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ABSTRACT: Tensile coupon tests are commonly carried out to determine the material 

properties of metallic materials in research and industry. However, ambiguities are found in 

the current specifications in determining initial Young’s modulus of material, which may lead 

to different test results. The material properties lay the crucial foundation in research and 

structural design. Different researchers may interpret coupon test results differently. 

Therefore, standard procedures of coupon test and the interpretation of test results are 

important and worth investigating. In this study, a series of tensile coupon tests on metallic 

materials, such as cold-formed carbon steel, cold-formed stainless steel and aluminium alloy, 

were carried out using different test and data analysis procedures. Two types of stainless steel 

material, namely lean duplex and ferritic, were investigated. The test and data analysis 

procedures of loading rate on coupon specimens, determination of cross-sectional area of 

curved coupons and Young’s modulus were carefully designed. In this study, tensile coupon 

test and data analysis procedures are proposed for both flat and curved coupons. The 

proposed procedures are able to eliminate possible errors and provide clear guidelines for 

tensile coupon tests. 
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1. Introduction 
 

Metallic materials are commonly used in structural projects, due to the high strength-to-

weight ratio, high degree of recyclability and ease of construction comparing with other 

constructional materials. Determination of material properties for metallic materials, 

especially the initial Young’s Modulus, yield strength, ultimate strength and strains, lays a 

solid foundation in structural design and research. Therefore, tensile coupon tests as the most 

commonly used experimental method to obtain material properties are widely known and 

frequently carried out by engineers and researchers. Specifications on tensile testing method 

for metallic materials are also available to facilitate engineers and researchers to obtain 

material properties. However, it should be noted that inconsistent coupon test procedure and 

data analysis leads to inaccurate results. Therefore, it is worth investigating tensile coupon 

tests in order to propose a standard and user-friendly procedure for test and data interpretation.  

 

Previous investigations [1-6] have found that stress increases with loading rate for various 

metallic materials, and thus determination of yield strength and ultimate strength are sensitive 

to the loading rate during testing. The Australian Standard (AS) [7], European Code (BSI) [8] 

and American Specification (ASTM) [9] specify a range of loading rate for tensile coupon 

tests. However, the lower bound and upper bound of the loading rate provide quite different 

results in terms of the yield strength and ultimate strength. Krempl and Khan [5] indicated 

that the stress drops and maintains at the equilibrium boundary (static curve) by holding the 

strain for a very long time during testing, and the static stress-strain curve can be obtained 

under a vanishing loading rate. However, it is not practical to hold the strain for such a long 

time or use a vanishing loading rate. In addition, it is also observed by Krempl and Khan [5] 

that the stress drops diminishing with time. Therefore, coupon tests were conducted by 

holding the strain for 1-2 minutes during testing for the purpose of obtaining the static stress-

strain curves [10-12]. The Guide to Stability Design Criteria for Metal Structures [13] 

suggested hold the strain for at most 5 minutes, so as to eliminate the effect of loading rate 

and obtain static material properties. Therefore, coupon test procedure and loading rate are 

ambiguous, which may lead to an inconsistent test results. 

 

Curved coupon specimens obtained from corners of cold-formed sections were conducted by 

many researchers [10, 14-16] to investigate the strength enhancement due to cold-forming 
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process. However, it is difficult to measure the cross-sectional area accurately or apply 

uniform tensile stress to coupon specimen during testing, because of the curved geometry of 

the specimen. Current specifications [7-9, 17] provide limited guidance to determine the 

cross-sectional area of curved coupons. Therefore, researchers [10, 14-16] used different 

methods for coupon tests on curved specimens, which may lead to different test results.  

 

The initial Young’s modulus is considered as one of the most important material properties. It 

also affects the accuracy in determining the 0.2% proof stress (σ0.2). However, the current 

specifications [7-9, 17] recommended different methods to obtain the Young’s modulus. It is 

expected that different values of initial Young’s modulus are obtained using different 

methods, which may eventually influence the coupon test results. Thus, there is an eminent 

need to compare these methods in terms of accuracy and simplicity, and recommend clear 

guidelines for tensile coupon tests.  

 

In this study, tensile coupon tests using different test and data analysis procedures were 

conducted. The procedures of coupon tests were carefully designed. The test specimens in 

this study include cold-formed carbon steel grade G450, cold-formed lean duplex stainless 

steel (EN 1.4162), cold-formed ferritic stainless steel (EN 1.4003) and aluminium T6 alloy. 

The cold-formed carbon steel and aluminium alloy are widely used in construction, while 

cold-formed lean duplex stainless steel is a relatively new material that is gaining popularity 

in construction industry. A relatively convenient procedure for tensile coupon tests is 

recommended. 

 

 

2. Experimental Investigation 

 
2.1 Test specimens 

 

A total of 48 tensile coupon tests of cold-formed carbon steel (G450), cold-formed lean 

duplex stainless steel (EN 1.4162), cold-formed ferritic stainless steel (EN 1.4003) and 

aluminium T6 alloy was carried out. The cross-sectional dimensions of the flat and curved 

coupon specimens were measured. The nominal dimensions of the coupon specimens are 

shown in Fig. 1. The cross-sectional dimensions of the curved coupon specimens are 
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summarized in Table 1 with the definition of symbols shown in Fig. 2. The coupon 

specimens are labeled such that the material, shape of the coupon and the loading rate could 

be identified, as shown in Tables 1 and 2. The first letter represents the metallic material. The 

letters G, L, F and A represent cold-formed steel G450, lean duplex stainless steel, ferritic 

stainless steel and aluminium alloy, respectively. The second letter indicates the shape of the 

coupon, such as “F” and “C” representing flat and curved coupons, respectively. The letter 

right after the hyphen represents the loading rate applied on the specimen during testing. 

There are four series of loading rate, namely slow (S), research (R), lower-bound (L) and 

upper-bound (U), representing the slow loading rate, the loading rate recommended for 

research purpose, the lower-bound and upper-bound of loading rates recommended by the 

ASTM specification [9], respectively. The loading rates for each series and material are 

summarized in Table 2 and detailed in Section 2.3 of this paper. Two or three coupon tests 

were carried out for each series, and thus the loading rates in Table 2 are the average value 

measured from the coupon tests in each series. The number shown in the specimen label after 

the loading rate series represents the number of tests in each series, as shown in Tables 3 - 6. 

For example, the specimen “AF-R2” represents the aluminium alloy (A) flat coupon (F) 

tested under the loading rate recommended for research purpose (R) for the second coupon 

test. The zinc coating on coupon surfaces of the cold-formed carbon steel was removed using 

hydrochloric acid prior to measuring the cross-sectional dimensions, except for specimens 

GF-R1-zinc, GF-R2-zinc and GF-R3-zinc with the coating remain throughout the test for 

comparison purpose. The MTS tensile loading machine of 50 kN capacity was used for the 

tensile coupon tests, except that the specimens LF-R1-Instron and LF-R1-MTS250 were 

tested using tensile loading machines of Instron 50 kN capacity and MTS 250 kN capacity, 

respectively.  

 

The flat coupon specimens of cold-formed steel G450 (G) were extracted from steel sheet, 

while the curved coupon specimens GC-R1 and GC-R2 were extracted from the two corners 

of a cold-formed steel channel section with nominal cross-sectional dimension (D×B×t) of 

136×52×1.9 mm, where D is the depth of the web, B is the width of the flange, and t is the 

plate thickness. Flat and curved coupon specimens of cold-formed lean duplex stainless steel 

(L) were extracted from the flat portion and corners of a cold-formed lean duplex stainless 

steel rectangular hollow section (RHS) with nominal cross-sectional dimension (D×B×t) of 

100×50×2.5 mm. Flat coupon specimens of cold-formed ferritic stainless steel (F) were 

extracted from the flat portion of a cold-formed ferritic stainless steel rectangular hollow 
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section (RHS) with nominal cross-sectional dimension (D×B×t) of 100×50×3 mm. Flat 

coupon specimens of aluminium alloy (A) were extracted from the web of a plain channel 

section with nominal cross-sectional dimension (D×B×t) of 86×50×2 mm. 

 

The dimensions of flat coupons conformed to the Australian Standard AS 1391-2007 [7], 

British Standard BS EN ISO 6892-1 [8] and American Specification ASTM E8/E8M-13 [9], 

as shown in Fig. 1. Dimension of each specimen was measured prior to testing. For the flat 

coupon specimens, the Vernier digital caliper was used to measure the thickness (t) and width 

(B) of the rectangular cross-section at the mid-length of the specimen. For the curved coupon 

specimens, the width (B), overall height (H) and heights at the two edges (t1, t2) were 

measured using the Mitutoyo digital micrometer with flat spindle, thickness between mid-

points of outer and inner curved surfaces (to) was measured by the Mitutoyo digital 

micrometer with point spindle, the outer radius (ro) and inner radius (ri) were measured using 

Moore & Wright radius gauges. The measured dimensions and the cross-sectional areas of 

curved specimens are shown in Table 1. Fig. 2 shows the definition of symbols for the cross-

sectional dimensions of curved coupon specimens. The cross-sectional areas of the curved 

coupon specimens Aw, Ac and Ag in Table 1 were obtained from three different methods, 

namely (i) weight and density method, (ii) AutoCAD method, and (iii) geometrical equations, 

respectively. These methods are described in Section 3.4 of this paper. 

 

2.2 Test set-up 

 

The MTS tensile testing machine with capacity of 50 kN and Teststar IIs controller were used 

to conduct the tensile coupon tests, except for specimens LF-R1-MTS250 and LF-R1-Instron. 

The specimen LF-R1-MTS250 was tested by MTS tensile testing machine with capacity of 

250 kN and Flex Test SE controller, while the specimen LF-R1-Instron was tested by Instron 

4469 table-tap load frame with capacity of 50 kN. The MTS tensile testing machine of 50 kN 

capacity and 250 kN capacity as well as the Instron tensile machine are shown in Fig. 3. 

Tensile loading was applied to the flat coupons by gripping both ends with a pair of flat 

surface clamps, as shown in Fig. 3(a), (c) and (d). The curved coupons cannot be gripped by 

flat surface clamps due to its curved surface, and thus two holes were drilled at a distance of 

21 mm from both ends of the coupons, as shown in Fig. 1(b). The tensile force was applied 

by two pins through the holes, which is in line with the centroid of the cross-section in order 

to avoid bending stress in the coupons, as shown in Fig. 3(b). It is stated in the BSI [8] and 
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ASTM [9] that the ends of the curved coupon specimens may be flattened for gripping in the 

testing machine. However, the method of flattening the curved surfaces at the two ends of the 

coupons introduced eccentricity and caused additional bending, especially for curved 

coupons with small radius. Therefore, it is not correct to flatten the ends of the curved 

coupons. Any possible bending stress on the curved coupons should be avoided, such as by 

loading through two pins. 

 

Extensometers and strain gauges were used to measure the longitudinal tensile strain of the 

coupon specimens. MTS extensometer of 50 mm gauge length was used for the flat coupon 

specimens with three-point contact knife edges, except that Instron extensometer of 50 mm 

gauge length was used for flat coupon LF-R1-Instron. MTS extensometer of 25 mm gauge 

length was used for the curved coupon specimens with standard knife edges. Comparing with 

the readings obtained from the extensometers, the strain gauge readings are more accurate, 

but for a much smaller range. Two linear TML strain gauges were attached at mid-length to 

the centre of both faces of each coupon using TML strain gauge adhesive of CN series to 

measure the strains in the initial part of the stress-strain curve. The important material 

property, initial Young’s modulus (Eo), was determined by the readings obtained from strain 

gauges. For the tests conducted using MTS tensile testing machine with capacity of 50 kN, a 

linear variable displacement transducer (LVDT) was attached at the upper grip and pointed at 

the lower grip of the testing machine, so as to measure the relative displacement between the 

two grips. The coupon test set-ups are shown in Fig. 3.  

 

2.3 Test procedures 

 

The loading machine was driven by displacement control of stroke during the tensile coupon 

tests. The loading process is divided into 4 stages; (1) elastic range (before σp) from 

beginning to proportional limit (σp); (2) yielding range (σp to σy) from proportional limit to 

yield strength (σy); (3) strain hardening range (σy to σu) from yield strength to ultimate 

strength (σu); and (4) post ultimate range (σu to fracture). A lower loading rate was applied in 

the elastic range than other ranges to ensure sufficient number of data in determining the 

initial Young’s modulus. It should be noted that the Young’s modulus is an important 

material property, which has a direct influence in determining the yield strength (σy) and 

Ramberg-Osgood parameter (n). Most of the strain occurs after proportional limit for metallic 
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materials. Thus, a higher loading rate was applied beyond the elastic range to avoid long 

testing time. The loading rates applied during testing are categorized into four series, such as 

slow (S), research (R), lower-bound (L) and upper-bound (U). The slow loading rate (S) and 

the recommended loading rate for research purpose (R) are designed to complete a tensile 

coupon test for around 60 and 30 minutes, respectively. The average strain rate at each 

loading stage was measured for each specimen in order to investigate the effect of strain rate. 

The average values of the strain rates for each series are summarized in Table 2. It should be 

noted that the measured loading rates of the specimens in the same series are quite close to 

each other, with the maximum difference of 6.1% and average of 2.0%. The strain rates 

specified in the AS [7], BSI [8] and ASTM [9] are also summarized in Table 2. According to 

the lower bound of the strain rates specified in the current ASTM specification, it takes 

around 3 minutes to complete the tensile coupon test for aluminium alloy with strain at 

fracture of around 9%, while it takes less than 10 minutes to complete a tensile coupon test 

for cold-formed lean duplex stainless steel flat coupon with strain at fracture of around 40%. 

Despite the fact that the ASTM [9] specified the lower bound of the strain rates, such strain 

rates are considered to be very fast in the laboratory for research purpose.  

 

Straining was held for 5 minutes at critical locations to obtain the static drops. The 1st static 

drop was obtained right after the proportional limit (σp), and the 2nd static drop was obtained 

near the yield strength (σy), so that the static yield strength can be determined. For metallic 

material that has no yield plateau in the stress-strain curve, the yield strength was determined 

as the 0.2% proof stress (σ0.2). The 3rd static drop was obtained near the ultimate strength (σu). 

It is observed that the stress reduces slowly during the holding of strain for 5 minutes in all of 

the three materials investigated in this study. Such behaviour is called stress relaxation. A 

typical static drop due to stress relaxation is shown in Fig. 4. An overshoot of stress was 

found when the strain rate increased to 0.03/min after the static drop, as shown in Fig. 4.  

 

In order to compare the unloading-reloading method in the BSI [8] Specification with other 

methods to determine the initial Young’s modulus, the unloading-reloading process was also 

performed. When the load was applied right after the proportional limit (σp), the stress was 

released to around 15% of the force prior to unloading, and then re-loaded to the original 

stress level using the same loading rate. Displacement control was used in the unloading-

reloading process. The determination of the Young’s modulus using the unloading-reloading 
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method is detailed in Section 3.4 of this paper. The loading history of the specimen AF-R3 

with unloading-reloading process is demonstrated in Fig. 5. 

 

 

3. Test results 

 
3.1 Dynamic and static material properties 

 

Dynamic stress-strain curves of the coupon specimens at different loading rates were plotted, 

as shown in Figs 6 – 11. The coupon test procedure to obtain the dynamic curves is explained 

in steps A5-1 to A5-5 of the Procedure A for flat coupons, and step B5 of the Procedure B for 

curved coupons in Section 4 of this paper. The material properties obtained from the dynamic 

curves are summarized in Tables 3 – 6. It is shown that the stress increases with strain rate. 

The static material properties were obtained from the static stress-strain curves. The test 

procedure to obtain the static material properties are described in steps A5-6 to A5-8 of the 

Procedure A for flat coupons, and step B5 of the Procedure B for curved coupons in Section 4 

of this paper. The static material properties are summarized in Tables 7 – 11, including initial 

Young’s modulus (E), stress at proportional limit (σp), strain corresponding to the 

proportional limit (εp), 0.2% proof stress (σ0.2), strain at 0.2% proof stress (ε0.2), ultimate 

strength (σu), ultimate strain (εu), strain at fracture (εf) and Ramberg-Osgood parameter (n). It 

is shown that the static material properties obtained from the coupon specimens tested at 

different strain rates generally provide similar static values. The mean values and COV of the 

static material properties obtained at different loading rates were also calculated, as shown in 

Tables 7 – 11. It should be noted that the dynamic 0.2% proof stress (σ0.2) at the upper-bound 

loading rate is 7.6%, 9.1%, 5.9% and 5.2% higher than the average static 0.2% proof stress 

for cold-formed steel G450, lean duplex stainless steel, ferritic stainless steel and aluminium 

alloy, respectively. The dynamic ultimate strength (σu) is 8.8%, 13.1%, 11.0% and 10.5% 

higher than the static ultimate strength for the four materials, respectively. Therefore, the 

existing ASTM [9] Specification leads to an unconservative prediction for the material 

strengths up to 13.1%. In addition, the static curves in the loading rate series for research 

purpose (R) and lower-bound in specification (L) are plotted for the four materials as shown 

in Figs 6 – 9.  It is shown that the static curves obtained from coupon tests using different 
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loading rates are close to each other, which means that the test results of the static curves are 

similar for different loading rates. 

 

3.2 Static drops 

 

It is found from the literature that the stress of metallic materials reduce when the strain is 

held at a constant value for a period of time, and such behaviour is called “stress relaxation”. 

In this study, straining of the coupons were held at critical locations during the loading 

process for 5 minutes (300 seconds), in order to investigate the stress relaxation behaviour 

and propose a test procedure to obtain an accurate static material properties in a reasonable 

period of time. In this study, the typical locations of static drops in a stress-strain curve are 

shown in Fig. 12. The reductions of stress during the stress relaxation were recorded. The 

average stress reductions for 60, 100 and 300 seconds of specimens in each loading rate 

series are calculated, as shown in Tables 12 – 15, in which the stress reductions (∆s,t/σo) are 

equal to the ratio of stress reduced (stress drop) for a specified period of time (∆s,t) over the 

stress prior to static drop (σo). The stress reductions of the coupon specimens in the same 

series are quite similar, with the maximum discrepancy of 8% compared with the average 

values in the same series. The stress relaxation for specimens GF-R1-zinc, LF-R1, FF-S1 and 

AF-R1 are plotted in 10 seconds interval, as shown in Figs 13 – 16, respectively. The 

preceding strain rate in Figs 13 – 16 is defined as the strain rate prior to the stress relaxation. 

 

It is observed from the test results that, firstly, the stress reduced by around 5 - 8% at yield 

strength and ultimate strength during the stress relaxation. It is also found that the stainless 

steel materials have a relatively larger amount of stress reduction compared to the cold-

formed carbon steel (G450) and aluminium T6 alloy under the same period of time for stress 

relaxation. Secondly, the stress reduced rapidly for the first 60 seconds, then the stress 

reduced slowly in a diminishing rate. The stress further reduced for less than 1.5% between 

100 and 300 seconds. Thirdly, as the strain rate increases the amount of stress reduction also 

increases. As mentioned earlier in the paper, the dynamic material properties increase with 

the strain rate. Thus, a larger static drop takes place to bring the stress to the static curve. 

Finally, the stress reduction at yield strength and ultimate strength under the same preceding 

strain rate are similar for cold-formed carbon steel (G450) and cold-formed stainless steel, as 

shown in Tables 12 – 15 and Figs 13 – 16. However, the stress reduction at ultimate strength 



10 
 

is much higher than that at yield strength under the same preceding strain rate for the 

aluminium T6 alloy, as shown in Table 15 and Fig. 16. Therefore, it is suggested that: 

(i) Stress relaxation should be performed during tensile coupon tests, and the static material 

properties should be obtained and used. Otherwise, the yield strength and ultimate 

strength may be overestimated by as much as 10%. 

(ii) It is recommended to pause the straining for 100 seconds to obtain the static drop. 

However, if efficiency is required for the coupon tests, pausing for 60 seconds gives 

similar yield strength and ultimate strength with less than 1% difference compared with 

those pausing for 100 seconds.  

 

3.3 Initial Young’s Modulus 

 

Initial Young’s Modulus (E) is an important material property for calculating design strengths 

and finite element analysis. Determination of the initial Young’s modulus accurately is 

important, especially for materials with rounded stress-strain curves. This is due to the fact 

that the determination of 0.2% proof stress depends on the initial Young’s modulus. Hence, if 

the initial Young’s modulus is inaccurately determined, subsequently the value of 0.2% proof 

stress is also inaccurate. The current AS [7], BSI [8], ASTM [9] and EN ISO [17] 

specifications recommended three different methods to determine the Young’s Modulus, and 

these methods are follows: (i) slope of linear portion [7-9], (ii) average slope of the 

unloading-reloading curve [8], and (iii) slope between two specified points calculated using 

Eq. (1) [17],  

 

 
12

12

εε
σσ

−
−

=E  (1) 

   

where σ1 is the stress measured at the strain ε1 = 0.0005, and σ2 is the stress measured at the 

strain ε2 = 0.0025. In addition, the BSI [8] and ASTM [9] specifications recommend using 

extensometer to obtain the strains of coupon specimens during testing, while the EN ISO 

527-1 [17] specification and some researchers [10, 18] use strain gauges for a more accurate 

measurement of initial Young’s modulus. Therefore, the initial Young’s modulus obtained 

from the three methods using both strain gauges and extensometer are compared in this study. 

The Young’s modulus obtained from strain gauges and extensometer readings for specimen 
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LF-L1 are plotted in Fig. 17. The Young’s modulus obtained from the three methods using 

both strain gauges and extensometer for different coupon specimens are summarized in Table 

16.  

 

For the slope of linear portion (1st method) in the elastic range of the stress-strain curve, the 

ASTM [9] specifications do not provide guidance to determine the linear portion, while BSI 

[8] recommends the lower limit (10% of σ0.2) and upper limit (50% of σ0.2) to determine the 

slope of the linear portion. In this study, the nominal 0.2% proof stresses (σ0.2) of the cold-

formed carbon steel (G450), cold-formed lean duplex stainless steel, cold-formed ferritic 

stainless steel and aluminium T6 alloy are equal to 450, 450, 280 and 250 MPa, respectively. 

According to the experimental results, it is recommended that the following stress intervals to 

be used in the linear portion for the determination of initial Young’s modulus: (a) 20 – 45% 

of nominal 0.2% proof stress for cold-formed carbon steel (G450), cold-formed lean duplex 

and ferritic stainless steel flat coupons, (b) 25 – 35% of nominal 0.2% proof stress for 

aluminium T6 alloy, and (c) 45 – 65% of nominal 0.2% proof stress for cold-formed carbon 

steel (G450) and cold-formed lean duplex stainless steel curved coupons. It should be noted 

that the suggested stress interval (45 – 65% of nominal σ0.2) for cold-formed carbon and 

stainless steel curved coupons in this study exceeds the upper limit (50% of σ0.2) that 

recommended by BSI [8], due to the strength enhancement by cold-working in the curved 

coupon. It should also be noted that the lower limit of the stress intervals in the linear portion 

started at 20, 25 and 45% of the nominal 0.2% proof stresses for the three different types of 

specimens, and this is due to the initial curvature of the coupon specimens that caused 

inaccuracy in the initial part of the stress-strain curves. The initial Young’s modulus obtained 

by the 1st method for different materials is shown in Tables 3 – 11 and 16, while those 

obtained by the unloading-reloading method (2nd method) and the slope between two specific 

points (3rd method) were summarized in Table 16. 

  

It is observed that the initial Young’s modulus measured by extensometer is similar to that 

using strain gauges for flat coupons of cold-formed carbon steel (G450) and aluminium T6 

alloy. However, the initial Young’s modulus measured by extensometer is not as accurate as 

those using strain gauges for cold-formed carbon steel (G450) curved coupons as well as 

cold-formed stainless steel flat and curved coupons, as shown in Table 16. The cold-formed 

carbon steel (G450) curved coupons as well as the cold-formed stainless steel flat and curved 
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coupons were extracted from sections undergoing cold-working, which include certain 

amount of residual stresses in the sections during the cold-forming process. Therefore, initial 

curvature was found in longitudinal direction of the coupon specimens, and thus the strains 

measured from the two sides of the coupon specimens were different. Such strain difference 

caused by the initial curvatures can be compensated by averaging the strains measured from 

the two sides, as shown in Fig. 18.  

 

For the strain gauge measurement, it is observed that the slope of linear portion (1st method) 

gives the largest value, while the slope between two points (3rd method) gives the smallest 

value of the initial Young’s modulus. On average, the initial Young’s modulus obtained by 

the 2nd method and the 3rd method are 2.6% and 15.3% smaller than those obtained by the 1st 

method for all specimens, as shown in Table 16. For cold-formed steel (G450) and ferritic 

stainless steel with large value of Ramberg-Osgood parameter (n), the Young’s modulus 

obtained by the 3rd method is 13.6% and 33.4% smaller than those obtained by the 1st method, 

respectively. It is because the strain ε2 = 0.0025 falls well beyond the proportional limit (σp), 

and thus leads to a gentler slope than the linear portion of the elastic range. The 2nd method 

requires unloading-reloading process during testing, which is not easy to operate at high 

strain rates. Furthermore, the data analysis of the 1st method is more straightforward 

compared to the 2nd method. Therefore, the following suggestions on determination of 

Young’s Modulus are proposed: 

(i) For coupon specimen that is extracted from cold-formed sections, it is recommended to 

obtain strains from both sides of the coupon specimens (e.g. use strain gauges on both 

sides), and the Young’s modulus should be obtained using the average strains from both 

sides.  

(ii) For coupon specimen that is not cold-formed (e.g. steel sheet), strain measurements at 

both sides of the coupon is optional. 

(iii) It is recommended to obtain the Young’s modulus by the slope of linear portion (1st 

method). The detail procedure is shown in steps A5-1 and A5-2 of the Procedure A for 

flat coupons, and step B5 of the Procedure B for curved coupons in Section 4 of this 

paper. 
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3.4     Cross-sectional Area of Curved Coupons 

 

It is well known that the strengths of the curved portions in cold-formed sections can be 

considerably increased compared to the strengths at the flat portions, due to the cold-forming 

process. Thus, the material properties of curved portions of sections, such as corner coupons, 

are also important and corner coupon tests were conducted [10, 14-16]. However, it is not 

easy to measure the unsymmetrical cross-sectional area of curved coupons accurately. In this 

study, three methods are used to determine the cross-sectional area of the curved coupons, 

namely (i) weight and density method, (ii) AutoCAD method, and (iii) Geometrical equations.  

 

In the weight and density method (1st method), the cross-sectional area equals to the mass of 

the specimen divided by the length and then also divided by the density of the material as 

stated in Clause 7.2.2.2 of ASTM Standard [9]. Therefore, the following procedure is used in 

this study: (1) Two lines were marked on the curved coupon specimen to indicate the gauge 

length of 25 mm prior to testing; (2) After testing, the specimen was cut along the marked 

lines, and the portion between the gauge length was obtained; (3) Clean the surfaces of the 

cut portion between the gauge length and weigh the cut portion; (4) the cross-sectional area 

was determined as the weight divided by 25 mm and further divided by the density of the 

material, as shown in Fig. 19. For the AutoCAD method (2nd method), the geometry of the 

cross-section area of curved coupon is drawn using the commercial software AutoCAD [19] 

with the measured dimensions as shown in Table 1. A typical geometry drawn by AutoCAD 

is shown in Fig. 2. In AutoCAD, the cross-sectional area was determined by the property 

function of geometry. For the geometrical equations method (3rd method), the cross-section of 

the curved coupon is divided into 4 parts (A1, A2, A3 and A4), as shown in Fig. 20(a). The area 

of each part can be calculated using geometric Eqs (2) – (5) as follows,  
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where the definition of symbols for these equations are shown in Fig. 20(b). The cross-

sectional area of the curved coupons Ag = A1 + A2 + 2A3 + 2A4. Therefore, the cross-sectional 

area can be calculated using Eqs (6) – (7), with the measured dimensions as shown in Table 1. 
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The cross-sectional area of the four curved coupons GC-R1, GC-R2, LC-R1 and LC-R2 

obtained by the three methods are summarized in Table 1, where Aw, Ac, Ag are the cross-

sectional areas determined using the weight and density method (1st method), AutoCAD 

method (2nd method), and geometrical equations method (3rd method), respectively. 

Theoretically, the three methods should give a similar cross-sectional area. However, the 

weight and density method (1st method) gives the average of 4.9% and 5.3% different values 

from the AutoCAD method (2nd method) and geometrical equations method (3rd method) for 

the four coupon specimens. Such results are probably due to the gauge length of the coupon 

specimen between the marked lines was not easy to be cut accurately. The AutoCAD method 

(2nd method) and geometrical equations method (3rd method) give quite similar values, with 

the differences ranged from 0.1% to 1.9% for the four specimens. Considering the accuracy 

of the measurement, the AutoCAD method (2nd method) and the geometrical equations 

method (3rd method) are recommended for the determination of the cross-sectional area of 

curved coupons. It should be noted that the geometric equations to calculate the cross-

sectional areas of the curved coupons in the existing specifications [7-9] can only be used for 

coupons extracted from tubes, and thus they are not suitable for curved specimens extracted 

from the corners of thin-walled rectangular hollow sections or open sections with 2ri < B, 

where ri and B are the inner radius and gauge width of the curved coupon, as shown in Fig. 2 
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and Fig. 20(b). The geometrical equations method (3rd method) proposed in this paper is 

suitable for curved specimens with 2ri < B, as shown in Eqs (2) – (7). 

 

3.5     Zinc coating and loading devices 

 

Tensile coupon tests on cold-formed carbon steel (G450) specimens without and with zinc 

coating were conducted using the same test procedure and loading rate for specimens GF-R1, 

GF-R2, GF-R3, GF-R1-zinc, GF-R2-zinc and GF-R3-zinc. The thickness on each side of zinc 

coating was 0.05 mm for the coupon specimens in this study. The zinc coating is much softer 

than steel from a structural point of view, and so it is reasonable to assume the layer of zinc 

coating does not carry load, and the effective thickness of the steel is the base metal thickness 

(without the zinc coating) [20]. It is expected that the increased in cross-sectional area due to 

the zinc coating, and lead to a smaller values of initial Young’s modulus (E), static 0.2% 

proof stress (σ0.2) and static ultimate strength (σu), as shown in Tables 11. The initial 

Young’s modulus, static 0.2% proof stress and static ultimate strength of series GF-R-zinc 

with zinc coating are 4.2%, 4.4% and 4.1% smaller than those of the companion series GF-R 

without zinc coating, respectively. This is mainly due to the larger cross-sectional area for 

coupon specimens with zinc coating in series GF-R-zinc. On average, the cross-sectional area 

of the coupon specimens with zinc coating is 4.2% larger than that without zinc coating (base 

metal). It is also stated in Clause X2.9 of the ASTM [9] that “heavy coatings should 

generally be removed from at least one grip end of flat specimens taken from coated products 

to permit accurate measurement of base metal thickness, assuming (a) the base metal 

properties are what are desired, (b) the coating does not contribute significantly to the 

strength of the product, and (c) coating removal can be easily accomplished. Otherwise, it 

may be advisable to leave the coating intact and determine the base metal thickness by an 

alternate method.” Therefore, it is recommended not to include the thickness of zinc coating 

in determining cross-sectional area for cold-formed steel. 

 

Coupon specimens LF-R1, LF-R2, LF-R1-Instron and LF-R1-MTS250 were tested using 

MTS 50kN, Instron 4469 and MTS 250kN machines, respectively, with the same testing 

procedure and loading rate series (R), as shown in Table 2. The measured material properties 

and the stress-strain curves of the coupon specimens are shown in Table 11 and Fig. 7. It is 

shown that the test results obtained by static curves are generally similar to each other, 
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despite the fact that using different testing machines. The initial Young’s modulus ranged 

from 197.7 to 207.9 GPa; the 0.2% proof stress (yield strength) ranged from 593.7 to 639.2 

MPa, and the ultimate strength ranged from 720.9 to 732.7 MPa. These companion coupon 

specimens were extracted from the same batch of cold-formed lean duplex stainless steel 

material. Different material properties were found by using different testing machines. 

Compare with the material properties obtained by testing machine MTS 50kN, the material 

properties obtained by Instron 4469 and MTS 250kN machines are 1% and 5.2% different for 

Young’s modulus, 7.7% and 5.5% different for 0.2% proof stress, and 1.4% and 0.3% 

different for ultimate strength, respectively. 

 

 

4. Proposed coupon test procedure 
 

4.1     General 

 

In this study, a procedure to obtain the material properties of tensile coupon tests, including 

the preparation of test specimen, test setup, preloading, loading method and data analysis, is 

proposed. As mentioned earlier, initial curvature in the longitudinal direction of coupon 

specimen exists when the coupon extracted from cold-formed sections due to residual stresses. 

Therefore, it is imperative to obtain strains from both sides of the coupon specimens. It is also 

shown that the material properties obtained from coupon specimen, including the zinc coating 

in determining the cross-sectional area, are smaller than those obtained using cross-sectional 

area without considering zinc coating. Thus, it is important to remove the coating before 

measuring the cross-sectional area or subtract the thickness of coating in calculating the 

cross-sectional area. The loading rate specified in the AS [7], BSI [8] and ASTM [9] 

specifications, as shown in Table 2, is considered to be very fast from a research point of 

view and generally limited data were recorded. The fast loading rate applied on coupon 

specimen would lead to higher values of 0.2% proof stress and ultimate strength. Therefore, 

the loading rate should be carefully chosen, especially for the measurement of initial Young’s 

modulus. The loading method for cold-formed steel, cold-formed stainless steel and 

aluminium alloy is shown in Table 17. During the coupon test, higher loading rate can be 

applied in the inelastic range of stress-strain curve, and an even higher loading rate can be 

applied at the post-ultimate stage. The detail procedure to obtain static material properties of 
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flat and curved coupon specimens by tensile coupon tests are illustrated in the following two 

procedures. It should be noted that the loading rates recommended in Table 17 and the 

procedures are suitable for research purpose, with a total testing time of around 30 minutes. 

However, for the testing in the industry, which requires a much shorter testing time and 

allows slightly less accurate results, a higher loading rate series (e.g. 0.01 min-1 before yield 

strength and 0.5 min-1 after yield strength which is the lower-bound strain rate in the ASTM 

[9]) may also be used with static drop of not less than 60 seconds at yield and ultimate 

strengths. Such method substantially reduces the testing time to around 5 minutes, with less 

than 5% difference for the yield strength (σ0.2) and ultimate strength (σu) obtained by the 

recommended method for research purpose.  

 

4.2     Procedure A: Static material properties of flat coupon specimens 

Step A1   Preparation of test specimen 

A1-1   Extract a coupon specimen in the flat portion of section, and the dimension of the 

coupon should be prepared in accordance with the specifications (e.g. AS [7], BSI [8], 

ASTM [9] or any other international specifications). 

A1-2   Remove surface coating of the coupon specimen by acid-etching (for specimens with 

coating). 

A1-3  Measure the cross-sectional area on the base metal or subtract the thickness of coating. 

A1-4  Clean the surface of the specimen in the middle of the gauge length. Mark the gauge 

length. 

A1-5  Attach strain gauges on both sides of the coupon in the longitudinal direction at mid-

length. 

Step A2   Set-up 

A2-1  Clamp the upper part of the coupon specimen. Ensure the coupon specimen is in line 

with the direction of the applied load (e.g. using laser measurement device or leveling 

instrument). 

A2-2   Set the loading to zero, then clamp the lower part of the coupon specimen. 

A2-3   Mount the extensometer onto the specimen at the marked lines of gauge length. 

Step A3    Preload 

A3-1   Apply tensile load to the specimen, which is smaller than the proportional limit. In 

this study, the proportional limit was 75.7%, 59.8%, 65.2 and 47.8% of the nominal 

0.2% proof stresses (σ0.2) for cold-formed carbon steel (G450), cold-formed lean 
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duplex and ferritic stainless steel, and aluminium T6 alloy flat coupons, respectively, 

as shown in Tables 7 – 10. Therefore, it is suggested that an upper limit of 

approximately 50%, 40%, 45% and 30% of the nominal σ0.2 in preloading flat 

coupons can be applied for cold-formed carbon steel (G450), cold-formed lean duplex 

and ferritic stainless steel and aluminium T6 alloy, respectively. 

A3-2  Observe the stress-strain relationship during preloading. Ensure the strain gauges and 

extensometer are working properly. 

A3-3  Unload the coupon specimen to zero load, and reset the extensometer and strain 

gauges to zero reading. 

Step A4    Loading method 

A4-1 Table 17 shows the proposed loading procedure and loading rate at different strains 

for cold-formed steel, cold-formed stainless steel and aluminium alloy coupon tests. 

A4-2   Adopt a low strain rate at the beginning of the test from zero to proportional limit, so 

that sufficient data can be obtained to determine the Young’s modulus. It is suggested 

that 0.05 mm/min under stroke control be adopted in the elastic range of the stress-

strain curve. 

A4-3 Higher strain rate should be adopted from proportional limit to the ultimate strength. 

It is suggested that 0.4 mm/min under stroke control be adopted for cold-formed 

carbon steel and aluminium alloy, while 0.8 mm/min is used for cold-formed stainless 

steel. 

A4-4 During the loading process, straining is paused near the 0.2% proof stress and 

ultimate strength for 100 seconds, as shown in Table 17. Such procedure allows the 

stress relaxation to take place, and thus the static material properties can be obtained. 

A4-5 After the stress relaxation at ultimate strength, an even higher loading rate is applied 

in the post-ultimate range of the stress-strain curve until the coupon specimen fracture. 

It is suggested that 0.8 mm/min under stroke control be adopted for cold-formed 

carbon steel and aluminium alloy, while 2.0 mm/min is used for cold-formed stainless 

steel. 

A4-6  Stop the loading machine and remove the failed coupon specimen. Extract the 

following test data: (i) applied load; (ii) strains measured from the two strain gauges; 

(iii) strains measured from the extensometer. 

Step A5    Data analysis 

A5-1   Obtain stresses by dividing the applied tensile load with the measured cross-sectional 
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area. Plot a stress-strain curve using the average strain measured by the two strain 

gauges in the initial part of the stress-strain curve, and extensometer readings were 

used for the rest of the curve. 

A5-2   Initial Young’s modulus (E) is determined from the slope of the initial linear portion 

obtained from the strain gauge readings, as shown in Fig. 21. It is suggested that the 

stress intervals for the determination of initial Young’s modulus in the slope of the 

initial linear portion are 20 – 45% of the nominal σ0.2 for cold-formed carbon steel 

and stainless steel flat coupons, 25 – 35% of the nominal σ0.2 for aluminium alloy. 

A5-3   Draw a straight line from origin with the slope equal to the initial Young’s modulus. 

Shift the stress-strain curve, so that the elastic range of the curve overlaps with the 

straight line. The shift of the stress-strain curve is to correct the influence of the 

possible initial curvature in the coupon specimens at the beginning of the tests. 

A5-4   The proportional limit (σp) is determined at the point of separation between the 

straight line and the stress-strain curve, as shown in Fig. 21 and 22. 

A5-5  Now, the strains obtained from extensometer are used. The stress-strain curve plotted 

using the extensometer readings was shifted horizontally to meet the proportional 

limit. The combined stress-strain curve consists of two parts. The initial part of the 

curve was plotted using strain gauge readings until the proportional limit, and the rest 

of the curve was plotted using extensometer readings until fracture, as shown in Fig. 

22. 

A5-6  The static stress-strain curve is obtained by considering the two static drops for stress 

relaxation near the 0.2% proof stress (σ0.2) and ultimate strength (σu). For those stress-

strain curves with rounded shape (e.g. stainless steel, alumimium alloy and high 

strength steel), the first part of the stress-strain curve is obtained from origin to 

proportional limit (σp). The second part of the curve is obtained from σp to the first 

static drop near the σ0.2, where the stress reduced in proportion with strain between 

the σp and σ0.2. The third part of the curve is obtained from σ0.2 to σu, and the stress 

reduced in proportion with strain between these two points, as shown in Fig. 23(a). 

The last part of the stress-strain curve from σu until fracture is plotted using the static 

drop at σu. For those stress-strain curves with yield plateau (e.g. carbon steel), the 

stress in the plateau reduced by the same amount of static drop at the yield strength, as 

shown in Fig. 23(b).   

A5-7   The static 0.2% proof stress (yield strength) is determined by the intersect point of the 



20 
 

static stress-strain curve and the shifted straight line from the origin to 0.2% strain, as 

shown in Fig. 24. 

A5-8   The static ultimate strength is determined from the maximum stress of the static 

stress-strain curve, and the strain at fracture is obtained from the strain prior to 

considerably reduction of tensile force due to fracture of specimen, as shown in Fig. 

25. 

 

4.3     Procedure B: Static material properties of curved coupon specimens 

Step B1    Preparation of test specimen 

Identical to procedure A. 

Step B2    Set-up 

B2-1  Clamp the two special heads in the testing machine, and install the upper part of the 

curved coupon into the upper special head using a pin, as shown in Fig. 3(b). Ensure 

the coupon specimen is in line with the direction of the applied load (e.g. using laser 

measurement device or leveling instrument).  

B2-2  Set the loading to zero, and put the other pin through the lower special head and the 

lower part of the curved coupon specimen, as shown in Fig. 3(b).  

B2-3  Mount the extensometer onto the specimen at the marked lines of gauge length. 

Step B3 – Preload 

B3-1   The extensometer and strain gauges are set to zero reading. Apply tensile load to the 

specimen, which is smaller than the proportional limit. In this study, the proportional 

limit was 44% and 75% of the nominal 0.2% proof stresses (σ0.2) for cold-formed 

carbon steel (G450) and cold-formed lean duplex stainless steel curved coupons, as 

shown in Table 11. Therefore, it is suggested that an upper limit of approximately 30% 

and 50% of the nominal σ0.2 in preloading curved coupons can be applied for cold-

formed carbon steel (G450) and cold-formed lean duplex stainless steel, respectively. 

B3-2  Observe the stress-strain relationship during preloading. Ensure the strain gauges and 

extensometer are working well. 

B3-3  Unload the curved coupon specimen to a small stress, say approximately 5 MPa, in 

order to eliminate any gap between the pins and the curved coupon specimen. 

Step B4    Loading method 

Identical to the procedure A, except that the loading rate from proportional limit to fracture 

are suggested to be 0.4 and 0.8 mm/min under stroke control for cold-formed carbon steel 
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(G450) and cold-formed lean duplex stainless steel, respectively, as shown in Table 17. 

Step B5 – Data analysis 

Identical to the procedure A, except that the stress interval of 45 – 65% of the nominal σ0.2 

for cold-formed carbon steel and stainless steel curved coupons is suggested to determine the 

initial Young’s modulus. 

 

 

5. Conclusions 

 
Tensile coupon test is commonly used to obtain the material properties of metallic materials. 

However, inconsistent coupon test procedure and data analysis leads to inaccurate results. 

Conducting an accurate coupon test for metallic material requires deliberate and careful 

thoughts in every procedure. In this study, the existing specifications and literature on tensile 

coupon tests have been reviewed. Various test and data analysis procedures to obtain the 

material properties are discussed. The coupon tests were conducted on cold-formed carbon 

steel, cold-formed stainless steel and aluminium alloy using different methods and procedures. 

It is shown that the strain rate affects the dynamic stress-strain curve, and it is recommended 

that the static stress-strain curve should be used to determine the material properties. Three 

different methods to determine the initial Young’s modulus are used, and the corresponding 

test results are compared. The slope of linear potion method together with the suggested 

stress intervals for different metallic materials is recommended for the determination of initial 

Young’s modulus. Furthermore, three different methods for the determination of cross-

sectional area of curved coupon specimens were examined. The AutoCAD method and 

geometrical equations method are recommended to measure the cross-sectional area of 

curved coupons. For the coupon specimens with coating, it is recommended not to include the 

thickness of the coating in determining the cross-sectional area of cold-formed steel. The 

loading rates to be used during coupon tests are also suggested in this study. Detail 

procedures to obtain static material properties of tensile coupon tests including the 

preparation of test specimen, test setup, preloading, loading method and data analysis, are 

proposed.   
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Notations 
A  cross-sectional area of flat coupon 

Ac  cross-sectional area of curved coupon that determined using the AutoCAD method 

Ag  cross-sectional area of curved coupon that determined using the geometrical 
equations 

Aw  cross-sectional area of curved coupon that determined using the weight and density 
method 

A1  part of the cross-sectional area of curved coupon 

A2  part of the cross-sectional area of curved coupon 

A3  part of the cross-sectional area of curved coupon 

A4  part of the cross-sectional area of curved coupon 

a  parameter in the equation to calculate the cross-sectional area of curved coupons 

B overall width of cross-section of specimen; width of steel sheet; width of cross-
section of coupon specimen 

COV  coefficient of variation 

D  overall depth of cross-section of specimen; depth of steel sheet 

E  initial Young’s modulus 

H overall height of the cross-section of curved coupon specimen 

n  Ramberg-Osgood parameter 

ri inner radius of cross-section of curved coupon specimen 

ro  outer radius of cross-section of curved coupon specimen 

x  parameter in the equation to calculate the cross-sectional area of curved coupons 
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t  thickness of cross-section of specimen 

to  thickness between mid-points of outer and inner curved surfaces 

t1  heights at the edge of the cross-section of curved coupon specimen 

t2  heights at the edge of the cross-section of curved coupon specimen 

∆a  different amount of drops of stress after static drops 

∆b different amount of drops of stress before static drops 

∆s,t  stress reduced for a specified period of time during stress relaxation 

∆x  reduced amount of stress at static drop corresponding to εx 

∆0  reduced amount of stress at the static drop corresponding to ε0 

∆1  reduced amount of stress at the static drop corresponding to εu 

∆2  reduced amount of stress after the static drop corresponding to εu 

εf  tensile strain at fracture 

εp  tensile strain at elastic limit 

εu  tensile strain at ultimate strength 

εx  tensile strain at any location between ε0 and εu 

ε0  tensile strain at the static drop 

ε0.2  tensile strain at 0.2% proof stress 

ε1  strain value of 0.0005 

ε2  strain value of 0.0025 

σo  stress prior to static drop 

σp  stress at proportional limit 

σu  ultimate strength 

σy  yield strength 

σ0.2  0.2% proof stress (yield strength) 

σ1  stress measured at the strain value ε1 = 0.0005 

σ2  stress measured at the strain value ε2 = 0.0025 
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Curved 
specimen 

to t1 t2 B H ri ro Aw Ac Ag 
(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm2) (mm2) (mm2) 

GC-R1 1.78 2.50 2.64 3.89 3.04 1.00 3.25 8.50 8.35 8.37 
GC-R2 1.67 2.49 2.49 3.94 2.92 1.00 3.75 8.05 8.02 8.10 
LC-R1 2.93 3.38 3.51 3.80 4.07 1.25 3.60 13.67 12.06 12.08 
LC-R2 2.93 3.65 3.90 3.96 4.13 0.50 3.25 12.69 13.22 13.47 

Table 1: Dimension of curved coupon specimens 
 

 

Series Strain rate ×10-3 (min-1) 
before σp σp to σy σy to σu σu to fracture 

GF-S 0.3 0.3 0.3 3.8 
GF-R 0.3 3.8 3.8 12 
GF-L 5 5 45 45 
GF-U 30 30 460 460 
GC-R 0.2 2.5 2.5 12 
LF-R 0.3 13 13 35 
LF-L 6 6 44 44 
LF-U 20 20 440 440 
LC-R 0.2 28 28 37 
FF-S 0.3 0.3 7 18 
FF-R 0.3 13 13 36 
FF-L 8 8 50 50 
FF-U 25 25 490 490 
AF-R 0.4 7 7 14 
AF-L 12 12 50 50 
AF-U 25 25 400 400 
AS [7] --- 15 – 150 < 480 --- 
BSI [8] --- < 15 < 402 --- 

ASTM [9] --- 9 – 21 50 – 500 --- 

Table 2: Strain rates for coupon tests 
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Material 
properties 

Dynamic curves 
GF-S1 GF-S2 GF-S3 Mean GF-R1 GF-R2 GF-R3 Mean GF-L1 GF-L2 GF-L3 Mean GF-U1 GF-U2 GF-U3 Mean 

E (GPa) 217.9 214.5 216.7 216.4 213.9 219.0 218.6 217.2 227.0 218.7 220.6 222.1 221.5 221.0 218.5 220.3 
σ0.2 (MPa) 511.6 516.6 524.2 517.5 512.9 526.5 527.7 522.4 535.8 534.0 537.2 535.7 532.1 533.7 532.1 532.6 
σu (MPa) 540.3 544.2 552.7 545.7 543.2 556.4 556.6 552.1 566.7 562.8 566.8 565.4 565.2 570.5 565.2 567.0 

n 17.5 23.6 30.6 23.9 23.5 24.3 28.2 25.3 19.6 22.2 22.4 21.4 25.0 28.8 23.7 25.8 
σu/σ0.2 1.06 1.05 1.05 1.05 1.06 1.06 1.05 1.06 1.06 1.05 1.06 1.06 1.06 1.07 1.06 1.06 

Table 3: Material properties of carbon steel G450 coupon specimens 
 

Material 
properties 

Dynamic curves 
LF-R1 LF-R2 Mean LF-L1 LF-L2 Mean LF-U1 LF-U2 Mean 

E (GPa) 197.7 197.8 197.8 202.6 200.7 201.7 198.5 205.4 202.0 
σ0.2 (MPa) 654.1 647.7 650.9 668.5 654.1 661.3 672.8 662.3 667.6 
σu (MPa) 786.5 788.8 787.7 797.6 798.7 798.2 811.6 809.1 810.4 

n 8.5 7.8 8.2 5.8 8.4 7.1 8.3 6.7 7.5 
σu/σ0.2 1.20 1.22 1.21 1.19 1.22 1.21 1.21 1.22 1.22 

Table 4: Material properties of lean duplex stainless steel coupon specimens 

 
Material 

properties 
Dynamic curves 

FF-S1 FF-S2 FF-S3 Mean FF-R1 FF-R2 FF-R3 Mean FF-L1 FF-L2 FF-L3 Mean FF-U1 FF-U2 FF-U3 Mean 
E (GPa) 204.8 203.6 202.2 203.5 211.4 204.6 202.1 206.0 211.6 211.2 206.5 209.8 212.4 206.9 205.5 208.3 

σ0.2 (MPa) 473.3 483.2 459.4 472.0 484.9 481.6 478.1 481.5 478.5 482.1 492.6 484.4 488.0 490.0 480.7 486.2 
σu (MPa) 496.0 498.9 489.3 494.7 503.6 501.3 495.1 500.0 507.2 510.1 511.4 509.6 516.4 522.5 518.2 519.0 

n 6.8 7.5 6.6 7.0 7.8 7.2 7.6 7.5 6.2 6.4 7.7 6.8 7.4 6.8 6.9 7.0 
σu/σ0.2 1.05 1.03 1.07 1.05 1.04 1.04 1.04 1.04 1.06 1.06 1.04 1.05 1.06 1.07 1.08 1.07 

Table 5: Material properties of ferritic stainless steel coupon specimens 
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Material 

properties 
Dynamic curves 

AF-R1 AF-R2 AF-R3 Mean AF-L1 AF-L2 AF-L3 Mean AF-U1 AF-U2 AF-U3 Mean 
E (GPa) 67.3 66.4 67.0 66.9 66.7 71.0 66.3 68.0 66.4 66.7 66.0 66.4 

σ0.2 (MPa) 250.1 249.0 248.0 249.0 250.8 247.6 259.7 252.7 251.8 260.0 267.3 259.7 
σu (MPa) 272.4 270.9 271.4 271.6 274.0 273.6 282.2 276.6 276.0 283.3 289.5 282.9 

n 7.4 8.9 7.0 7.8 8.7 9.5 7.7 8.6 8.9 8.6 9.6 9.0 
σu/σ0.2 1.09 1.09 1.09 1.09 1.09 1.10 1.09 1.09 1.10 1.09 1.08 1.09 

Table 6: Material properties of aluminium coupon specimens 
 

 

Material 
properties 

Static curves 
GF-S1 GF-S2 GF-S3 GF-R1 GF-R2 GF-R3 GF-L1 GF-L2 GF-L3 GF-U1 GF-U2 GF-U3 Mean COV 

E (GPa) 217.9 214.5 216.7 213.9 219.0 218.6 227.0 218.7 220.6 221.5 221.0 218.5 219.0 0.016 
σp (MPa) 334.1 322.3 329.3 319.0 369.5 303.4 307.1 393.5 354.1 329.2 368.0 360.2 340.8 0.082 

εp (%) 0.15 0.15 0.15 0.15 0.17 0.14 0.14 0.18 0.16 0.15 0.17 0.17 0.16 0.083 
σ0.2 (MPa) 489.0 492.6 496.8 495.3 498.4 497.7 503.5 502.2 496.1 490.2 486.1 494.2 495.2 0.010 

ε0.2 (%) 0.43 0.43 0.43 0.44 0.42 0.43 0.42 0.43 0.43 0.42 0.43 0.43 0.43 0.013 
σu (MPa) 512.4 519.3 525.3 512.6 526.8 526.8 531.0 525.7 527.1 515.9 516.8 515.4 521.3 0.012 

εu (%) 6.6 6.5 6.7 7.4 7.0 7.0 7.4 6.9 7.0 7.1 7.1 6.6 6.9 0.043 
εf (%) 12.0 12.5 11.5 13.3 12.1 11.7 13.3 13.5 12.9 12.9 12.8 12.9 12.6 0.052 

n 17.6 21.7 21.7 23.5 25.4 18.6 16.5 27.4 22.8 18.3 38.9 28.0 23.4 0.264 
σu/σ0.2 1.04 1.05 1.05 1.04 1.06 1.06 1.05 1.05 1.06 1.05 1.06 1.04 1.05 0.008 

Table 7: Summary of tensile coupon test results for G450 obtained from static curves 
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Material 
properties 

Static curves 
LF-R1 LF-R2 LF-L1 LF-L2 LF-U1 LF-U2 Mean COV 

E (GPa) 197.7 197.8 202.6 200.7 198.5 205.4 200.5 0.015 
σp (MPa) 255.1 269.2 270.9 242.3 360.0 217.4 269.2 0.181 

εp (%) 0.13 0.14 0.13 0.12 0.18 0.11 0.14 0.180 
σ0.2 (MPa) 593.7 599.3 626.2 603.2 638.0 612.4 612.1 0.028 

ε0.2 (%) 0.52 0.51 0.52 0.50 0.52 0.50 0.51 0.019 
σu (MPa) 722.6 720.9 726.1 720.06 703.0 705.6 716.4 0.013 

εu (%) 22.3 24.0 21.5 23.9 17.4 19.9 21.5 0.118 
εf (%) 37.6 36.0 37.8 32.0 34.8 30.0 34.7 0.090 

n 8.9 7.4 5.7 7.5 8.3 5.4 7.2 0.194 
σu/σ0.2 1.22 1.20 1.16 1.19 1.10 1.15 1.17 0.037 

Table 8: Summary of tensile coupon test results for lean duplex stainless steel obtained from static curves 
 

Material 
properties 

Static curves 
FF-S1 FF-S2 FF-S3 FF-R1 FF-R2 FF-R3 FF-L1 FF-L2 FF-L3 FF-U1 FF-U2 FF-U3 Mean COV 

E (GPa) 204.8 203.6 202.2 211.4 204.6 202.1 211.6 211.2 206.5 212.4 206.9 205.5 206.9 0.018 
σp (MPa) 181.4 210.5 160.1 202.2 178.5 198.9 161.7 138.7 186.6 156.5 210.0 204.5 182.5 0.131 

εp (%) 0.09 0.10 0.08 0.10 0.09 0.10 0.08 0.07 0.09 0.07 0.10 0.10 0.09 0.131 
σ0.2 (MPa) 454.1 462.2 440.4 464.9 458.9 457.8 458.1 461.9 472.3 465.8 461.1 451.2 459.1 0.018 

ε0.2 (%) 0.42 0.43 0.42 0.42 0.43 0.43 0.42 0.43 0.43 0.43 0.41 0.42 0.42 0.016 
σu (MPa) 465.5 467.1 455.7 467.2 464.3 461.5 470.7 472.2 474.8 469.9 473.2 466.1 467.4 0.011 

εu (%) 12.6 14.3 14.4 13.9 12.5 14.6 12.9 10.9 9.0 8.5 7.7 9.5 11.7 0.214 
εf (%) 24.4 21.9 23.5 23.0 23.6 23.6 22.6 20.0 19.0 20.0 18.4 21.8 21.8 0.092 

n 6.7 7.5 6.4 7.8 6.9 8.1 6.3 6.2 7.7 6.7 7.1 7.3 7.1 0.089 
σu/σ0.2 1.03 1.01 1.03 1.00 1.01 1.01 1.03 1.02 1.01 1.01 1.03 1.03 1.02 0.011 

Table 9: Summary of tensile coupon test results for ferritic stainless steel obtained from static curves 
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Material 
properties 

Static curves 
AF-R1 AF-R2 AF-R3 AF-L1 AF-L2 AF-L3 AF-U1 AF-U2 AF-U3 Mean COV 

E (GPa) 67.3 66.4 67.0 66.7 71.0 66.3 66.4 66.7 66.0 67.1 0.023 
σp (MPa) 122.8 111.3 132.1 110.4 132.1 111.5 115.0 102.8 138.0 119.6 0.102 

εp (%) 0.18 0.17 0.20 0.17 0.20 0.17 0.17 0.16 0.21 0.18 0.097 
σ0.2 (MPa) 245.3 243.1 239.4 244.4 240.5 251.1 247.6 251.6 259.4 246.9 0.025 

ε0.2 (%) 0.57 0.57 0.56 0.57 0.55 0.58 0.57 0.58 0.58 0.57 0.018 
σu (MPa) 254.8 254.9 252.9 254.6 250.6 260.5 253.8 259.4 263.1 256.1 0.016 

εu (%) 5.8 5.8 5.2 6.3 5.2 5.5 6.3 6.0 6.7 5.9 0.088 
εf (%) 7.6 7.5 7.2 7.7 6.8 7.7 8.0 8.6 8.2 7.7 0.069 

n 7.2 7.9 8.6 8.6 8.9 8.9 9.0 7.1 8.2 8.3 0.088 
σu/σ0.2 1.05 1.05 1.06 1.04 1.04 1.04 1.03 1.03 1.01 1.04 0.014 

Table 10: Summary of tensile coupon test results for aluminium alloy obtained from static curves 

 
Material 

properties 
Static curves 

GF-R1-zinc GF-R2-zinc GF-R3-zinc GC-R1 GC-R2 LF-R1-Instron LF-R1-MTS250 LC-R1 LC-R2 
E (GPa) 202.4 214.5 208.3 226.1 242.6 199.7 207.9 212.3 205.9 
σp (MPa) 249.7 311.8 360.2 240.6 200.2 310.0 220.2 441.6 337.1 

εp (%) 0.12 0.15 0.17 0.11 0.08 0.16 0.11 0.21 0.16 
σ0.2 (MPa) 454.8 490.4 483.1 541.2 566.9 639.2 626.1 892.7 861.3 

ε0.2 (%) 0.42 0.43 0.43 0.44 0.42 0.51 0.50 0.62 0.62 
σu (MPa) 482.6 517.1 504.2 573.5 598.3 732.7 725.1 1004.9 989.3 

εu (%) 5.7 7.5 6.1 1.2 1.3 21.3 22.7 2.4 1.9 
εf (%) 13.1 12.9 11.8 6.2 6.3 35.3 32.7 12.7 12.6 

n 14.0 19.8 25.9 5.7 5.3 12.5 5.3 5.8 4.8 
σu/σ0.2 1.06 1.05 1.04 1.06 1.06 1.15 1.16 1.13 1.15 

Table 11: Summary of tensile coupon test results obtained from static curves 
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Series Location of 
static drop 

Strain rate before static 
drop ×10-3 (min-1) 

Stress reduction (%) 
60 s 100 s 300 s 

GF-S 
Yield 0.3 -3.1 -3.4 -4.0 

Ultimate 0.3 -2.8 -3.1 -4.1 
Ultimate# 3.8 -3.7 -4.3 -4.9 

GF-R 
Plastic 0.3 -0.6 -0.7 -1.5 
Yield 3.8 -3.6 -4.0 -4.8 

Ultimate 3.8 -3.8 -4.2 -4.8 

GF-L Yield 5 -3.7 -4.7 -6.6 
Ultimate 45 -5.8 -6.0 -7.2 

GF-U Yield 30 -6.8 -7.4 -9.3 
Ultimate 460 -7.8 -8.1 -8.9 

GC-R 
Plastic 0.2 -3.2 -3.2 -3.3 
Yield 2.5 -3.8 -4.2 -4.7 

Ultimate 2.5 -4.0 -4.3 -4.6 

Table 12: Average stress reduction during stress relaxation for cold-formed carbon steel 
G450 at different strain rate series as shown in Table 2 

 

Series Location of 
static drop 

Strain rate before static 
drop ×10-3 (min-1) 

Stress reduction (%) 
60 s 100 s 300 s 

LF-R 

Plastic 0.3 -2.2 -2.6 -3.5 
Yield 13 -6.3 -6.5 -7.7 

Ultimate 13 -6.0 -6.4 -7.5 
Ultimate# 35 -7.0 -7.4 -8.1 

LF-L Yield 6 -6.0 -6.7 -7.7 
Ultimate 44 -7.4 -7.7 -8.0 

LF-U Yield 20 -7.4 -8.6 -9.3 
Ultimate 440 -10.8 -10.9 -10.9 

LC-R 
Plastic 0.2 -2.7 -2.8 -2.9 
Yield 28 -5.3 -5.4 -6.3 

Ultimate 28 -5.5 -5.9 -6.3 

Table 13: Average stress reduction during stress relaxation for cold-formed lean duplex 
stainless steel at different strain rate series as shown in Table 2 

 

Series Location of 
static drop 

Strain rate before static 
drop ×10-3 (min-1) 

Stress reduction (%) 
60 s 100 s 300 s 

FF-S Yield 0.3 -4.2 -4.8 -5.3 
Ultimate 7 -3.7 -4.3 -5.4 

FF-R Yield 13 -4.7 -5.2 -6.4 
Ultimate 13 -4.7 -5.1 -6.0 

FF-L Yield 8 -5.3 -5.6 -6.2 
Ultimate 50 -6.2 -7.0 -7.3 

FF-U Yield 25 -5.6 -6.2 -7.2 
Ultimate 490 -9.8 -9.9 -9.9 

Table 14: Average stress reduction during stress relaxation for cold-formed ferritic stainless 
steel at different strain rate series as shown in Table 2 
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Series Location of 
static drop 

Strain rate before static 
drop ×10-3 (min-1) 

Stress reduction (%) 
60 s 100 s 300 s 

AF-R 
Plastic 0.4 -1.3 -1.5 -1.5 
Yield 7 -2.7 -2.9 -3.2 

Ultimate 7 -3.6 -4.0 -5.3 

AF-L Yield 12 -2.0 -2.0 -2.3 
Ultimate 50 -4.9 -5.4 -6.6 

AF-U Yield 25 -3.8 -4.0 -4.0 
Ultimate 400 -6.5 -7.2 -7.5 

Table 15: Average stress reduction during stress relaxation for aluminium alloy at different 
strain rate series as shown in Table 2 

 

Specimen 

Young’s Modulus E (GPa) 
Strain gauge Extensometer 

Linear 
portion 

Unloading
-reloading 

Slope between 
two points 

Linear 
portion 

Unloading
-reloading 

Slope between 
two points 

GF-S1 217.9 --- 187.5 216.9 --- 187.8 
GF-S2 214.5 211.1 190.2 217.8 217.5 187.2 
GF-S3 216.7 214.4 193.8 226.9 209.9 195.0 
GF-R1 213.9 --- 187.9 212.4 --- 188.7 
GF-R2 219.0 216.6 194.1 210.6 211.8 195.3 
GF-R3 218.6 215.5 195.1 215.2 208.1 196.4 

GF-R1-zinc 202.4 --- 176.8 203.6 --- 175.6 
GF-R2-zinc 214.5 212.0 191.6 204.8 204.2 192.8 
GF-R3-zinc 208.3 208.0 185.5 201.0 217.1 183.7 

GF-L1 227.0 216.7 199.1 228.2 225.6 199.6 
GF-L2 218.7 217.5 194.9 225.3 212.0 195.5 
GF-L3 220.6 215.8 198.5 238.8 223.4 200.6 
GF-U1 221.5 209.5 196.8 214.5 219.0 196.6 
GF-U2 221.0 220.4 197.4 225.3 227.8 195.3 
GF-U3 218.5 --- 201.4 216.0 --- 192.3 
GC-R1 226.1 --- 176.5 295.6 --- 188.1 
GC-R2 247.5 241.3 185.7 358.3 316.2 196.3 
LF-R1 197.7 --- 184.3 231.9 --- 189.6 
LF-R2 197.8 195.8 183.7 173.7 179.1 172.1 
LF-L1 202.6 198.9 189.9 178.3 191.1 176.4 
LF-L2 200.7 198.2 198.9 215.0 212.8 213.1 
LF-U1 198.5 --- 188.7 183.9 --- 182.7 
LF-U2 205.4 196.4 187.7 193.2 194.3 181.5 

LF-R1-Instron 199.7 --- 190.8 207.6 --- 197.4 
LF-R1-MTS250 207.9 --- 192.3 206.0 --- 187.9 

LC-R1 226.1 --- 176.5 294.6 --- 188.1 
LC-R2 205.9 204.4 199.4 464.9 337.0 383.3 
FF-S1 204.8 197.8 145.8 223.0 226.9 141.2 
FF-S2 203.6 197.7 152.6 217.0 217.5 152.6 
FF-S3 202.2 195.6 143.4 213.7 223.1 141.9 
FF-R1 211.4 205.3 159.2 229.8 215.2 153.7 
FF-R2 204.6 200.0 148.2 235.9 220.7 154.1 
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FF-R3 202.1 195.6 159.6 205.3 223.1 161.4 
FF-L1 211.6 197.8 105.6 241.4 225.6 101.3 
FF-L2 211.2 202.1 152.1 225.5 233.6 150.7 
FF-L3 206.5 199.3 158.3 247.0 223.3 150.6 
FF-U1 212.4 193.2 152.3 227.4 219.7 153.7 
FF-U2 206.9 197.8 151.3 232.1 233.0 154.4 
FF-U3 205.5 198.5 150.7 236.6 235.4 146.2 
AF-R1 67.3 --- 65.4 67.0 --- 64.7 
AF-R2 66.4 --- 63.5 66.3 --- 64.5 
AF-R3 67.0 66.9 64.4 67.4 66.9 64.0 
AF-L1 66.7 64.9 65.0 67.6 64.6 63.9 
AF-L2 71.0 69.8 71.0 67.9 64.2 61.5 
AF-L3 66.3 65.2 61.8 66.9 65.6 62.3 
AF-U1 66.4 --- 63.6 64.0 --- 64.5 
AF-U2 66.7 65.5 65.4 67.7 65.3 60.2 
AF-U3 66.0 65.8 65.3 65.9 66.5 63.6 

Table 16: Summary of Young’s modulus obtained from three methods and measured by 
strain gauge and extensometer 

 

 

 Flat coupon Curved coupon 

 Strain (%) Loading rate 
(mm/min) Strain (%) Loading rate 

(mm/min) 

Relatively ductile material  
with εf = 15% (flat coupon) 

and εf = 7% (curved 
coupon) 

(e.g. cold-formed carbon 
steel) 

0 – 0.2 0.05 ~0 – 0.15 0.05 
0.2 – 0.6 0.4 0.15 – 0.5 0.4 

0.6 paused 100s 0.5 paused 100s 
0.6 – 7.0 0.4 0.5 – 1.5 0.4 

7.0 paused 100s 1.5 paused 100s 
7.0 – fracture 0.8 1.5 – fracture 0.4 

Ductile material  
with εf = 40% (flat coupon) 

and εf = 15% (curved 
coupon) 

(e.g. cold-formed stainless 
steel) 

0 – 0.2 0.05 ~0 – 0.15 0.05 
0.2 – 0.6 0.8 0.15 – 0.5 0.8 

0.6 paused 100s 0.5 paused 100s 
0.6 – 20.0 0.8 0.5 – 2.5 0.8 

20.0 paused 100s 2.5 paused 100s 
20.0 – fracture 2 2.5 – fracture 0.8 

Less ductile material  
with εf = 9% at flat portion 

(e.g. aluminium alloy) 
 

0 – 0.2 0.05   
0.2 – 0.6 0.4   

0.6 paused 100s   
0.6 – 6.0 0.4   

6.0 paused 100s   
6.0 – fracture 0.8   

 

Table 17: Loading procedure and loading rate of coupon specimens 
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(a) Dimension of flat coupon 

 
(b) Dimension of curved coupon 

Fig 1: Dimension of coupon specimens 

 

 

 

 

 

A-A 

(a) Definition for symbols of cross-sectional dimensions in flat coupon specimens 

 

B-B 

(b) Definition for symbols of cross-sectional dimensions in curved coupon specimens 

Fig 2: Definition of symbols for the coupon specimens  
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(a)   (b) 

 

     

          (c)         (d) 

Fig 3: Test set-up used in this study (a) flat coupon tested by MTS 50kN, (b) curved coupon 

tested by MTS 50 kN, (c) flat coupon tested by Instron 4469, (d) flat coupon tested by MTS 

250kN 
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Fig 4: Typical static drop during stress relaxation in stress-strain curve 

 
 

 

Fig 5: Loading history of specimen AF-R3 
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Fig 6: Summary of stress-strain curves for cold-formed carbon steel G450 under different 

loading rates as shown in Table 2 
 

 
Fig 7: Summary of stress-strain curves for cold-formed lean duplex stainless steel under 

different loading rates as shown in Table 2 
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Fig 8: Summary of stress-strain curves for cold-formed ferritic stainless steel under different 

loading rates as shown in Table 2 
 

 
Fig 9: Summary of stress-strain curves for aluminium T6 alloy under different loading rates 

as shown in Table 2 
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Fig 10: Dynamic and static stress-strain curves of flat and curved coupons of  

cold-formed carbon steel G450 
 

 
Fig 11: Dynamic and static stress-strain curves of flat and curved coupons of  

cold-formed lean duplex stainless steel 
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Fig 12: Location of static drops on stress-strain curve 

 

 
Fig 13: Stress relaxation with time for specimen GF-R1-zinc 
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Fig 14: Stress relaxation with time for specimen LF-R1 

 

 
Fig 15: Stress relaxation with time for specimen FF-S1 
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Fig 16: Stress relaxation with time for specimen AF-R1 

 

 

Fig 17: The three methods to obtain the Young’s modulus for specimen LF-L1 using strain 

gauge and extensometer in strain measurement 
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Fig 18: Different strain readings from the two sides of the coupon specimen LF-L1 due to 

initial curvature 

 

 

                    
Fig 19: The weight and density method (1st method) to determine the cross-sectional area of 

curved coupons 
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(a) Divided parts of the cross-sectional area for curved coupon specimens 

 
(b) Definition of symbols for cross-sectional dimensions 

Fig 20: The 3rd method for determining the cross-sectional area of curved coupons 
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Fig 21: Determination of Young’s modulus and elastic limit 

 

 

Fig 22: Combination of stress-strain curves obtained from strain gauge  

and extensometer readings 
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(a) Typical rounded static and dynamic stress-strain curves 

 

 

(b) Typical static and dynamic stress-strain curves with yield plateau 

Fig 23: Reduction of stress from dynamic to static stress-strain curves 
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Fig 24: Determination of static 0.2% proof strength (yield strength) 

 

 

Fig 25: Determination of static ultimate strength and strain at fracture 


	Yuner Huang  and  Ben Young*
	Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China

