

Postprint of article in IEEE Transactions on Services Computing (2014), doi: 10.1109/TSC.2014.2322621

Preemptive Regression Testing
of Workflow-Based Web Services
Lijun Mei, W.K. Chan, Member, IEEE, T.H. Tse, Senior Member, IEEE,

Bo Jiang, Member, IEEE, and Ke Zhai

Abstract—An external web service may evolve without prior notification. In the course of the regression testing of a workflow-
based web service, existing test case prioritization techniques may only verify the latest service composition using the not-yet-
executed test cases, overlooking high-priority test cases that have already been applied to the service composition before the
evolution. In this paper, we propose Preemptive Regression Testing (PRT), an adaptive testing approach to addressing this
challenge. Whenever a change in the coverage of any service artifact is detected, PRT recursively preempts the current session of
regression test and creates a sub-session of the current test session to assure such lately identified changes in coverage by
adjusting the execution priority of the test cases in the test suite. Then, the sub-session will resume the execution from the
suspended position. PRT terminates only when each test case in the test suite has been executed at least once without any
preemption activated in between any test case executions. The experimental result confirms that testing workflow-based web
service in the face of such changes is very challenging; and one of the PRT-enriched techniques shows its potential to
overcome the challenge.

Index Terms—Evolving service composition, adaptive regression testing

——————————  ——————————

1 INTRODUCTION

workflow-based service [24] usually communicates
with other web services [46] (referred to as external

services [27], [43]) to implement all the required function-
ality. The service together with the external services
constitutes a service-based application. Any change in the
workflow-based service should be fully tested before its
deployment, but testers are seldom able to enforce that
every external service of a workflow-based service
remains unchanged during a test session on the latter
service. Hence, if the external services have evolved, the
efforts spent on the workflow-based service working
under the pre-evolved versions of the external services
will not be realized as an assurance of the current service-

based application. Testing should be re-conducted.
Regression testing [40] serves two purposes. First, it

guards against regression faults [28]. Second, it verifies
whether a web service working with external services
behaves as expected even though it has not been modified
since the “last” test session. To the best of our knowledge,
the majority of existing regression testing research for
web services only considers the scenarios for the first
purpose. The study for the second purpose is still inade-
quately explored.

Fig. 1 shows an execution trace of a web service P that
contains a service port p1, which invokes an external
service S twice. In the figure, Scenarios 1 and 2 are the
classic situations where the environmental context of P is
static. A vast majority of existing regression testing
research (such as [11], [16], [26], [29], [31], [35], [40])
focuses on these scenarios. Scenario 3, identified by the
preliminary version [27] of this paper, is a volatile situa-
tion that has not been explored by existing test case
prioritization techniques.

In Scenario 3, service S is bound to more than one ver-
sion along the execution trace. Existing techniques would
consider the regression test session to be completed with-
out executing the whole test suite against the updated
version s2 of S. Thus, although a test session targets to
execute the entire test suite against the final service-based
application (including external services), in reality, only
some but not all test cases are applied.

In this paper, we propose a novel approach known as
Preemptive Regression Testing (PRT) for the regression
testing of workflow-based services. We refer to a change
detectable in a regression test session for a service under
test as a late change. If a late change occurs, PRT preempts
the current test session and creates a new test sub-session
to assure immediately the workflow-based service with

A

————————————————

© 2014 IEEE. This material is presented to ensure timely dissemination of
scholarly and technical work. Personal use of this material is permitted.
Copyright and all rights therein are retained by authors or by other
copyright holders. All persons copying this information are expected to
adhere to the terms and constraints invoked by each author’s copyright.
In most cases, these works may not be reposted without the explicit
permission of the copyright holder. Permission to reprint/republish this
material for advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists, or to reuse
any copyrighted component of this work in other works must be obtained
from the IEEE.

 L. Mei is with the Services Quality and Engineering Excellence, IBM
Research—China, Tower A, Building 19, Zhongguancun Software Park,
8 Dongbeiwang West Road, Haidian District, Beijing 100193, P.R.
China. E-mail: meilijun@cn.ibm.com.

 W.K. Chan is with the Department of Computer Science, City University
of Hong Kong, Tat Chee Avenue, Hong Kong. E-mail:
wkchan@cityu.edu.hk.

 T.H. Tse is with the Department of Computer Science, The University of
Hong Kong, Pokfulam, Hong Kong. E-mail: thtse@cs.hku.hk.

 B. Jiang is the corresponding author. He is with the School of Computer
Science and Engineering, Beihang University, 37 Xuanyuan Road,
Haidian District, Beijing, P.R. China. E-mail: jiangbo@buaa.edu.cn.

 K. Zhai is with The University of Hong Kong, Pokfulam, Hong Kong.
E-mail: kzhai@cs.hku.hk.

2

respect to the change. After completing the assurance of
changes, the sub-session will resume execution from the
suspended point in the updated sequence of test cases.
Finally, PRT terminates if the entire test suite has been
executed without any sub-session occurring between any
two executions of test cases in the test suite.

We have conducted an experiment using all the bench-
marks in the experiments reported in [24], [28], and have
included a comparison with peer techniques [28]. The
result reveals that formulating effective test case
prioritization in Scenario 3 can be challenging: Existing
techniques may completely miss to reveal regression
faults. One series of our PRT-enriched techniques has the
potential to overcome the challenge, and one of them
outperforms all the others studied in the experiment.

A preliminary version of this paper was presented at
the 36th Annual International Computer Software and
Applications Conference (COMPSAC ’12) [27]. It outlined
the PRT strategies and systematically formulated a family
of workflow-based PRT test case prioritization tech-
niques. In the present paper, we detail the strategies and
also systematically formulate a sister family of PRT test
case prioritizations with additional experiments.

The main contribution of the present paper, together
with its preliminary version [27], is threefold: (i) To the
best of our knowledge, this is the first work that identifies
the problems of service regression testing in Scenario 3.
(ii) We propose the first work on preemptive regression
testing to test service-based applications in the presence
of evolving external services. (iii) We present the first
empirical study on the efficiency and effectiveness of
techniques for preemptive regression testing of services.

The remainder of this paper is organized as follows:
Section 2 gives a motivating example. Section 3 presents
our adaptive strategies and PRT-enriched techniques.
Section 4 reports an empirical study, followed by
discussions of the practicality issues in Section 5. Section 6
reviews related work. Finally, Section 7 concludes the
paper.

2 MOTIVATING EXAMPLE

When an external service of a service-based application is
deemed unsuitable, the developers or an automated agent
may modify the binding address linked to this external
service to a replacement external service. Such a revision
may occur during a regression test session, and repairing
a system configuration is a popular approach to address-
ing issues by testers. Testers may stop the current test
session after the repair and restart a new test session. In
other times, they may continue the current test session
followed by deciding whether or not to start a new test
session. As we will illustrate in Section 2.3, PRT is a
refined strategy for the latter case.

2.1 Evolution Example

We motivate our work via an example taken from the
TripHandling project [1]. We denote the trip handling
service by P, and refer to the external hotel price enquiry
service by S. We follow [24] to use an activity diagram to
show a scenario in which the developer modifies version
v1 of P to version v2. Version v1 originally binds to
version s1 of S. The binding of version s1 of S to version
v2 of P is updated during the test session. Our target for
regression testing is to assure the correctness of v2.

In each activity diagram, a node and an edge represent
a workflow process and a transition between two activi-
ties, respectively. We annotate the nodes with extracted
program information, such as the input-output param-
eters of the activities and XPath [38]. We number the
nodes as Ai (i = 1, 2, ..., 8).

(a) A1 receives a hotel booking request from a user and
stores it in the variable BookRequest.

(b) A2 extracts the input room price and the number of
persons via two XPaths //price/ and //persons/ from
BookRequest, and stores these values in the variables
Price and Num, respectively.

(c) A3 invokes the service HotelPriceService to select
available hotel rooms with prices not exceeding the
input Price (that is, within budget), and keeps the

During an execution of P, the

version s1 of service S evolves to

become the version s2

Web Service P

External

Web Service S

An execution trace of

Web Service P

p1

p1

An execution trace of P

p1

p1

All possible scenarios

Scenario 3Scenario 1 Scenario 2

Version s1

Version s1

Version s2

Version s2

Version s1

Version s2

Static environment with

respect to the same

execution trace

Volatile

environment

Service S

Service S

Fig. 1. Static and volatile testing environmental
contexts. Traditional techniques are not aware
of the changes in context as depicted in
Scenario 3.

If RoomPrice≤ Price

No

RoomPrice = XQ(HotelInformation,

//room[@price≤’Price’ and
@persons = ‘Num’]/price)

Yes

Input:

RoomPrice

Output:

BookingResult

Input: BookRequest

A5:

Validate

Price

A6: Fault
Handling

A7: Invoke HotelBookService

A8: Reply BookingResult

Price= XQ(BookRequest, //price/)

Num= XQ(BookRequest, //persons/)

Input: Price

Output: HotelInformation

A1: Receive HotelBookReqest

A2: Assign Price

A3: Invoke HotelPriceService

A4: Assign
RoomPrice

HotelPriceService

Version v1 of P

A binding statement to an

external service S

HotelPriceService

If RoomPrice≤ Price

No

RoomPrice = XQ(HotelInformation,

//room[@price≤’Price’ or
@persons  ‘Num’]/price)

Yes

Input:

RoomPrice

Output:

BookingResult

Input: BookRequest

A5:

Validate

Price

A6: Fault
Handling

A7: Invoke HotelBookService

A8: Reply BookingResult

Price= XQ(BookRequest, //price/)

Num= XQ(BookRequest, //persons/)

Input: Price

Output: HotelInformation

A1: Receive HotelBookReqest

A2: Assign Price

A3: Invoke HotelPriceService

A4: Assign
RoomPrice

Fault A

Version v2 of P

Version s2

Binding-1 Binding-2

Note 2: s2 can be either a newer version

of s1 or a service independent to s1.
(Uncontrollable by the developer of P)

v1 changes

to v2

(controlled

by the

developer

of P)

HotelPriceService

Version s1

Correct
change

Located Service 1

Located service 2

Note 1: A binding kept in a regression test case

may be invalid when the test case is re-run.

 Fig. 2. Example to illustrate a maintenance scenario for a workflow-based web service.

.

 3

reply in HotelInformation.
(d) A4 assigns a price via the XPath //room [@price≤’Price’

and @persons=’Num’]/price/ to RoomPrice.
(e) A5 verifies whether the price in HotelInformation does

not exceed the inputted Price.
(f) If the verification at A5 passes, A7 executes HotelBook-

Service to book a room followed by A8 returning the
result to the customer.

(g) If RoomPrice is erroneous or HotelBookService in node
A7 produces a failure, A6 will invoke a fault handler.

Test cases t1 to t5 below each contains the price (Price)
and the number of guests (Num) as parametric inputs:

 Price, Num
Test case t1: 200, 1
Test case t2: 100, 5
Test case t3: 125, 3

 Price, Num
Test case t4: 110, 1
Test case t5: −1, 1

Suppose that only two types of rooms are available,
namely, single rooms at a price of $105 and family rooms
(for three persons) at a price of $150.

Suppose a software engineer Jim decides to make the
following changes to the precondition in node A4 of
version v1 of P in Fig. 2: He attempts to allow customers
to select any room that can accommodate the requested
number of persons. However, he wrongly changes the
precondition in the XPath by changing “and” to “or”.

Although he intends to provide customers with more
choices, the change does not support his intention
(because the process is designed to immediately proceed
to book rooms, rather than allowing customers to specify
their preferences). This results in a fault (which we will
call Fault A), as shown in version v2 of P in Fig. 2.

Suppose further that s1 of S is an exact search, return-
ing all hotel rooms whose prices are smaller than Price (in
ascending order of the room price). On the other hand,
suppose s2 of S is a fuzzy search, which returns only one
hotel room whose price is closest to Price, hoping that the
customer will consider it as long as it is affordable. For
example, when Price is 200, s2 will only return a family
room. When Price is 100, s2 will return a single room,
rather than returning no room. Replacing s1 by s2 in Fig. 2
will result in another fault (called Fault B).

Fig. 3a shows the execution traces of the five test cases
against version v1 of P that uses version s1 of S as the
hotel price enquiry service. Both test cases t1 and t4 result
in the successful booking of a single room. Test cases t2
and t5 result in unsuccessful bookings. The price valida-
tion process rejects t2 and t3. The price “−1” of t5 will
trigger a fault in node A7. Fig. 3b shows the traces of
version v2 of P using version s1 of S. Similarly, Fig. 3c
shows the traces of v2 of P using s2 of S. In particular,
only the execution traces of t3 are different among Fig. 3a,
Fig. 3b, and Fig. 3c. The test case t3 aims to book a family
room; however, owing to the modification, a single room
is booked. This test case can detect a regression fault.
Both t1 and t2 are failed test cases for s2 because of the
fuzzy search, whereas they are both passed test cases in
Fig. 3b. Test case t1 should book a single room, but it
results in booking a triple room against v2 of P using s2.
The execution of t2 should report no available room.
However, executing t2 against v2 of P using s2 will report
a validation failure of room price.

2.2 Inadequacies of Existing Techniques

This section analyzes the inadequacies of existing test
case prioritization techniques. For brevity, let us concen-
trate our discussions on addtl-workflow-branch, which is a
traditional strategy adopted from the addtl-statement test
case prioritization technique [28]. Based on the coverage
shown in Fig. 3a, we present two test case permutations
T1 = t1, t3, t5, t4, t2 and T2 = t1, t2, t5, t3, t4 of addtl-
workflow-branch. Let us consider three evolution
scenarios.

Scenario 1: v1 evolves to v2 before executing T1 against
s1 of S. The application of T1 to assure the correctness of
v2 is shown in Fig. 4a. The second test case (t3) of T1
detects a failure, thus revealing Fault A.

Scenario 2: v1 evolves to v2 before executing T1, and s1
evolves to s2 after executing t1. The second test case (t3) in
T1 reveals Fault A. In theory, the first (t1) and fifth (t2) test
cases can both reveal Fault B, but only t2 is executed (as
the last test case).

Scenario 3: v1 evolves to v2 before executing T2, and s1
evolves to s2 after executing t5, as shown in Fig. 4b. The
fourth test case (t3) in T2 reveals Fault A. In theory, the
first (t1) and second (t2) test cases in T2 can also reveal
Fault B, but neither of them is executed.

A1

A2

A3

A4

A5

A8

Trace(t1)

A7

A1

A2

A3

A4

A5

A6

Trace(t2)

A1

A2

A3

A4

A5

Trace(t3)

A1

A2

A3

A4

A5

A8

Trace(t4)

A7A6

A1

A2

A3

A4

A5

A6

A7

Trace(t5)

A1

A2

A3

A4

A5

A8

Trace(t1)

A7

A1

A2

A3

A4

A5

A6

Trace(t2)

A1

A2

A3

A4

A5

Trace(t3)

A1

A2

A3

A4

A5

A8

Trace(t4)

A7

A1

A2

A3

A4

A5

A6

A7

Trace(t5)

A8

A7

(a) Traces of test cases against v1 of P using s1

(b) Traces of test cases against v2 of P using s1

Passed Passed Failed Passed Passed

A1

A2

A3

A4

A5

A8

Trace(t1)

A7

A1

A2

A3

A4

A5

A6

Trace(t2)

A1

A2

A3

A4

A5

Trace(t3)

A1

A2

A3

A4

A5

A8

Trace(t4)

A7

A1

A2

A3

A4

A5

A6

A7

Trace(t5)

A8

A7

(c) Traces of test cases against v2 of P using s2

Failed Failed Failed Passed Passed

Fig. 3. Traces of the test cases against different service versions.

4

Scenario 1 is the same as the classical setting for regres-
sion testing, and thus existing techniques work well. For
Scenario 2, although the branch coverage missed by t3
(namely, A5A6 and A6End) can be achieved by t2,
existing prioritization techniques does not advance its
execution. Better test case prioritization techniques
should be used to fill the gap.

Scenario 3 illustrates that existing techniques may fail
to detect some faults (Fault B in this case). Intuitively, t1,
t2, and t5 can be considered as being discarded when
executing T2 against v2 and s2. This defies the objective of
test case prioritization, in which test cases are to be
reordered but not discarded. To fix this problem, more
test cases need to be scheduled after the current test suite
has been applied.

2.3 Illustration of a PRT-Enriched Technique

We now illustrate one technique that uses Strategy 1 (see
Section 3.3 for details) to address the above challenge.

We observe from Fig. 4b that, although t3 is targeted
for covering A6, it actually covers A7 and A8. The PRT
Strategy 1 then selects test cases from the prioritized test
suite to assure the correctness of A6 immediately. Fig. 4b
illustrates that Strategy 1 selects t2 as a replacement
according to the given priority shown by the test suite T,
and happens to reveal a failure. Then, it continues with
the execution of every remaining prioritized test case
after t2. After executing the remaining test cases in the
prioritized test suite, the technique finds that t1 has been
executed before the latest invocation of Strategy 1. Hence,
the technique reruns t1 and reveals another failure. There
is no need to suspend test case execution throughout the
realization of Strategy 1.

3 PREEMPTIVE REGRESSION TESTING STRATEGIES

We present the Preemptive Regression Testing approach
and formulate three corresponding strategies.

3.1 Test Case Prioritization Revisited

We would like to design techniques to make use of data
obtained in previous software executions and to run test
cases to achieve target goals in the regression testing of
the next modified versions. Test case prioritization [27],
[40] is an important aspect of regression testing. A well-
designed test case prioritization technique may increase
the fault detection rate of a test suite.

The test case prioritization problem [27] is: Given: T, a
test suite; PT, the set of permutations of T; and f, a
function from PT to real numbers. Objective: To find
T’PT such that T’’PT, f(T’) ≥ f(T’’).

3.2 Regression Testing Model

Consider a service-based application divided into two
parts. The first part is the workflow-based service under
test, denoted by P. Following existing research [16], [28],
our primary objective is to safeguard P from faulty modi-
fications of its implementations. Typically, the testers of P
use a regression test suite T to test a given version v of P.
They may conduct testing in laboratory so that they can
collect the coverage information on v.

The second part is a set of services outside the service
P. P needs to communicate with them in order to
compute its functions properly. We call them external
services of P. In other words, in our setting, executing a
test case against a given version v of P may involve the
invocation of external services and obtaining their results.
It would be too restrictive to assume that these external

A1

A2

A3

A4

A5

A6

Trace(t1) Trace(t1, t3) Trace(t1, t3, t5) Trace(t4) Trace(t4, t2)

A8

A7

A1

A2

A3

A4

A5

A6
A8

A7

A1

A2

A3

A4

A5

A6

A8

A7

Coverage

reset

A1

A2

A3

A4

A5

A8

A7

A1

A2

A3

A4

A5

A8

A7

(a) Using the prioritized test suite t1, t3, t5, t4, t2 to apply the addtl-workflow-branch technique to test version v2 of P that binds to version s1 of S.
The coverage information of each test case is from its previous round of execution.

Trace(t1) Trace(t1, t3)

A1

A2

A3

A4

A5

A6

A8

A7

A1

A2

A3

A4

A5

A8

A7

A1

A2

A3

A4

A5

A8

A7

Dynamic changes

A1

A2

A3

A4

A5

A8

A7

A1

A2

A3

A4

A5

A6

A8

A7

A1

A2

A3

A4

A5

A8

A7

Coverage

reset

Fix the coverage
Check the consistency

of coverage

A6

v1  v2

s1  s2

Trace(t1, t3, t2) Trace(t1, t3, t2, t5) Trace(t4) Trace(t1)

(b) Applying Strategy 1 when v1  v2 and s1  s2 during a regression test session using the same prioritized test suite t1, t3, t5, t4, t2.
The coverage information of each test case is from its latest execution.

Fig. 4. Example to illustrate regression testing of workflow-based service with external service evolution.

 5

services remain unchanged during any regression test
session. We do not assume that the testers of P can always
control the evolution of all external services either.

To facilitate discussions, we first present a generalized
regression testing model.

Definition 1 (Generalized regression testing model). A
generalized RT model for a service P under test is a five-
tuple V, T, , ,   such that:
 V = (v1, v2, ..., vn) is a series of sequentially modified

versions of P.
 T is a regression test suite of P.
 (vi, vi+1) is the time period between two consecutive

versions vi, vi+1 ∈ V.
 (t, v) is the time taken to execute t ∈ T against v ∈ V.
 (t, v) is the set of coverage after executing t ∈ T against v

∈ V.

When we consider only two consecutively modified
versions vi and vi+1 of P, we may or may not be able to
completely execute all applicable test tests against vi,
which results in either of the following inequalities that
constrains the number of test cases applied to vi:

 (1)

 (2)

Many existing test case prioritization techniques [40]
implicitly assume that constraint (1) is satisfied. They
cannot accurately model the values of  and . However,
a service composition may change rapidly, turning the
regression testing scenario to fall within constraint (2).

Continuous delivery (also known as DevOps) is a real-
life example satisfying constraint (2) and is very useful for
the system integration phase. DevOps always requires the
shipping of trunk code (branching code only for release).
Code changes are minor and directly submitted to the
trunk, which needs to be ready for incremental deploy-
ment that happens very frequently (in terms of hours
rather than months). To achieve the goal of always
shipping high-quality trunk code, continuous integration
testing is thus necessary. During such testing, frequent
minor changes may occur because different developers
may continuously contribute to the debugging process, or
because of small feature updates. Moreover, DevOps uses
the real runtime environment or something highly similar
(including application servers, system configurations,
related data sources, external web services), which is also
changing, and the changes may not always be control-
lable. Considering the continuous evolution in the code
and the runtime environment, a regression test suite may
not necessarily be fully executed against a stable version.

To transfer test data among test sessions, we formalize

in (3)–(6) below the relations between the existing

coverage (based on the regression test session against

version vj) and the new coverage (for the current test

session against version vj+1). denotes the empty set. The

notation stands for the complementary set of

 . Thus, comprises all the elements in the total

coverage set outside of (t, v).

 (3)

 (4)

 (5)

 (6)

In short, there are four types of relations for a test case:
Relations (3), (4), and (5) mean, respectively, that the
coverage achieved by the new execution of the test case ti
are the same as, more than, and less than that achieved in
the previous session. Relation (6) means that the existing
coverage and the new coverage of the test case ti satisfy
none of the above (such as when no existing coverage of
the test case ti is available). We note that (3) indicates
there is no coverage change. The remaining three equa-
tions indicate that some change has occurred, and hence
regression testing should be conducted, which lead to our
PRT strategies to be presented in the next section.

3.3 PRT Strategies

This section presents three adaptive strategies, namely, fix,
reschedule, and a hybrid approach fix-and-reschedule.

Strategy 1 (Fix). Suppose a test case t misses at least
one coverage item that it has covered in its last execution.
Let F be the set of missed coverage items of t. This
strategy selects a sequence U of test cases in T such that
the last execution of all the test cases in U can minimally
cover all the missed coverage items in F. Moreover, this
strategy records the coverage items achieved by each
newly selected test case in U with respect to F.

Because the coverage achieved by many not-yet-
executed test cases in T in their corresponding last
executions may cover some item in F, Strategy 1 adopts
the following criterion to construct U and run these test
cases. For every missed coverage item in F, Strategy 1
chooses and executes one test case among the not-yet-
executed test cases in T in a round-robin fashion (starting
from the position of t in T) in descending order of the
number of items covered by each test case.

Executing such a replacement test case may discover
additional coverage items that have been missed as well.
In this case, Strategy 1 will preempt its current session,
and invoke a new session. The new session will adjust the
prioritized test cases, resume execution from the pre-
emption point, and then remove from F of the current
session those coverage items already covered by the
recursively invoked sessions of Strategy 1.

Strategy 2 (Reschedule). If a test case covers new
item(s) that have not been covered in its last execution,
the strategy records the additional coverage items
achieved by the test case, and reprioritizes the not-yet-
executed test cases according to the additional item cover-
age technique.

Strategy 3 (Fix-and-Reschedule). This strategy is a
hybrid of Strategies 1 and 2. If a test case does not cover
some item(s) it has covered in its last execution, Strategy 3
first invokes Strategy 1. After the completion of Strategy
1, if there are any additional coverage items that have not
been covered in the last execution of the test cases by
Strategy 1, it will invoke Strategy 2.

6

The PRT strategies require additional storage so that
they can mark the end of each session of iteration. In our
implementation, we use an integer array (of the same
length as the size of the test suite), which is sufficient to
support the marking, and hence the incurred extra space
requirement is light.

Algorithm 1 (RegressionRun) and Algorithm 2
(PRTRegressionRun) show the existing strategy and the
PRT strategy, respectively.

The algorithm RegressionRun accepts three input
parameters: A test suite T, a baseline prioritization tech-
nique , and the set of execution traces  obtained from a
given regression test session. We denote the ith test case

in T by T(i), and the execution trace of a test case t by (t).
The function sizeof(T) returns the number of test cases in
T. The function execute(t) executes the test case t and
returns the execution trace of t against the service under
test. Algorithm 1 first prioritizes the given test suite T
using , and then iterates on the prioritized test suite T1 to
execute each test case t using the function execute(t).

The algorithm PRTRegressionRun is significantly
different from the algorithm RegressionRun. After the
execution of a test case t at line 5, Algorithm 2 compares
the trace (t) and the trace ’(t). If there is any difference
between the two, it starts a new test sub-session at line 7
using PRTSubRegressionRun. In PRTSubRegressionRun,
the algorithm first identifies the start position at line 12
and then applies PRT strategy S (see Strategies 1–3 above)
to construct a test suite. It applies all the test cases in this
latter test suite one by one in the current sub-session. If
there is any difference in the traces observed (line 17), it
recursively starts a new test sub-session.

Let us use Fig. 4b as an example to illustrate Algorithm
2. We use addtl-workflow-branch as , Strategy 1 as S, and
T1 is t1, t3, t5, t4, t2. After executing t1 and t3, the execution
trace of t3 changes, items that fail to be covered (namely, A5
 A6 and A6  end) are identified, and PRT-

SubRegressionRun is invoked. By using Strategy 1, the
algorithm finds that t2 can fix the coverage, and thus ad-
justs T1 to T2 t1, t3, t2, t5, t4. Then, PRTSubRegressionRun

continues to execute t2, t5, t4, and t1 until count reaches 5.
In summary, a PRT-enriched technique may generate

one or more regression test sub-sessions (lines 7 and 18).
It considers the latest coverage data, and conducts fast
adjustment in line 13 using a PRT strategy. Moreover,
compared with existing techniques, PRT-enriched tech-
niques may schedule additional test cases after the last
test case in a given prioritized test suite has been executed,
thus increasing the probability of fault detection. Table 1
summarizes the effects of the two types of strategies.

3.4 PRT-Enriched Test Case Prioritization
Techniques

This section presents a family of test case prioritization
techniques, as summarized in Table 2. M1 and M2 are
existing techniques on workflow, and M6 and M7 are
existing techniques on workflow and XRG. They are
adapted from existing work (such as [16], [26], [28], [40]).

Addtl-branch technique is the most effective in terms of
APFD in the literature. Therefore, we realize our three
strategies on top of the addtl-workflow-branch technique
and the addtl-workflow-XRG-branch technique to build six
evolution-aware techniques. M3–M5 and M8–M10, listed
in italics in Table 2, are the new techniques based on the
application of our adaptive strategies.

These techniques have a common stopping criterion:
Given a service P and a regression test suite T for P, the
technique stops if the entire test suite T has been executed
and no test case results in further changes in the coverage
of P (in terms of workflow for M1–M5 and both workflow
and XRG for M6–M10).

M1 (Total-Workflow-Branch) [28], [40]. This tech-
nique sorts the test cases in T in descending order of the

Algorithm 1. RegressionRun (T, , )

1. T1  (T); // T1 is the prioritized test suite

2. i  0; // i is the index of the test case

3. while (i < sizeof(T1)) {

4. t  T1 (i);

5.  (t) = execute(t); // update the execution trace of t

6. i  i +1;

7. }

Algorithm 2. PRTRegressionRun (T, , , S)

1. T1  (T); // T1 is the prioritized test suite

2. i  0; // i is the index of the test case

3. while (i < sizeof(T1)) {

4. t  T1(i);

5. ’(t) = execute(t); // update the execution trace of t

6. if((t) != ’(t)){ // start a test sub-session

7. PRTSubRegressionRun(T1, , , ’, S, i, 1);

8. break;

9. }

10. i  i +1;

11. }

PRTSubRegressionRun (T, ,  ,  ‘, S, start, count)

12. i  (start + count) % sizeOf(T); // round-robin search for i

// apply PRT strategy S to adjust the prioritized suite

13. T2  S(T, ,  , ’, i); // adjust the prioritized test suite

14. while (count < sizeOf(T2)) {

15. t  T2(i);

16. ’(t) = execute(t); // obtain the execution trace of t

17. if((t) != ’(t)){ // start a test sub-session

18. PRTSubRegressionRun(T2, , , ’, S, i, 1);

19. break;

20. }

21. i  (i + 1) % sizeOf(T2); // round-robin search for i

22. count  count +1;

23. }

TABLE 1

COMPARISONS BETWEEN EXISTING AND PRT TECHNIQUES

Question
Existing

Techniques
PRT

Techniques

Is evolution during regression
testing considered?

No Yes

What is the number of test cases
executed in one execution of a
technique?

Equal to |T|
(test suite size)

Maybe larger
than |T|

Is a test case executed more
than once during one session?

No Yes

Is the latest coverage data used
during one session?

No Yes

No. of test sessions per
execution of a technique

Single test
session

Hierarchical
test session

 7

total number of workflow branches executed by each test
case. If multiple test cases cover the same number of
workflow branches, M1 orders them randomly.

TABLE 2

CATEGORIES OF TEST CASE PRIORITIZATION TECHNIQUES

Category Name Index

Workflow-based

Total-Workflow-Branch [28], [40] M1

Addtl-Workflow-Branch [28], [40] M2

Addtl-Workflow-Branch-Fix M3

Addtl-Workflow-Branch-Reschedule M4

Addtl-Workflow-Branch-FixReschedule M5

XRG-based

Total-Workflow-XRG-Branch [28], [40] M6

Addtl-Workflow-XRG-Branch [28], [40] M7

Addtl-Workflow-XRG-Branch-Fix M8

Addtl-Workflow-XRG-Branch-Reschedule M9

Addtl-Workflow-XRG-Branch-FixReschedule M10

M2 (Addtl-Workflow-Branch) [28], [40]. This tech-
nique iteratively selects a test case t that yields the
greatest cumulative workflow branch coverage, and then
removes the covered workflow branches from all remain-
ing test cases to indicate that these branches have been
covered by the selected test cases. Additional iterations
will be conducted until all workflow branches have been
covered by at least one selected test case. If multiple test
cases cover the same number of workflow branches in the
current session of selection, M2 selects one of them
randomly. If no remaining test cases can further improve
the cumulative workflow branch coverage, M2 resets the
workflow branch covered by each remaining test case to
its original value. It applies the above procedure until all
the test cases in T have been selected.

M3 (Addtl-Workflow-Branch-Fix). This technique
consists of two phases. Phase 1: preparation. It first updates
the workflow branches covered by individual test cases to
be the same as M2 to generate a sequence of test cases.
Phase 2: runtime adjustment. Right after the execution of a
test case, it runs Strategy 1 to adjust the sequence of
prioritized test cases, and then continues to apply the
adjusted sequence of prioritized test cases in a round-
robin fashion until the entire test suite has been executed
and no test case changes its achieved coverage between
the current execution and the last execution.

M4 (Addtl-Workflow-Branch-Reschedule). This tech-
nique consists of two phases: Phase 1: preparation. This
phase is the same as Phase 1 of M3. Phase 2: runtime
adjustment. It is the same as Phase 2 of M3, except that it
runs Strategy 2 rather than Strategy 1.

M5 (Addtl-Workflow-Branch-FixReschedule). This
technique strikes a balance between M3 and M4 by using
Strategy 3. It also consists of two phases. Phase 1: prepara-
tion. This phase is the same as Phase 1 of M3. Phase 2:
runtime adjustment. It is the same as Phase 2 of M3, except
that it runs Strategy 3 instead of Strategy 1.

M6 (Total-Workflow-XRG-Branch) [28], [40]. This
technique is the same as M1, except that it uses the total
number of workflow branches and XRG branches, instead
of the total number of workflow branches covered by
each test case.

M7 (Addtl-Workflow-XRG-Branch) [28], [40]. This
technique is the same as M2, except that it uses the
workflow branches and XRG branches, rather than the
workflow branches covered by each test case.

M8 (Addtl-Workflow-XRG-Branch-Fix). This tech-
nique is the same as M3, except that it uses the workflow
branches and XRG branches, instead of the workflow
branches covered by each test case.

M9 (Addtl-Workflow-XRG-Branch-Reschedule). This
technique is the same as M4, except that it uses the
workflow branches and XRG branches, instead of the
workflow branches covered by each test case.

M10 (Addtl-Workflow-XRG-Branch-FixReschedule).
This technique is the same as M5, except that it uses the
workflow branches and XRG branches, instead of the
workflow branches covered by each test case.

A PRT-enriched technique has two types of costs,
namely, preparation cost and adjustment cost. Take M3 as
an example. Its preparation cost is the same as M2 (an
existing technique), but its adjustment cost depends on
the number of coverage changes of test cases. The time
complexity of the adjustment cost for one change is O(n),
where n is the test suite size, while existing techniques
require rescheduling the whole test suite after detecting
changes in coverage, so that the time complexity is O(n2).

With reference to existing regression testing studies
[11], [16], [22], [23], [24], [28], [29], [31], [32], [34], we also
include random ordering (referred to as Random in this
paper, and as Rand in Figs. 6, 7, and 8) for comparison in
the experiment to be presented in the next section.

4 EVALUATION

4.1 Experimental Setup

We chose a set of eight subject service-based applications
to evaluate our adaptive strategies, as listed in Table 3. Six
benchmarks (atm, gymlocker, loanapproval, marketplace,
purchase, and triphandling) were downloaded from the
IBM BPEL repository [1] and the BPWS4J repository [8].

TABLE 3

BENCHMARKS AND THEIR DESCRIPTIVE STATISTICS

B
en

ch
m

ar
k

R

ef
. Benchmark

Description

M
o

d
if

ie
d

V

er
si

o
n

s

E
le

m
en

ts

L
O

C

X
P

at
h

s

X
R

G

B
ra

n
ch

es

W
S

D
L

E

le
m

en
ts

U
se

d

V
er

si
o

n
s

A atm 8 94 180 3 12 12 5
B buybook 7 153 532 3 16 14 5
C dslservice 8 50 123 3 16 20 5
D gymlocker 7 23 52 2 8 8 5
E loanapproval 8 41 102 2 8 12 7
F marketplace 6 31 68 2 10 10 4
G purchase 7 41 125 2 8 10 4
H triphandling 9 94 170 6 36 20 8

Total 60 527 1352 23 114 106 43

TABLE 4

STATISTICS OF TEST SUITE SIZES

 Benchmark
Size

A B C D E F G H Mean

Maximum 146 93 128 151 197 189 113 108 140.6

Average 95 43 56 80 155 103 82 80 86.8

Minimum 29 12 16 19 50 30 19 27 25.3

8

The benchmark buybook [18] was downloaded from
Oracle Technology Network for Oracle BPEL Process
Manager. The benchmark dslservice was downloaded
from the Web Services Innovation Framework [24].

They were representative service-based applications
developed in WS-BPEL [36]. This set of benchmarks was
also used in previous empirical studies reported in [24],
[28]. To the best of our knowledge, this set of benchmarks
is larger than the set of benchmarks used by Ni et al. in
their experiment reported in [30] in terms of number of
benchmarks, variety of benchmarks, number of versions,
and sizes of individual benchmarks.

We used the set of faults and the associated test suites
in the benchmark packages to measure the effectiveness
of different prioritization techniques. We follow the spirit
of mutation testing [2] to seed faults in the major artifacts
(BPEL, XPath, and WSDL [37]) of the benchmark
applications. Andrews et al. [2] suggested that mutation
faults can be representative of real faults. Many
researchers thus used mutation testing for empirical
evaluation of test case prioritization techniques [14]. We
used three typical types of mutations in fault seeding:
value mutations, decision mutations, and statement
mutations. Since BPEL can be treated as Control Flow
Graphs (CFG), the above mutations can be seeded in the
way as seeding faults in CFG. An XPath fault is the
wrong usage of XPath expressions, such as extracting the
wrong content, or failing to extract any content. Fig. 2
gives an example of an XPath fault. A WSDL fault is the
wrong usage of WSDL specifications, such as binding to a
wrong WSDL specification, or inconsistent message
definitions. The faults in the modified versions have been
reported by [24]. The statistics of the selected modified
versions are shown in the rightmost column of Table 3.

Strictly following the methodology in [24], [28], the
fault in any modified version could be detected by some
test case in every test suite, and we discarded any
modified version if more than 20 percent of the test cases
could detect the failures in that version. All the 43 remain-
ing versions were used in the empirical study.

We used the implementation tool of Mei et al. [28] for
test case generation, test suite construction, and fault
seeding in our empirical study. We revisit the procedure
here: First, it randomly generated test cases based on the
WSDL specifications, XPath queries, and workflow logics
of the original version of each benchmark (rather than the
modified versions). For each benchmark, 1,000 test cases
were generated to form a test pool. The tool then added a
test case to a constructing test suite (initially empty) only
if the test case can increase the coverage achieved by exe-
cuting the test suite against the workflow branches, XRG
branches, or WSDL elements. We successfully obtained
100 test suites for each benchmark. The descriptive statis-
tics of the test suites are shown in Table 4. It presents the
maximum, average, and minimum numbers of test suites
for each benchmark.

To simulate different evolution scenarios, we set the
evolution points (that is, the times when the evolutions
happen) to be the instances that 40, 60, and 80 percent of a
test suite has been executed, respectively. To simulate

scenarios in a dynamic service environment, we ran-
domly selected them from the original version and the
modified versions. Since all the test case execution results
of the applications can be determined, we can figure out
whether a fault has been revealed by a test case through
comparing the test result of the modified version with
that of the original program. Our tool automatically
performed the comparisons.

4.2 Measurement Metric

We measured the effectiveness using the Average
Percentage of Faults Detected (APFD) [40]. It is a widely

adopted metric to evaluate test case prioritization techniques. A

higher APFD value indicates faster fault detection. Let T be a test

suite of n test cases, F be a set of m faults revealed by T, and TFi be

the index of the first test case in a reordering T’ of T that reveals

fault i. The APFD value for the reordering T’ is computed by

nmn

TFTFTF
APFD m

 2

1

 ...
 1 21 




4.3 Data Analysis

4.3.1 Effectiveness
We first study the overall effectiveness of each technique
in terms of APFD. The corresponding results for the
evolution points 40, 60, and 80 percent of the test suites
are represented using boxplots in Fig. 5a, Fig. 5b, and Fig.
5c, respectively. Each boxplot graphically shows the 25th
percentile, median, and 75th percentile of the APFD result
achieved by a technique.

We find across the three subfigures that, for each
technique, as the evolution point progresses (namely,
from 40 to 60 percent and from 60 to 80 percent), the
performance of the technique shows a downward trend.
For example, the mean APFD values of Random in Fig. 5a,
Fig. 5b, and Fig. 5c are 0.79, 0.70, and 0.57, respectively,
and the mean APFD value of the adaptive technique M10
only slightly decreases from 0.79 to 0.77, and then to 0.75.
The bars for other techniques across the three plots can be
interpreted similarly.

The differences among XRG-based techniques (M6–
M10) widen as the evolution point progresses. A similar
observation can also be made among the workflow-based
techniques (M1–M5). We also observe that M10 is the
most stable and the most effective among the ten
techniques. The results indicate that integrating the fix
strategy and the reschedule strategy together can be more
effective for earlier revelation of failures.

Fig. 6 shows the APFD result of each technique for
each benchmark when the evolution point is 80 percent of
the test suite. Take the plot for atm as an example. We
observe that there are missing bars for M6, M7, M8, and
M9. Similarly, we can observe missing bars for M2-M7 for
gymlocker. In our experiment, services may evolve within
a regression test session. Hence, a test case that can detect
a failure in a particular service composition may not be
able to do so in a next service composition. Moreover, all
fault-revealing test cases may have been executed before
the evolution. Failing to add such test cases again to
supplement testing after the evolution will miss to detect
the failure caused by the evolution. Hence, if a test case

 9

scheduling strategy is inadequate, it may miss to detect
the failures.

Random does not report missing bars in our experi-
ment. We have examined the reason and found that fault-
revealing test cases of the same fault appeared in indexed
positions of the prioritized test cases both before and after
evolutions. Thus, some faults can still be revealed after
the evolution. Since Random includes no guidelines for
arranging test cases before or after evolution, we tend to
believe that the arrangement of test cases in the experi-
ment by Random is coincidental. Moreover, Random does
not always outperform the PRT-enriched techniques (in
terms of APFD), and we will further discuss it below.

Another interesting phenomenon is that the workflow-
based series without PRT enrichment perform better than
the XRG-based series without PRT enrichment (e.g., M2
outperforms M7 by 10 percent in Fig. 5c), whereas the

XRG-based series with PRT enrichment outperform the
workflow-based series with PRT enrichment (e.g., M10
outperforms M2 by 40 percent in Fig. 5c). On closer look,
we find that in the case of no evolution in the previous
experiment [28], the XRG-based series is more effective in
revealing faults earlier. However, in case evolution
occurs, the number of remaining fault-revealing test cases
in the suite prioritized by the XRG-based series is signifi-
cantly less than that remaining in the suite prioritized by
the workflow-based series. Hence, the workflow-based
series outperforms the XRG-based series. Our strategy
uses a round-robin approach. Thus, fault-revealing test
cases that are executed before the evolution can still have
the chance to be re-executed. The XRG-based series with
PRT enrichment may, therefore, outperform the
workflow-based series.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rand M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rand M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

(a) Evolution point: 40% test suite size (b) Evolution point: 60% test suite size (c) Evolution point: 80% test suite size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rand M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

A
P

F
D

A
P

F
D

A
P

F
D

Fig. 5. Overall comparisons of mean APFD measures.

atm buybook dslservice gymlocker

loanapproval marketplace purchase triphandling

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rand M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rand M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rand M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rand M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rand M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rand M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rand M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rand M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

A
P

F
D

A
P

F
D

Fig. 6. APFD comparisons of test case prioritization techniques for each benchmark.

TABLE 5

SUMMARY OF WHETHER A TECHNIQUE HAS AT LEAST 50 PERCENT OF THE COLLECTED APFD VALUES TO BE ZERO

Benchmark
Random M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.8

atm     
buybook 

dslservice          
gymlocker                  

loanapproval 
marketplace  

purchase                 
triphandling   

10

TABLE 5 summarizes whether a technique has at least
50 percent of the collected APFD values to be 0 at differ-
ent evolution points (namely, 40, 60, and 80 percent),
which corresponds to a boxplot in which the medium line
of a bar is on the x-axis. If this is the case, we put a cross
(“”) in the corresponding cell. For the marked cells, if
the upper compartment of a boxplot is clearly visible, as
for the case of M6 in the plot for marketplace in TABLE 5, we
darken the background of the cell.We find that, apart
from Random, M10 is the only technique that does not
have any cell marked with a cross in TABLE 5. All the other
techniques have 3 to 12 crosses, which indicate that they
can be less desirable than M10. The result seems to
indicate that both the traditional techniques (M1, M2, M5,
and M6) as well as some PRT-enriched techniques (M3,
M4, M5, M8, and M9) may miss to expose failures that
should be feasible to be exposed.

We also compare Random with M1–M10 in terms of
their mean APFD values. Table 6 summarizes the results.
If Random outperforms Mi (i = 1, 2, ..., 10) by at least 10
percent, we mark the background of the cell in light gray.
If Mi outperforms Random by at least 10 percent, we mark
the background in blue (or dark gray if viewed in black
and white).

We observe from Table 6 that Random has achieved
better results than most conventional techniques (M1, M2,
M6, and M7). Random seems to perform comparably with
all the three techniques (M3, M4, and M5) in the work-
flow-based series. M10 always outperforms Random while
M8 and M9 are close to Random in mean effectiveness. As
a whole, the XRG-based series is either better than or the
same as Random in terms of their mean effectiveness. The
result also shows that regression testing in an envi-
ronment that an external service may evolve during a test
session can be challenging.

A comparison of the mean APFD values using
different (workflow-based and XRG-based) strategies is
shown in Table 7. For two techniques using the same
strategy, if the workflow-based technique outperforms
the XRG-based technique by at least 10 percent, we mark
the background of the cell in light gray. If the XRG-based
technique outperforms the workflow-based technique by
at least 10 percent, we mark the background of the cell in
blue (or dark gray if viewed in black and white).

The number of blue cells is much more than the num-
ber of cells in light gray. This observation indicates that it
can be more effective to involve more types of coverage.

The result of gymlocker in Fig. 6 indicates that some of

the proposed techniques (such as M3–M7) do not work
well, but M10 shows good outcomes. We have further
investigated this situation, and found the following: If all
the fault-revealing test cases have been executed before
the evolution, some PRT-enriched techniques failed to re-
add such test cases to supplement testing after evolution
(e.g., M3–M7 against gymlocker), which misses to detect
the failure caused by the evolution. The result of
gymlocker shows that, after the evolution, M10 can still
detect minor changes in coverage, and requires sufficient
number of additional test cases from the executed test
cases. Therefore, M10 still performs well when some
other PRT-enriched techniques do not work.

4.3.2 HYPOTHESIS TESTING

We further apply hypothesis testing to confirm our obser-
vations made in the last section.

The t-test assesses whether the means of two groups
are statistically different from each other. If the signifi-
cance value is less than 0.05, the difference among the
metric is statistically significant. We summarize in Table 8
the comparison results of three strategies, M3–M5 in one
group and M8–M10 in another group. We also highlight
the significant entries by setting the background of these
cells in gray. We observe that M10 is significantly better
than M8 and M9. This observation indicates that a combi-
nation of fix and reschedule strategies is better than either
the fix or reschedule strategy.

TABLE 8

COMPARISON OF t-TEST RESULTS

Benchmark
Workflow-based XRG-based

M3, M4 M3, M5 M4, M5 M8, M9 M8, M10 M9, M10

atm 0.69 0.80 0.45 0.98 0.00 0.00

buybook 0.68 0.53 0.84 0.42 0.22 0.03

dslservice 0.41 0.16 0.58 0.36 0.00 0.00

gymlocker 0.00 0.00 0.00 0.03 0.00 0.00

loanapproval 0.02 0.12 0.48 0.15 0.08 0.00

marketplace 0.00 0.31 0.00 0.00 0.00 0.00

purchase 0.00 0.48 0.00 0.00 0.02 0.00

triphandling 0.42 0.93 0.39 0.49 0.01 0.06

Since rejecting the hypothesis only indicates that the
means of the two groups are statistically different from
each other, we further examine Fig. 5c to determine which
technique is better. We follow [17] to conduct the multiple
comparison procedure to study whether the means of the
test case prioritization techniques differ from each other
at a significance level of 5 percent. We present the

TABLE 6
COMPARISON OF MEAN APFD VALUES

BETWEEN RANDOM AND M1–M10

Benchmark Random M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

atm 0.61 0.61 0.65 0.65 0.66 0.63 0.00 0.04 0.05 0.03 0.78

buybook 0.36 0.36 0.36 0.40 0.38 0.38 0.45 0.33 0.62 0.56 0.60

dslservice 0.48 0.51 0.11 0.18 0.24 0.18 0.64 0.06 0.08 0.07 0.62

gymlocker 0.71 0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.36 0.37 0.83

loanapproval 0.54 0.51 0.47 0.53 0.54 0.54 0.52 0.59 0.68 0.69 0.71

marketplace 0.75 0.78 0.67 0.92 0.72 0.90 0.29 0.56 0.92 0.79 0.93

purchase 0.36 0.10 0.09 0.66 0.10 0.66 0.00 0.00 0.74 0.00 0.66

triphandling 0.77 0.69 0.64 0.88 0.89 0.86 0.68 0.78 0.95 0.96 0.92

TABLE 7

COMPARISON OF MEAN APFD VALUES

BY COVERAGE STRATEGIES

Strategy
Benchmark

Fix Reschedule Fix & Reschedule

M3 M8 M4 M9 M5 M10

atm 0.65 0.05 0.66 0.03 0.63 0.79

buybook 0.40 0.62 0.38 0.62 0.38 0.60

dslservice 0.18 0.08 0.24 0.08 0.18 0.62

gymlocker 0.00 0.36 0.00 0.36 0.00 0.83

loanapproval 0.53 0.68 0.54 0.68 0.54 0.71

marketplace 0.92 0.92 0.72 0.92 0.90 0.93

purchase 0.66 0.74 0.10 0.74 0.66 0.66

triphandling 0.88 0.95 0.89 0.95 0.86 0.92

 11

multiple comparison results for each benchmark in Fig. 7.
In these figures, the blue (darkest) line represents the

target technique that we want to compare with others.
The gray (lightest) lines represent techniques comparable
to the target technique. The remaining (red) lines repre-
sent the techniques whose means differ significantly from
the target technique.

In Fig. 7, M1 to M10 perform comparably with Random
in 7, 5, 4, 5, 4, 4, 2, 1, 2, and 3 benchmarks, respectively.
Only some techniques can outperform Random: 2 for M3,
2 for M5, 4 for M8, 3 for M9, and 5 for M10. Moreover,
only M10 never performs worse than Random. For other
techniques, M1 to M9 perform worse than Random by 1, 3,
3, 3, 2, 5, 5, 3, and 3 benchmarks, respectively.

Across the board, at a significance level of 5 percent,
we find that M10 is superior to Random; M1, M3, M5, M8
and M9 perform comparably with Random; whereas M2,
M4, M6, and M7 perform worse than Random. If we need
to find the next candidate, then Random, M8, and M9 can
be considered. The result also confirms statistically that
the XRG-based series can be better than the workflow-
based series in terms of the mean APFD.

With respect to the workflow-based series, we find
from the figures that M3 and M5 can be superior to M2 (if
not comparable in individual benchmarks). We cannot
decide whether they are comparable to, better than, or
worse than M1.

Comparing between the workflow-based series and
the XRG-based series, we find that M3 to M5 are more
effective than M8 to M10 for 2, 4 and 2 benchmarks, the
same in effectiveness for 3, 2, and 4 benchmarks, and less
effective for 0, 3, and 5 benchmarks.

4.3.3 THREATS TO VALIDITY

Construct validity relates to the metrics used to evaluate
the effectiveness of test case prioritization techniques. We
adopt the APFD measure to evaluate the techniques.
Using other metrics may give different results.

Threats to internal validity are the influences that can
affect the dependency of the experimental variables in-

volved. During the execution of a test case, the contexts
(such as database status) of individual services involved
in a service composition may affect the outcome and give
nondeterministic results. In the experiment, we used our
tool to reset the contexts to the same values every time
before rerunning any test case. This approach was also
advocated by agile software development.

External validity refers to whether the experiment can
be generalized. The faults in various versions of external
services are simulated problematic requests and respons-
es from the environment of the web service under test.
The simulated evolution scenarios do not represent all
real-life evolution scenarios. The interpolation and
extrapolation of the data points to other change windows
should be interpreted with care. Our subject service-
based applications were based on WS-BPEL. It is not clear
how the results of other types of artifacts may look like. In
general, having more subjects can strengthen the
generalization of the work.

5 PRACTICALITY ISSUES

This section discusses the practicality issues of our work.
In practice, Random may not always be a cost-effective

technique. We find that although the overall performance
of Random is good when compared with some PRT-
enriched techniques, its performance for individual appli-
cations varies. For example, M3, M5, and M8 outperform
Random by more than 50 percent when applied to purchase,
and M8 and M9 outperform Random by more than 20
percent when applied to buybook and loanapproval.

If an evolution of service takes place after all the fault-
revealing test cases have been executed, a prioritization
technique may not reveal faults by executing the remain-
ing test cases. In theory, our PRT-enriched series reruns
some of the already-executed test cases and may therefore
have the potential to reveal further faults. We believe that
a technique with such a potential is much better than
another technique without it. In reality, the performance
depends on the applications, the faults, and the test
suites.

atm buybook dslservice gymlocker

loanapproval marketplace purchase triphandling

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

M10

M9

M8

M7

M6

M5

M4

M3

M2

M1

Rand

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

M10

M9

M8

M7

M6

M5

M4

M3

M2

M1

Rand

M10

M9

M8

M7

M6

M5

M4

M3

M2
M1

Rand

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M10

M9

M8

M7

M6

M5

M4

M3

M2

M1

Rand

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

M10

M9

M8

M7

M6

M5

M4

M3

M2
M1

Rand

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M10

M9

M8

M7

M6

M5

M4

M3

M2
M1

Rand

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

M10

M9

M8

M7

M6

M5

M4

M3

M2
M1

Rand

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

M10

M9

M8

M7

M6

M5

M4

M3

M2

M1

Rand

Fig. 7. Multiple comparisons with Random and M1–M10 for each subject service.
The x-axis represents the APFD values, the y-axis represents the test pair selection strategies, and M5 is the target technique.

12

In particular, the same technique may report different
levels of performance for different applications. For
example, M8 and M9 perform well for loanapproval, but
do not have good results for gymlocker. When using our
techniques to test a real-life application, it is thus
important to find the appropriate technique for the
application. For instance, if M8, M9, and M10 have similar
performance, using M8 or M9 could be more cost-
effective. To find the best technique for a given testing
requirement, one possible idea is to use the execution
history of the previous test as training data (as depicted in
Fig. 8). The selected technique will be used in continuous
testing until another candidate technique is found to be
more suitable. The training can be triggered either
periodically or manually. Forced manual training may be
triggered when a developer reports a fault that is
unrevealed by the selected technique.

We also note that the PRT-enriched techniques can be
very sensitive to minor changes and are dependent on the
external services in the field. When a change of coverage
is detected, the PRT-enriched techniques will verify the
application until the entire test suite has been executed
and no test case changes its coverage between the current
and the last executions. In practice, developers may set a
ceiling for the number of test cases to be verified.

The assumption of our PRT-enriched techniques is
stated in constraint (2) in Section 3.2. For the regression
testing of services that satisfy constraint (2), our PRT
strategies can be applied. When there are uncontrollable
changes, PRT strategies can be directly used. When there
are controllable or known changes, PRT strategies can be
incorporated with existing change-based prioritization
strategies.

Our strategies can work together with test case genera-
tion and test suite reduction [40]. When a workflow
branch is deleted, for instance, the coverage information
of test cases used to cover this branch will change. Our
strategies can detect such a change and will try to search
for other test cases to fix the coverage. Therefore, if the
branch is wrongly deleted, the test cases used to cover the
deleted branch may help reveal the fault. Otherwise, if
the branch is correctly deleted, we can conduct test suite
reduction before applying our strategies. Since existing
test cases may not be able to cover newly added work-
flow branches, new test cases need to be generated before
applying our strategies.

6 RELATED WORK

Regression testing has been extensively studied [40]. This
section reviews the work that is closely related to our
study, in the context of stopping criterion, revision
identification, test case prioritization, code coverage,
external services, execution monitoring, test oracles,
cloud-based service testing, and service environment
evolution.

A feature of PRT strategies is the use of a stopping
criterion. Mei et al. studied both traditional test adequacy
criteria [25] and new dataflow-based test adequacy
criteria [24] to test WS-BPEL web services. Casado et al.

[9] used a classification-tree methodology [12], [15] to
determine the test coverage of web services transactions.

PRT strategies do not require knowing whether the
service under test undergoes any revision. However, if
the details of service revision are available, one may
further refine such a criterion by only picking test cases
that affect the changed part of the service under test: Ruth
and Tu [31], Chen et al. [11], Li et al. [19], Liu et al. [21],
and Tarhini et al. [34] conducted such impact analysis on
web service implementations to identify revised frag-
ments of code in a service by comparing the flow graph of
the new version with that of the previous version. Li et al.
[19], [35] explored the use of messages to obtain a
comprehensive view of service behavior in selecting paths
for regression testing. Liu et al. [21] studied the changes
in the concurrency control in BPEL process executions.
Tarhini et al. [34] exploited impact analysis from a model-
based perspective.

Quite a number of test case prioritization techniques
have been proposed. Hou et al. [16] also observed the
need to test service-oriented applications with external
services. Their techniques consider invocation quotas to
constrain the total number of requests for specific web
services. Mei et al. considered both black-box coverage
[26] and gray-box coverage [22], [23], [28] in test case
prioritization. They did not, however, consider the need
for dynamic changes in test case ordering based on the
feedback collected from the service under regression test.
Nguyen et al. [29] integrated test case prioritization with
audit testing to control resource consumption. Zhai et al.
[41] used the dynamic features of service selection to
reduce the service invocation cost, and they further
studied [42] different diversity strategies to reorder test
cases. Chen et al. [11] prioritized test cases based on the
weights thus identified. However, the evolution of exter-
nal web services was not considered in the above work.

Our work uses dynamic coverage data of the BPEL
process achieved by test cases against both the original
web service and the evolved web service(s) to determine
adequacy. The closest related work in this aspect is Zou et
al. [47], who studied an integration of coverage of
program statements and HTML elements for testing
dynamic web applications. It is akin to our concept of
coverage of BPEL process and WSDL documents. On the
other hand, their work has not studied whether the test
cases applied to the evolved version of the web service
produce compatible results as the original service. Becker
et al. [6] described a technique to check whether a service

Training

Technique

Evaluation

Test
Execution Trace

Continuous Testing

PRT Technique

Evaluation

Technique

Selection

Bug Repository

Test Suite

Detected
Bug List

Testing Requirement

Other Reported
Bug List

Candidate

Techniques

Developer/

Tester

System

Fig. 8. A potential framework to apply PRT techniques.

 13

description is backward-compatible. Their technique can
significantly enhance the practicability of our techniques,
while our techniques complement their work.

Sometimes, regression test suites require augmentation
(such as fixing some errors and adding new test cases).
Bai et al. [3] and Bartolini et al. [5] generated test cases
that conformed to WSDL schemas. Belli et al. [7] and
Zheng et al. [44] each studied a model-based approach to
construct both abstract and concrete test cases. Li et al.
[20] studied the generation of control-flow test cases for
the unit testing of BPEL programs. de Almeida and
Vergilio [13] as well as Xu et al. [39] perturbed inputs to
produce test cases for robustness testing.

Our present work monitors the execution traces of
services under test. Bartolini et al. [4] extracted state
machine information based on messages from opaque
web services. Their technique can be integrated with the
work presented in this paper to identify changes in
external services during regression testing. Ni et al. [30]
proposed to model a WS-BPEL web service as a message-
sequence graph and attempted to coordinate messages
among message sequences to control the message passing
mechanism on WS-BPEL execution.

When applying a regression test case to an evolved
version of a web service, we have assumed that the
execution result can indicate whether a failure has been
revealed. Although it is a typical assumption made by
many pieces of regression testing research, in practice, the
results may require further examination in order to reveal
failures. Both Chan et al. [10] and Sun et al. [33] studied
the use of metamorphic relations to address this problem.

In recent years, there is an increasing effort to move
the testing platform to cloud environments. For instance,
Zhu [45] as well as Zhu and Zhang [46] each proposed a
framework that integrates different test components
wrapped as a web service to realize testing techniques
using service-oriented approaches. It is unclear to what
extent our work may benefit from the use of such a
platform, which warrants further research.

Our present paper is not the only work that addresses
the changing nature of the service environment. Zhang
[43], for instance, also considered that web services are
changing, and proposed to use mobile agent to select
reliable web services for testing. However, her work has
not considered the regression testing scenarios.

7 CONCLUSION

This paper has proposed Preemptive Regression Testing, a
novel strategy that reschedules test cases in a planned
regression test session based on the changes of the service
under test detected in the course of each actual regression
test session. It has proposed three particular PRT
strategies, integrated with existing test case prioritization
techniques to generate new techniques. Experiments have
shown that handling changes in external services in a
regression test session by existing techniques and some
PRT-enriched techniques can be challenging. We have
identified one PRT-enriched technique that has the
potential to cope with such changes.

We will generalize PRT further to devise other strate-
gies and integrate PRT with QoS testing.

ACKNOWLEDGMENTS

This research was supported in part by the National Nat-
ural Science Foundation of China (project no. 61202077),
the CCF-Tencent Open Research Fund (project no. CCF-
TencentAGR20130111), the National High Technology
Research and Development Program of China (863) (pro-
ject no. 2011AA01A204), the National Science and Tech-
nology Infrastructure Program (project no. 2012ZX01039-
004), and the Early Career Scheme and the General
Research Fund of the Research Grants Council of Hong
Kong (project nos. 111410, 123512, 717811, and 716612).

REFERENCES
[1] alphaWorks Technology: BPEL Repository, IBM, 2006,

https://www14.software.ibm.com/webapp/iwm/web/
preLogin.do?source=AW-0KN.

[2] J.H. Andrews, L.C. Briand, and Y. Labiche, “Is mutation an
appropriate tool for testing experiments?” Proceedings of the 27th
International Conference on Software Engineering (ICSE ’05),
pp. 402–411, 2005.

[3] X. Bai, W. Dong, W.-T. Tsai, and Y. Chen, “WSDL-based auto-
matic test case generation for web services testing,” Proceedings
of the IEEE International Symposium on Service-Oriented System
Engineering (SOSE ’05), pp. 207–212, 2005.

[4] C. Bartolini, A. Bertolino, S.G. Elbaum, and E. Marchetti,
“Bringing white-box testing to service oriented architectures
through a service oriented approach,” Journal of Systems and
Software, vol. 84, no. 4, pp. 655–668, 2011.

[5] C. Bartolini, A. Bertolino, E. Marchetti, and A. Polini, “Towards
automated WSDL-based testing of web services,” Service-

Oriented Computing (ICSOC ’08), pp. 524–529, 2008.

[6] K. Becker, J. Pruyne, S. Singhal, A. Lopes, and D. Milojicic,
“Automatic determination of compatibility in evolving
services,” International Journal of Web Services Research, vol. 8, no.
1, pp. 21–40, 2011.

[7] F. Belli, A.T. Endo, M. Linschulte, and A. Simão, “A holistic
approach to model-based testing of web service compositions,”
Software: Practice and Experience, vol. 44, no. 2, pp. 201–234, 2012.

[8] Eclipse Environment Implementation of the Business Process Execu-
tion Language Engine (BPWS4J Engine 2.1), http://en.pudn.com/
downloads53/sourcecode/middleware/detail184250_en.html.

[9] R. Casado, M. Younas, and J. Tuya, “Multi-dimensional criteria
for testing web services transactions,” Journal of Computer and
System Sciences, vol. 79, no. 7, pp. 1057–1076, 2013.

[10] W.K. Chan, S.C. Cheung, and K.R.P.H. Leung, “A metamorphic
testing approach for online testing of service-oriented software
applications,” International Journal of Web Services Research, vol.
4, no. 2, pp. 60–80, 2007.

[11] L. Chen, Z. Wang, L. Xu, H. Lu, and B. Xu, “Test case prioritiza-
tion for web service regression testing,” Proceedings of the 5th
IEEE International Symposium on Service Oriented System Engi-
neering (SOSE ’10), pp. 173–178, 2010.

[12] T.Y. Chen and P.-L. Poon, “On the effectiveness of classification
trees for test case construction,” Information and Software
Technology, vol. 40, no. 13, pp. 765–775, 1998.

[13] L.F. de Almeida, Jr. and S.R. Vergilio, “Exploring perturbation
based testing for web services,” Proceedings of the IEEE
International Conference on Web Services (ICWS ’06), pp. 717–726,
2006.

[14] H. Do and G. Rothermel, “On the use of mutation faults in
empirical assessments of test case prioritization techniques,”
IEEE Transactions on Software Engineering, vol. 32, no. 9, pp. 733–
752, 2006.

14

[15] M. Grochtmann and K. Grimm, “Classification trees for
partition testing,” Software Testing, Verification and Reliability,
vol. 3, no. 2, pp. 63–82, 1993.

[16] S.-S. Hou, L. Zhang, T. Xie, and J.-S. Sun, “Quota-constrained
test-case prioritization for regression testing of service-centric
systems,” Proceedings of the IEEE International Conference on
Software Maintenance (ICSM ’08), pp. 257–266, 2008.

[17] B. Jiang, Z. Zhang, W.K. Chan, and T.H. Tse, “Adaptive
random test case prioritization,” Proceedings of the 24th IEEE /
ACM International Conference on Automated Software Engineering
(ASE ’09), pp. 233–244, 2009.

[18] M.B. Juric, A Hands-on Introduction to BPEL, Part 2: Advanced
BPEL, Oracle Technology Networks, http://www.oracle.com/
technetwork/articles/matjaz-bpel2-082861.html.

[19] B. Li, D. Qiu, H. Leung, and D. Wang, “Automatic test case
selection for regression testing of composite service based on
extensible BPEL flow graph,” Journal of Systems and Software,
vol. 85, no. 6, pp. 1300–1324, 2012.

[20] Z. Li, W. Sun, Z.B. Jiang, and X. Zhang, “BPEL4WS unit testing:
framework and implementation,” Proceedings of the IEEE Inter-
national Conference on Web Services (ICWS ’05), pp. 103–110, 2005.

[21] H. Liu, Z. Li, J. Zhu, and H. Tan, “Business process regression
testing,” Proceedings of the 5th International Conference on Service-
Oriented Computing (ICSOC ’07), pp. 157–168, 2007.

[22] L. Mei, Y. Cai, C. Jia, B. Jiang, and W.K. Chan, “Prioritizing
structurally complex test pairs for validating WS-BPEL evolu-
tions,” Proceedings of the IEEE International Conference on Web
Services (ICWS ’13), pp. 147–154, 2013.

[23] L. Mei, Y. Cai, C. Jia, B. Jiang, and W.K. Chan, “Test pair
selection for test case prioritization in regression testing for WS-
BPEL programs,” International Journal of Web Services Research,
vol. 10, no. 1, pp. 73–102, 2013.

[24] L. Mei, W.K. Chan, and T.H. Tse, “Data flow testing of service-
oriented workflow applications,” Proceedings of the 30th Interna-
tional Conference on Software Engineering (ICSE ’08), pp. 371–380,
2008.

[25] L. Mei, W.K. Chan, T.H. Tse, and F.-C. Kuo, “An empirical
study of the use of Frankl-Weyuker data flow testing criteria to
test BPEL web services,” Proceedings of the 33rd Annual Interna-
tional Computer Software and Applications Conference (COMPSAC
’09), vol. 1, pp. 81–88, 2009.

[26] L. Mei, W.K. Chan, T.H. Tse, and R.G. Merkel, “XML-
manipulating test case prioritization for XML-manipulating
services,” Journal of Systems and Software, vol. 84, no. 4, pp. 603–
619, 2011.

[27] L. Mei, K. Zhai, B. Jiang, W.K. Chan, and T.H. Tse, “Preemptive
regression test scheduling strategies: a new testing approach to
thriving on the volatile service environments,” Proceedings of the
36th Annual International Computer Software and Applications
Conference (COMPSAC ’12), pp. 72–81, 2012.

[28] L. Mei, Z. Zhang, W.K. Chan, and T.H. Tse, “Test case
prioritization for regression testing of service-oriented business
applications,” Proceedings of the 18th International Conference on
World Wide Web (WWW ’09), pp. 901–910, 2009.

[29] C.D. Nguyen, A. Marchetto, and P. Tonella, “Test case
prioritization for audit testing of evolving web services using
information retrieval techniques,” Proceedings of the 2011 IEEE
International Conference on Web Services (ICWS ’11), pp. 636–643,
2011.

[30] Y. Ni, S.-S. Hou, L. Zhang, J. Zhu, Z.J. Li, Q. Lan, H. Mei, and J.-
S. Sun, “Effective message-sequence generation for testing
BPEL programs,” IEEE Transactions on Services Computing, vol.
6, no. 1, pp. 7–19, 2013.

[31] M.E. Ruth and S. Tu, “Towards automating regression test
selection for web services,” Proceedings of the 16th International
Conference on World Wide Web (WWW ’07), pp. 1265–1266, 2007.

[32] A. Sharma, T.D. Hellmann, and F. Maurer, “Testing of web
services: a systematic mapping,” Proceedings of the IEEE 8th
World Congress on Services (SERVICES ’12), pp. 346–352, 2012.

[33] C.-A. Sun, G. Wang, B. Mu, H. Liu, Z. Wang, and T.Y. Chen, “A
metamorphic relation-based approach to testing web services
without oracles,” International Journal of Web Services Research,
vol. 9, no. 1, pp. 51–73, 2012.

[34] A. Tarhini, H. Fouchal, and N. Mansour, “Regression testing
web services-based applications,” Proceedings of the IEEE
International Conference on Computer Systems and Applications
(AICCSA ’06), pp. 163–170, 2006.

[35] D. Wang, B. Li, and J. Cai, “Regression testing of composite ser-
vice: an XBFG-based approach,” Proceedings of the IEEE Congress
on Services Part II (SERVICES-2), pp. 112–119, 2008.

[36] Web Services Business Process Execution Language Version 2.0:
OASIS Standard, Organization for the Advancement of Struc-
tured Information Standards (OASIS), 2007, http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.pdf.

[37] Web Services Description Language (WSDL) Version 2.0 Part 1:
Core Language, W3C, 2007, http://www.w3.org/TR/wsdl20/.

[38] XML Path Language (XPath) 2.0: W3C Recommendation, W3C,
2007, http://www.w3.org/TR/xpath20/.

[39] W. Xu, J. Offutt, and J. Luo, “Testing web services by XML
perturbation,” Proceedings of the 16th International Symposium on
Software Reliability Engineering (ISSRE ’05), pp. 257–266, 2005.

[40] S. Yoo and M. Harman, “Regression testing minimization,
selection and prioritization: a survey,” Software Testing, Verifica-
tion and Reliability, vol. 22, no. 2, pp. 67–120, 2012.

[41] K. Zhai, B. Jiang, and W.K. Chan, “Prioritizing test cases for
regression testing of location-based services: metrics, tech-
niques and case study,” IEEE Transactions on Services Compu-
ting, vol. 7, no. 1, pp. 54–67, 2014.

[42] K. Zhai, B. Jiang, W.K. Chan, and T.H. Tse, “Taking advantage
of service selection: a study on the testing of location-based web
services through test case prioritization,” Proceedings of the IEEE
International Conference on Web Services (ICWS ’10), pp. 211–218,
2010.

[43] J. Zhang, “An approach to facilitate reliability testing of Web
services components,” Proceedings of the 15th International Sym-
posium on Software Reliability Engineering (ISSRE ’04), pp. 210–
218, 2004.

[44] Y. Zheng, J. Zhou, and P. Krause, “An automatic test case
generation framework for web services,” Journal of Software, vol.
2, no. 3, pp. 64–77, 2007.

[45] H. Zhu, “A framework for service-oriented testing of web
services,” Proceedings of the 30th Annual International Computer
Software and Applications Conference (COMPSAC ’06), vol. 2,
pp. 145–150, 2006.

[46] H. Zhu and Y. Zhang, “Collaborative testing of web services,”
IEEE Transactions on Services Computing, vol. 5, no. 1, pp. 116–
130, 2012.

[47] Y. Zou, C. Feng, Z. Chen, X. Zhang, and Z. Zhao, “A hybrid
coverage criterion for dynamic web testing,” http://software.
nju.edu. cn/zychen/paper/2013SEKEa.pdf.

Lijun Mei received the PhD degree from The University of Hong Kong.
He is a staff researcher at IBM Research—China. His research interest
includes addressing the issues of program testing and testing manage-
ment in the business environment. He has conducted extensive research
in testing service-based applications.

W.K. Chan is an assistant professor at the City University of Hong Kong.
His current main research interests include program analysis and testing
for concurrent software and systems. He is on the editorial board of the
Journal of Systems and Software. He has published extensively in highly
reputable venues such as the ACM Transactions on Software Engineer-
ing and Methodology, IEEE Transactions on Software Engineering, IEEE
Transactions on Parallel and Distributed Systems, IEEE Transactions on
Services Computing, Communications of the ACM, Computer, ICSE,
FSE, ISSTA, ASE, WWW, ICWS, and ICDCS. He is a regular PC
member of the ICWS series of conferences, and has served as the
innovation showcase chair of ICWS/SCC 2009–2010.

 15

T.H. Tse received the PhD degree from the London School of Economics
in 1988 and was a visiting fellow at the University of Oxford in 1990 and
1992. He is a professor in computer science at The University of Hong
Kong. His current research interest is in program testing, debugging, and
analysis. He is the steering committee chair of QSIC and an editorial
board member of the Journal of Systems and Software, Software Testing,
Verification and Reliability, Software: Practice and Experience, and the
Journal of Universal Computer Science. He also served on the search
committee for the editor-in-chief of the IEEE Transactions on Software
Engineering in 2013. He is a fellow of the British Computer Society, a
fellow of the Institute for the Management of Information Systems, a
fellow of the Institute of Mathematics and its Applications, and a fellow of
the Hong Kong Institution of Engineers. He was awarded an MBE by The
Queen of the United Kingdom.

Bo Jiang received the PhD from The University of Hong Kong. He is an
assistant professor at Beihang University. His research interests include
the reliability and testing of mobile applications, program debugging,
adaptive testing, and regression testing.

Ke Zhai received the bachelor’s and master’s degrees from Northeastern
University, Shenyang, China, in 2007 and 2009, respectively. He is
currently a technology analyst in Goldman Sachs and working toward the
PhD degree at The University of Hong Kong. His research interests
include concurrent bug detection and the testing of service-based
applications. His work has been published in the IEEE Transactions on
Services Computing, ISSTA, and ICWS.

