The function execute(t) executes the test case t and 
returns the execution trace of t against the service under 
test. Algorithm 1 first prioritizes the given test suite T 
using , and then iterates on the prioritized test suite T1 to 
execute each test case t using the function execute(t). 

The algorithm PRTRegressionRun is significantly 
different from the algorithm RegressionRun. After the 
execution of a test case t at line 5, Algorithm 2 compares 
the trace (t) and the trace ’(t). If there is any difference 
between the two, it starts a new test sub-session at line 7 
using PRTSubRegressionRun. In PRTSubRegressionRun, 
the algorithm first identifies the start position at line 12 
and then applies PRT strategy S (see Strategies 1–3 above) 
to construct a test suite. It applies all the test cases in this 
latter test suite one by one in the current sub-session. If 
there is any difference in the traces observed (line 17), it 
recursively starts a new test sub-session. 

Let us use Fig. 4b as an example to illustrate Algorithm 
2. We use addtl-workflow-branch as , Strategy 1 as S, and 
T1 is t1, t3, t5, t4, t2. After executing t1 and t3, the execution 
trace of t3 changes, items that fail to be covered (namely, A5 
 A6 and A6  end) are identified, and PRT-

SubRegressionRun is invoked. By using Strategy 1, the 
algorithm finds that t2 can fix the coverage, and thus ad-
justs T1 to T2 t1, t3, t2, t5, t4. Then, PRTSubRegressionRun 

continues to execute t2, t5, t4, and t1 until count reaches 5. 
In summary, a PRT-enriched technique may generate 

one or more regression test sub-sessions (lines 7 and 18). 
It considers the latest coverage data, and conducts fast 
adjustment in line 13 using a PRT strategy. Moreover, 
compared with existing techniques, PRT-enriched tech-
niques may schedule additional test cases after the last 
test case in a given prioritized test suite has been executed, 
thus increasing the probability of fault detection. Table 1 
summarizes the effects of the two types of strategies. 

3.4 PRT-Enriched Test Case Prioritization 
Techniques 

This section presents a family of test case prioritization 
techniques, as summarized in Table 2. M1 and M2 are 
existing techniques on workflow, and M6 and M7 are 
existing techniques on workflow and XRG. They are 
adapted from existing work (such as [16], [26], [28], [40]). 

Addtl-branch technique is the most effective in terms of 
APFD in the literature. Therefore, we realize our three 
strategies on top of the addtl-workflow-branch technique 
and the addtl-workflow-XRG-branch technique to build six 
evolution-aware techniques. M3–M5 and M8–M10, listed 
in italics in Table 2, are the new techniques based on the 
application of our adaptive strategies. 

These techniques have a common stopping criterion: 
Given a service P and a regression test suite T for P, the 
technique stops if the entire test suite T has been executed 
and no test case results in further changes in the coverage 
of P (in terms of workflow for M1–M5 and both workflow 
and XRG for M6–M10). 

M1 (Total-Workflow-Branch) [28], [40]. This tech-
nique sorts the test cases in T in descending order of the 

Algorithm 1. RegressionRun (T, ,  ) 

1. T1  (T);  // T1 is the prioritized test suite 

2. i  0;  // i is the index of the test case 

3. while (i < sizeof(T1)) { 

4. t  T1 (i); 

5.  (t) = execute(t);  // update the execution trace of t 

6. i  i +1; 

7. } 

Algorithm 2. PRTRegressionRun (T, , , S) 

1. T1  (T);  // T1 is the prioritized test suite 

2. i  0;  // i is the index of the test case 

3. while (i < sizeof(T1)) { 

4. t  T1(i); 

5. ’(t) = execute(t);  // update the execution trace of t 

6. if((t) != ’(t)){      // start a test sub-session 

7. PRTSubRegressionRun(T1, , , ’, S, i, 1); 

8. break;  

9. } 

10. i  i +1; 

11. } 

PRTSubRegressionRun (T, ,  ,  ‘, S, start, count) 

12. i  (start + count) % sizeOf(T);  // round-robin search for i 

// apply PRT strategy S to adjust the prioritized suite 

13. T2  S(T, ,  , ’, i);   // adjust the prioritized test suite 

14. while (count < sizeOf(T2))  { 

15. t  T2(i); 

16. ’(t) = execute(t);  // obtain the execution trace of t 

17. if((t) != ’(t)){      // start a test sub-session 

18. PRTSubRegressionRun(T2, , , ’, S, i, 1); 

19. break; 

20. } 

21. i  (i + 1) % sizeOf(T2);  // round-robin search for i 

22. count  count +1; 

23. } 

TABLE 1 

COMPARISONS BETWEEN EXISTING AND PRT TECHNIQUES 

Question 
Existing 

Techniques 
PRT 

Techniques 

Is evolution during regression 
testing considered? 

No Yes 

What is the number of test cases 
executed in one execution of a 
technique? 

Equal to |T| 
(test suite size) 

Maybe larger 
than |T| 

Is a test case executed more 
than once during one session? 

No Yes 

Is the latest coverage data used 
during one session? 

No Yes 

No. of test sessions per 
execution of a technique 

Single test 
session 

Hierarchical 
test session 
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total number of workflow branches executed by each test 
case. If multiple test cases cover the same number of 
workflow branches, M1 orders them randomly. 

TABLE 2 

CATEGORIES OF TEST CASE PRIORITIZATION TECHNIQUES 

Category Name Index 

Workflow-based  

Total-Workflow-Branch [28], [40] M1 

Addtl-Workflow-Branch [28], [40] M2 

Addtl-Workflow-Branch-Fix M3 

Addtl-Workflow-Branch-Reschedule M4 

Addtl-Workflow-Branch-FixReschedule M5 

XRG-based  

Total-Workflow-XRG-Branch [28], [40] M6 

Addtl-Workflow-XRG-Branch [28], [40] M7 

Addtl-Workflow-XRG-Branch-Fix M8 

Addtl-Workflow-XRG-Branch-Reschedule M9 

Addtl-Workflow-XRG-Branch-FixReschedule M10 

M2 (Addtl-Workflow-Branch) [28], [40]. This tech-
nique iteratively selects a test case t that yields the 
greatest cumulative workflow branch coverage, and then 
removes the covered workflow branches from all remain-
ing test cases to indicate that these branches have been 
covered by the selected test cases. Additional iterations 
will be conducted until all workflow branches have been 
covered by at least one selected test case. If multiple test 
cases cover the same number of workflow branches in the 
current session of selection, M2 selects one of them 
randomly. If no remaining test cases can further improve 
the cumulative workflow branch coverage, M2 resets the 
workflow branch covered by each remaining test case to 
its original value. It applies the above procedure until all 
the test cases in T have been selected. 

M3 (Addtl-Workflow-Branch-Fix). This technique 
consists of two phases. Phase 1: preparation. It first updates 
the workflow branches covered by individual test cases to 
be the same as M2 to generate a sequence of test cases. 
Phase 2: runtime adjustment. Right after the execution of a 
test case, it runs Strategy 1 to adjust the sequence of 
prioritized test cases, and then continues to apply the 
adjusted sequence of prioritized test cases in a round-
robin fashion until the entire test suite has been executed 
and no test case changes its achieved coverage between 
the current execution and the last execution. 

M4 (Addtl-Workflow-Branch-Reschedule). This tech-
nique consists of two phases: Phase 1: preparation. This 
phase is the same as Phase 1 of M3. Phase 2: runtime 
adjustment. It is the same as Phase 2 of M3, except that it 
runs Strategy 2 rather than Strategy 1. 

M5 (Addtl-Workflow-Branch-FixReschedule). This 
technique strikes a balance between M3 and M4 by using 
Strategy 3. It also consists of two phases. Phase 1: prepara-
tion. This phase is the same as Phase 1 of M3. Phase 2: 
runtime adjustment. It is the same as Phase 2 of M3, except 
that it runs Strategy 3 instead of Strategy 1. 

M6 (Total-Workflow-XRG-Branch) [28], [40]. This 
technique is the same as M1, except that it uses the total 
number of workflow branches and XRG branches, instead 
of the total number of workflow branches covered by 
each test case. 

M7 (Addtl-Workflow-XRG-Branch) [28], [40]. This 
technique is the same as M2, except that it uses the 
workflow branches and XRG branches, rather than the 
workflow branches covered by each test case. 

M8 (Addtl-Workflow-XRG-Branch-Fix). This tech-
nique is the same as M3, except that it uses the workflow 
branches and XRG branches, instead of the workflow 
branches covered by each test case. 

M9 (Addtl-Workflow-XRG-Branch-Reschedule). This 
technique is the same as M4, except that it uses the 
workflow branches and XRG branches, instead of the 
workflow branches covered by each test case. 

M10 (Addtl-Workflow-XRG-Branch-FixReschedule). 
This technique is the same as M5, except that it uses the 
workflow branches and XRG branches, instead of the 
workflow branches covered by each test case. 

A PRT-enriched technique has two types of costs, 
namely, preparation cost and adjustment cost. Take M3 as 
an example. Its preparation cost is the same as M2 (an 
existing technique), but its adjustment cost depends on 
the number of coverage changes of test cases. The time 
complexity of the adjustment cost for one change is O(n), 
where n is the test suite size, while existing techniques 
require rescheduling the whole test suite after detecting 
changes in coverage, so that the time complexity is O(n2). 

With reference to existing regression testing studies 
[11], [16], [22], [23], [24], [28], [29], [31], [32], [34], we also 
include random ordering (referred to as Random in this 
paper, and as Rand in Figs. 6, 7, and 8) for comparison in 
the experiment to be presented in the next section. 

4 EVALUATION 

4.1 Experimental Setup 

We chose a set of eight subject service-based applications 
to evaluate our adaptive strategies, as listed in Table 3. Six 
benchmarks (atm, gymlocker, loanapproval, marketplace, 
purchase, and triphandling) were downloaded from the 
IBM BPEL repository [1] and the BPWS4J repository [8]. 

TABLE 3 

BENCHMARKS AND THEIR DESCRIPTIVE STATISTICS 

B
en

ch
m

ar
k

 
R

ef
. Benchmark 

Description 

M
o

d
if

ie
d

 
V

er
si

o
n
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E
le

m
en

ts
 

L
O

C
 

X
P

at
h

s 

X
R

G
 

B
ra

n
ch

es
 

W
S

D
L

 
E

le
m

en
ts

 

U
se

d
 

V
er

si
o

n
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A atm 8 94 180 3 12 12 5 
B buybook 7 153 532 3 16 14 5 
C dslservice 8 50 123 3 16 20 5 
D gymlocker 7 23 52 2 8 8 5 
E loanapproval 8 41 102 2 8 12 7 
F marketplace 6 31 68 2 10 10 4 
G purchase 7 41 125 2 8 10 4 
H triphandling 9 94 170 6 36 20 8 

Total 60 527 1352 23 114 106 43 
 

TABLE 4 

STATISTICS OF TEST SUITE SIZES 

   Benchmark 
Size 

A B C D E F G H Mean 

Maximum 146 93 128 151 197 189 113 108 140.6 

Average 95 43 56 80 155 103 82 80 86.8 

Minimum 29 12 16 19 50 30 19 27 25.3 
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The benchmark buybook [18] was downloaded from 
Oracle Technology Network for Oracle BPEL Process 
Manager. The benchmark dslservice was downloaded 
from the Web Services Innovation Framework [24]. 

They were representative service-based applications 
developed in WS-BPEL [36]. This set of benchmarks was 
also used in previous empirical studies reported in [24], 
[28]. To the best of our knowledge, this set of benchmarks 
is larger than the set of benchmarks used by Ni et al. in 
their experiment reported in [30] in terms of number of 
benchmarks, variety of benchmarks, number of versions, 
and sizes of individual benchmarks. 

We used the set of faults and the associated test suites 
in the benchmark packages to measure the effectiveness 
of different prioritization techniques. We follow the spirit 
of mutation testing [2] to seed faults in the major artifacts 
(BPEL, XPath, and WSDL [37]) of the benchmark 
applications. Andrews et al. [2] suggested that mutation 
faults can be representative of real faults. Many 
researchers thus used mutation testing for empirical 
evaluation of test case prioritization techniques [14]. We 
used three typical types of mutations in fault seeding: 
value mutations, decision mutations, and statement 
mutations. Since BPEL can be treated as Control Flow 
Graphs (CFG), the above mutations can be seeded in the 
way as seeding faults in CFG. An XPath fault is the 
wrong usage of XPath expressions, such as extracting the 
wrong content, or failing to extract any content. Fig. 2 
gives an example of an XPath fault. A WSDL fault is the 
wrong usage of WSDL specifications, such as binding to a 
wrong WSDL specification, or inconsistent message 
definitions. The faults in the modified versions have been 
reported by [24]. The statistics of the selected modified 
versions are shown in the rightmost column of Table 3. 

Strictly following the methodology in [24], [28], the 
fault in any modified version could be detected by some 
test case in every test suite, and we discarded any 
modified version if more than 20 percent of the test cases 
could detect the failures in that version. All the 43 remain-
ing versions were used in the empirical study. 

We used the implementation tool of Mei et al. [28] for 
test case generation, test suite construction, and fault 
seeding in our empirical study. We revisit the procedure 
here: First, it randomly generated test cases based on the 
WSDL specifications, XPath queries, and workflow logics 
of the original version of each benchmark (rather than the 
modified versions). For each benchmark, 1,000 test cases 
were generated to form a test pool. The tool then added a 
test case to a constructing test suite (initially empty) only 
if the test case can increase the coverage achieved by exe-
cuting the test suite against the workflow branches, XRG 
branches, or WSDL elements. We successfully obtained 
100 test suites for each benchmark. The descriptive statis-
tics of the test suites are shown in Table 4. It presents the 
maximum, average, and minimum numbers of test suites 
for each benchmark. 

To simulate different evolution scenarios, we set the 
evolution points (that is, the times when the evolutions 
happen) to be the instances that 40, 60, and 80 percent of a 
test suite has been executed, respectively. To simulate 

scenarios in a dynamic service environment, we ran-
domly selected them from the original version and the 
modified versions. Since all the test case execution results 
of the applications can be determined, we can figure out 
whether a fault has been revealed by a test case through 
comparing the test result of the modified version with 
that of the original program. Our tool automatically 
performed the comparisons. 

4.2 Measurement Metric 

We measured the effectiveness using the Average 
Percentage of Faults Detected (APFD) [40]. It is a widely 

adopted metric to evaluate test case prioritization techniques. A 

higher APFD value indicates faster fault detection. Let T be a test 

suite of n test cases, F be a set of m faults revealed by T, and TFi be 

the index of the first test case in a reordering T’ of T that reveals 

fault i. The APFD value for the reordering T’ is computed by 

nmn

TFTFTF
APFD m

 2

1

 

  ...    
  1   21 


  

4.3 Data Analysis 

4.3.1 Effectiveness 
We first study the overall effectiveness of each technique 
in terms of APFD. The corresponding results for the 
evolution points 40, 60, and 80 percent of the test suites 
are represented using boxplots in Fig. 5a, Fig. 5b, and Fig. 
5c, respectively. Each boxplot graphically shows the 25th 
percentile, median, and 75th percentile of the APFD result 
achieved by a technique. 

We find across the three subfigures that, for each 
technique, as the evolution point progresses (namely, 
from 40 to 60 percent and from 60 to 80 percent), the 
performance of the technique shows a downward trend. 
For example, the mean APFD values of Random in Fig. 5a, 
Fig. 5b, and Fig. 5c are 0.79, 0.70, and 0.57, respectively, 
and the mean APFD value of the adaptive technique M10 
only slightly decreases from 0.79 to 0.77, and then to 0.75. 
The bars for other techniques across the three plots can be 
interpreted similarly. 

The differences among XRG-based techniques (M6–
M10) widen as the evolution point progresses. A similar 
observation can also be made among the workflow-based 
techniques (M1–M5). We also observe that M10 is the 
most stable and the most effective among the ten 
techniques. The results indicate that integrating the fix 
strategy and the reschedule strategy together can be more 
effective for earlier revelation of failures. 

Fig. 6 shows the APFD result of each technique for 
each benchmark when the evolution point is 80 percent of 
the test suite. Take the plot for atm as an example. We 
observe that there are missing bars for M6, M7, M8, and 
M9. Similarly, we can observe missing bars for M2-M7 for 
gymlocker. In our experiment, services may evolve within 
a regression test session. Hence, a test case that can detect 
a failure in a particular service composition may not be 
able to do so in a next service composition. Moreover, all 
fault-revealing test cases may have been executed before 
the evolution. Failing to add such test cases again to 
supplement testing after the evolution will miss to detect 
the failure caused by the evolution. Hence, if a test case 
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scheduling strategy is inadequate, it may miss to detect 
the failures. 

Random does not report missing bars in our experi-
ment. We have examined the reason and found that fault-
revealing test cases of the same fault appeared in indexed 
positions of the prioritized test cases both before and after 
evolutions. Thus, some faults can still be revealed after 
the evolution. Since Random includes no guidelines for 
arranging test cases before or after evolution, we tend to 
believe that the arrangement of test cases in the experi-
ment by Random is coincidental. Moreover, Random does 
not always outperform the PRT-enriched techniques (in 
terms of APFD), and we will further discuss it below. 

Another interesting phenomenon is that the workflow-
based series without PRT enrichment perform better than 
the XRG-based series without PRT enrichment (e.g., M2 
outperforms M7 by 10 percent in Fig. 5c), whereas the 

XRG-based series with PRT enrichment outperform the 
workflow-based series with PRT enrichment (e.g., M10 
outperforms M2 by 40 percent in Fig. 5c). On closer look, 
we find that in the case of no evolution in the previous 
experiment [28], the XRG-based series is more effective in 
revealing faults earlier. However, in case evolution 
occurs, the number of remaining fault-revealing test cases 
in the suite prioritized by the XRG-based series is signifi-
cantly less than that remaining in the suite prioritized by 
the workflow-based series. Hence, the workflow-based 
series outperforms the XRG-based series. Our strategy 
uses a round-robin approach. Thus, fault-revealing test 
cases that are executed before the evolution can still have 
the chance to be re-executed. The XRG-based series with 
PRT enrichment may, therefore, outperform the 
workflow-based series. 
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Fig. 5. Overall comparisons of mean APFD measures. 
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Fig. 6. APFD comparisons of test case prioritization techniques for each benchmark. 

TABLE 5 

SUMMARY OF WHETHER A TECHNIQUE HAS AT LEAST 50 PERCENT OF THE COLLECTED APFD VALUES TO BE ZERO 

Benchmark 
Random M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 

atm                                  
buybook                                  

dslservice                                  
gymlocker                                  

loanapproval                                  
marketplace                                  

purchase                                  
triphandling                                  
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TABLE 5 summarizes whether a technique has at least 
50 percent of the collected APFD values to be 0 at differ-
ent evolution points (namely, 40, 60, and 80 percent), 
which corresponds to a boxplot in which the medium line 
of a bar is on the x-axis. If this is the case, we put a cross 
(“”) in the corresponding cell. For the marked cells, if 
the upper compartment of a boxplot is clearly visible, as 
for the case of M6 in the plot for marketplace in TABLE 5, we 
darken the background of the cell.We find that, apart 
from Random, M10 is the only technique that does not 
have any cell marked with a cross in TABLE 5. All the other 
techniques have 3 to 12 crosses, which indicate that they 
can be less desirable than M10. The result seems to 
indicate that both the traditional techniques (M1, M2, M5, 
and M6) as well as some PRT-enriched techniques (M3, 
M4, M5, M8, and M9) may miss to expose failures that 
should be feasible to be exposed. 

We also compare Random with M1–M10 in terms of 
their mean APFD values. Table 6 summarizes the results. 
If Random outperforms Mi (i = 1, 2, ..., 10) by at least 10 
percent, we mark the background of the cell in light gray. 
If Mi outperforms Random by at least 10 percent, we mark 
the background in blue (or dark gray if viewed in black 
and white). 

We observe from Table 6 that Random has achieved 
better results than most conventional techniques (M1, M2, 
M6, and M7). Random seems to perform comparably with 
all the three techniques (M3, M4, and M5) in the work-
flow-based series. M10 always outperforms Random while 
M8 and M9 are close to Random in mean effectiveness.  As 
a whole, the XRG-based series is either better than or the 
same as Random in terms of their mean effectiveness. The 
result also shows that regression testing in an envi-
ronment that an external service may evolve during a test 
session can be challenging. 

A comparison of the mean APFD values using 
different (workflow-based and XRG-based) strategies is 
shown in Table 7. For two techniques using the same 
strategy, if the workflow-based technique outperforms 
the XRG-based technique by at least 10 percent, we mark 
the background of the cell in light gray. If the XRG-based 
technique outperforms the workflow-based technique by 
at least 10 percent, we mark the background of the cell in 
blue (or dark gray if viewed in black and white). 

The number of blue cells is much more than the num-
ber of cells in light gray. This observation indicates that it 
can be more effective to involve more types of coverage. 

The result of gymlocker in Fig. 6 indicates that some of 

the proposed techniques (such as M3–M7) do not work 
well, but M10 shows good outcomes. We have further 
investigated this situation, and found the following: If all 
the fault-revealing test cases have been executed before 
the evolution, some PRT-enriched techniques failed to re-
add such test cases to supplement testing after evolution 
(e.g., M3–M7 against gymlocker), which misses to detect 
the failure caused by the evolution. The result of 
gymlocker shows that, after the evolution, M10 can still 
detect minor changes in coverage, and requires sufficient 
number of additional test cases from the executed test 
cases. Therefore, M10 still performs well when some 
other PRT-enriched techniques do not work. 

 

4.3.2 HYPOTHESIS TESTING 

We further apply hypothesis testing to confirm our obser-
vations made in the last section. 

The t-test assesses whether the means of two groups 
are statistically different from each other. If the signifi-
cance value is less than 0.05, the difference among the 
metric is statistically significant. We summarize in Table 8 
the comparison results of three strategies, M3–M5 in one 
group and M8–M10 in another group. We also highlight 
the significant entries by setting the background of these 
cells in gray. We observe that M10 is significantly better 
than M8 and M9. This observation indicates that a combi-
nation of fix and reschedule strategies is better than either 
the fix or reschedule strategy. 

TABLE 8 

COMPARISON OF t-TEST RESULTS 

Benchmark 
Workflow-based XRG-based 

M3, M4 M3, M5 M4, M5 M8, M9 M8, M10 M9, M10 

atm 0.69 0.80 0.45 0.98 0.00 0.00 

buybook 0.68 0.53 0.84 0.42 0.22 0.03 

dslservice 0.41 0.16 0.58 0.36 0.00 0.00 

gymlocker 0.00 0.00 0.00 0.03 0.00 0.00 

loanapproval 0.02 0.12 0.48 0.15 0.08 0.00 

marketplace 0.00 0.31 0.00 0.00 0.00 0.00 

purchase 0.00 0.48 0.00 0.00 0.02 0.00 

triphandling 0.42 0.93 0.39 0.49 0.01 0.06 

Since rejecting the hypothesis only indicates that the 
means of the two groups are statistically different from 
each other, we further examine Fig. 5c to determine which 
technique is better. We follow [17] to conduct the multiple 
comparison procedure to study whether the means of the 
test case prioritization techniques differ from each other 
at a significance level of 5 percent. We present the 

TABLE 6 
COMPARISON OF MEAN APFD VALUES 

BETWEEN RANDOM AND M1–M10 

Benchmark Random M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

atm 0.61  0.61  0.65  0.65  0.66  0.63  0.00  0.04  0.05  0.03  0.78  

buybook 0.36  0.36  0.36  0.40  0.38  0.38  0.45  0.33  0.62  0.56  0.60  

dslservice 0.48  0.51  0.11  0.18  0.24  0.18  0.64  0.06  0.08  0.07  0.62  

gymlocker 0.71  0.70  0.00  0.00  0.00  0.00  0.00  0.00  0.36  0.37  0.83  

loanapproval 0.54  0.51  0.47  0.53  0.54  0.54  0.52  0.59  0.68  0.69  0.71  

marketplace 0.75  0.78  0.67  0.92  0.72  0.90  0.29  0.56  0.92  0.79  0.93  

purchase 0.36  0.10  0.09  0.66  0.10  0.66  0.00  0.00  0.74  0.00  0.66  

triphandling 0.77  0.69  0.64  0.88  0.89  0.86  0.68  0.78  0.95  0.96  0.92  
 

TABLE 7 

COMPARISON OF MEAN APFD VALUES 

BY COVERAGE STRATEGIES 

Strategy 
Benchmark 

Fix Reschedule Fix & Reschedule 

M3 M8 M4 M9 M5 M10 

atm 0.65 0.05 0.66 0.03 0.63 0.79 

buybook 0.40 0.62 0.38 0.62 0.38 0.60 

dslservice 0.18 0.08 0.24 0.08 0.18 0.62 

gymlocker 0.00 0.36 0.00 0.36 0.00 0.83 

loanapproval 0.53 0.68 0.54 0.68 0.54 0.71 

marketplace 0.92 0.92 0.72 0.92 0.90 0.93 

purchase 0.66 0.74 0.10 0.74 0.66 0.66 

triphandling 0.88 0.95 0.89 0.95 0.86 0.92 
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multiple comparison results for each benchmark in Fig. 7. 
In these figures, the blue (darkest) line represents the 

target technique that we want to compare with others. 
The gray (lightest) lines represent techniques comparable 
to the target technique. The remaining (red) lines repre-
sent the techniques whose means differ significantly from 
the target technique. 

In Fig. 7, M1 to M10 perform comparably with Random 
in 7, 5, 4, 5, 4, 4, 2, 1, 2, and 3 benchmarks, respectively. 
Only some techniques can outperform Random: 2 for M3, 
2 for M5, 4 for M8, 3 for M9, and 5 for M10. Moreover, 
only M10 never performs worse than Random. For other 
techniques, M1 to M9 perform worse than Random by 1, 3, 
3, 3, 2, 5, 5, 3, and 3 benchmarks, respectively. 

Across the board, at a significance level of 5 percent, 
we find that M10 is superior to Random; M1, M3, M5, M8 
and M9 perform comparably with Random; whereas M2, 
M4, M6, and M7 perform worse than Random. If we need 
to find the next candidate, then Random, M8, and M9 can 
be considered. The result also confirms statistically that 
the XRG-based series can be better than the workflow-
based series in terms of the mean APFD. 

With respect to the workflow-based series, we find 
from the figures that M3 and M5 can be superior to M2 (if 
not comparable in individual benchmarks). We cannot 
decide whether they are comparable to, better than, or 
worse than M1. 

Comparing between the workflow-based series and 
the XRG-based series, we find that M3 to M5 are more 
effective than M8 to M10 for 2, 4 and 2 benchmarks, the 
same in effectiveness for 3, 2, and 4 benchmarks, and less 
effective for 0, 3, and 5 benchmarks. 

4.3.3 THREATS TO VALIDITY 

Construct validity relates to the metrics used to evaluate 
the effectiveness of test case prioritization techniques. We 
adopt the APFD measure to evaluate the techniques. 
Using other metrics may give different results. 

Threats to internal validity are the influences that can 
affect the dependency of the experimental variables in-

volved. During the execution of a test case, the contexts 
(such as database status) of individual services involved 
in a service composition may affect the outcome and give 
nondeterministic results. In the experiment, we used our 
tool to reset the contexts to the same values every time 
before rerunning any test case. This approach was also 
advocated by agile software development. 

External validity refers to whether the experiment can 
be generalized. The faults in various versions of external 
services are simulated problematic requests and respons-
es from the environment of the web service under test. 
The simulated evolution scenarios do not represent all 
real-life evolution scenarios. The interpolation and 
extrapolation of the data points to other change windows 
should be interpreted with care. Our subject service-
based applications were based on WS-BPEL. It is not clear 
how the results of other types of artifacts may look like. In 
general, having more subjects can strengthen the 
generalization of the work. 

5 PRACTICALITY ISSUES 

This section discusses the practicality issues of our work. 
In practice, Random may not always be a cost-effective 

technique. We find that although the overall performance 
of Random is good when compared with some PRT-
enriched techniques, its performance for individual appli-
cations varies. For example, M3, M5, and M8 outperform 
Random by more than 50 percent when applied to purchase, 
and M8 and M9 outperform Random by more than 20 
percent when applied to buybook and loanapproval. 

If an evolution of service takes place after all the fault-
revealing test cases have been executed, a prioritization 
technique may not reveal faults by executing the remain-
ing test cases. In theory, our PRT-enriched series reruns 
some of the already-executed test cases and may therefore 
have the potential to reveal further faults. We believe that 
a technique with such a potential is much better than 
another technique without it. In reality, the performance 
depends on the applications, the faults, and the test 
suites. 
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Fig. 7. Multiple comparisons with Random and M1–M10 for each subject service. 
The x-axis represents the APFD values, the y-axis represents the test pair selection strategies, and M5 is the target technique. 
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In particular, the same technique may report different 
levels of performance for different applications. For 
example, M8 and M9 perform well for loanapproval, but 
do not have good results for gymlocker. When using our 
techniques to test a real-life application, it is thus 
important to find the appropriate technique for the 
application. For instance, if M8, M9, and M10 have similar 
performance, using M8 or M9 could be more cost-
effective. To find the best technique for a given testing 
requirement, one possible idea is to use the execution 
history of the previous test as training data (as depicted in 
Fig. 8). The selected technique will be used in continuous 
testing until another candidate technique is found to be 
more suitable. The training can be triggered either 
periodically or manually. Forced manual training may be 
triggered when a developer reports a fault that is 
unrevealed by the selected technique. 

We also note that the PRT-enriched techniques can be 
very sensitive to minor changes and are dependent on the 
external services in the field. When a change of coverage 
is detected, the PRT-enriched techniques will verify the 
application until the entire test suite has been executed 
and no test case changes its coverage between the current 
and the last executions. In practice, developers may set a 
ceiling for the number of test cases to be verified. 

The assumption of our PRT-enriched techniques is 
stated in constraint (2) in Section 3.2. For the regression 
testing of services that satisfy constraint (2), our PRT 
strategies can be applied. When there are uncontrollable 
changes, PRT strategies can be directly used. When there 
are controllable or known changes, PRT strategies can be 
incorporated with existing change-based prioritization 
strategies. 

Our strategies can work together with test case genera-
tion and test suite reduction [40]. When a workflow 
branch is deleted, for instance, the coverage information 
of test cases used to cover this branch will change. Our 
strategies can detect such a change and will try to search 
for other test cases to fix the coverage. Therefore, if the 
branch is wrongly deleted, the test cases used to cover the 
deleted branch may help reveal the fault. Otherwise, if 
the branch is correctly deleted, we can conduct test suite 
reduction before applying our strategies. Since existing 
test cases may not be able to cover newly added work-
flow branches, new test cases need to be generated before 
applying our strategies. 

6 RELATED WORK 

Regression testing has been extensively studied [40]. This 
section reviews the work that is closely related to our 
study, in the context of stopping criterion, revision 
identification, test case prioritization, code coverage, 
external services, execution monitoring, test oracles, 
cloud-based service testing, and service environment 
evolution. 

A feature of PRT strategies is the use of a stopping 
criterion. Mei et al. studied both traditional test adequacy 
criteria [25] and new dataflow-based test adequacy 
criteria [24] to test WS-BPEL web services. Casado et al. 

[9] used a classification-tree methodology [12], [15] to 
determine the test coverage of web services transactions. 

PRT strategies do not require knowing whether the 
service under test undergoes any revision. However, if 
the details of service revision are available, one may 
further refine such a criterion by only picking test cases 
that affect the changed part of the service under test: Ruth 
and Tu [31], Chen et al. [11], Li et al. [19], Liu et al. [21], 
and Tarhini et al. [34] conducted such impact analysis on 
web service implementations to identify revised frag-
ments of code in a service by comparing the flow graph of 
the new version with that of the previous version. Li et al. 
[19], [35] explored the use of messages to obtain a 
comprehensive view of service behavior in selecting paths 
for regression testing. Liu et al. [21] studied the changes 
in the concurrency control in BPEL process executions. 
Tarhini et al. [34] exploited impact analysis from a model-
based perspective. 

Quite a number of test case prioritization techniques 
have been proposed. Hou et al. [16] also observed the 
need to test service-oriented applications with external 
services. Their techniques consider invocation quotas to 
constrain the total number of requests for specific web 
services. Mei et al. considered both black-box coverage 
[26] and gray-box coverage [22], [23], [28] in test case 
prioritization. They did not, however, consider the need 
for dynamic changes in test case ordering based on the 
feedback collected from the service under regression test. 
Nguyen et al. [29] integrated test case prioritization with 
audit testing to control resource consumption. Zhai et al. 
[41] used the dynamic features of service selection to 
reduce the service invocation cost, and they further 
studied [42] different diversity strategies to reorder test 
cases. Chen et al. [11] prioritized test cases based on the 
weights thus identified. However, the evolution of exter-
nal web services was not considered in the above work. 

Our work uses dynamic coverage data of the BPEL 
process achieved by test cases against both the original 
web service and the evolved web service(s) to determine 
adequacy. The closest related work in this aspect is Zou et 
al. [47], who studied an integration of coverage of 
program statements and HTML elements for testing 
dynamic web applications. It is akin to our concept of 
coverage of BPEL process and WSDL documents. On the 
other hand, their work has not studied whether the test 
cases applied to the evolved version of the web service 
produce compatible results as the original service. Becker 
et al. [6] described a technique to check whether a service 
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Fig. 8. A potential framework to apply PRT techniques. 
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description is backward-compatible. Their technique can 
significantly enhance the practicability of our techniques, 
while our techniques complement their work. 

Sometimes, regression test suites require augmentation 
(such as fixing some errors and adding new test cases). 
Bai et al. [3] and Bartolini et al. [5] generated test cases 
that conformed to WSDL schemas. Belli et al. [7] and 
Zheng et al. [44] each studied a model-based approach to 
construct both abstract and concrete test cases. Li et al. 
[20] studied the generation of control-flow test cases for 
the unit testing of BPEL programs. de Almeida and 
Vergilio [13] as well as Xu et al. [39] perturbed inputs to 
produce test cases for robustness testing. 

Our present work monitors the execution traces of 
services under test. Bartolini et al. [4] extracted state 
machine information based on messages from opaque 
web services. Their technique can be integrated with the 
work presented in this paper to identify changes in 
external services during regression testing. Ni et al. [30] 
proposed to model a WS-BPEL web service as a message-
sequence graph and attempted to coordinate messages 
among message sequences to control the message passing 
mechanism on WS-BPEL execution. 

When applying a regression test case to an evolved 
version of a web service, we have assumed that the 
execution result can indicate whether a failure has been 
revealed. Although it is a typical assumption made by 
many pieces of regression testing research, in practice, the 
results may require further examination in order to reveal 
failures. Both Chan et al. [10] and Sun et al. [33] studied 
the use of metamorphic relations to address this problem. 

In recent years, there is an increasing effort to move 
the testing platform to cloud environments. For instance, 
Zhu [45] as well as Zhu and Zhang [46] each proposed a 
framework that integrates different test components 
wrapped as a web service to realize testing techniques 
using service-oriented approaches. It is unclear to what 
extent our work may benefit from the use of such a 
platform, which warrants further research. 

Our present paper is not the only work that addresses 
the changing nature of the service environment. Zhang 
[43], for instance, also considered that web services are 
changing, and proposed to use mobile agent to select 
reliable web services for testing. However, her work has 
not considered the regression testing scenarios. 

7 CONCLUSION 

This paper has proposed Preemptive Regression Testing, a 
novel strategy that reschedules test cases in a planned 
regression test session based on the changes of the service 
under test detected in the course of each actual regression 
test session. It has proposed three particular PRT 
strategies, integrated with existing test case prioritization 
techniques to generate new techniques. Experiments have 
shown that handling changes in external services in a 
regression test session by existing techniques and some 
PRT-enriched techniques can be challenging. We have 
identified one PRT-enriched technique that has the 
potential to cope with such changes. 

We will generalize PRT further to devise other strate-
gies and integrate PRT with QoS testing. 
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