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The shot noise of a hybrid triple-quantum-dot (TQD) interferometer has been investigated by

employing the nonequilibrium Green’s function method, and the general shot noise formula has been

derived. The oscillation behaviors of transmission coefficients and shot noise versus the Aharonov-

Bohm phase φ exhibit asymmetric Fano resonance structure and blockade effect. Sub-Poissonian and

super-Poissonian behaviors of shot noise appear in different regimes of terminal bias eVγ contributed

by the Andreev reflection, and correlation of Andreev tunneling with the normal electron transport.

The inverse resonance and resonance structures emerge in the shot noise and Fano factor with respect

to one of the gate voltages in different regimes of eVγ . The asymmetric structure can be enhanced by

modifying the energy levels and gate biases of the TQD. The self-correlation and cross-correlation

of current components contribute to the enhancement and suppression of shot noise.
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1. Introduction

Coupled quantum dots (QDs) induce much attention of researchers owing to the plenty physics and potential ap-

plications in nanoelectronics. Especially under the perturbation of external fields, different features may be generated

from concrete construction and manipulation. Such artificial molecules provide convenient platform for revealing and

demonstrating novel physics in nature. The coherent exchange and double beam splitter oscillations [1], the Coulomb

blockade and Kondo-Fano resonances in single QD [2-4], double QD (DQD) [5-9] interferometers are examples in

this research field. The coupled triple QD (TQD) interferometer is constructed by three QDs embedded in the loop
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conductor under the control of an Aharonov-Bohm (AB) flux Φ . The AB oscillation is induced from the accumu-

lation of phase difference between different paths through a closed loop device. It has been demonstrated that the

electronic states may be affected due to the perturbation of external AB field in the triangular TQD system [10,11].

This kind system can be used as a novel AB interferometer to obtain novel characteristics, since we have sufficient

degree of freedom for controlling electrons. The destructive interference can trap an electron in a dark state that

completely blocks the current through the device. Corresponding to the current correlations, the super-Poissonian

noise is realized associated with the coherent transport [12,13].

Shot noise is originated from higher order behavior of particle transport, and it may supply additional information

beyond the current-voltage characteristics and conductance. The discreteness and randomness of particles, as well as

the quantum fluctuation produce noise in the nano-devices and circuits. Generally, thermal noise, quantum noise, and

shot noise are involved in the current correlation, and from the current correlation we can derive noise formulas. Shot

noise describes the nonequilibrium property of discrete particles in a sample or a device at low temperature [14-16].

Since quasi-particles behave like discrete charged particles with the effective charge q, one can determine the charge

of a quasi-particle by comparing the measurement result of current correlations with derived shot noise formula. The

measurement of shot noise in quantum coherent superconductor-semiconductor junctions demonstrated the charge of

Cooper pair q = 2e [17], where e is electron charge e ≈ 1.6 × 10−19C. The fractional charges of quasi-particles have

been observed through measuring the shot noise generated by partitioning edge currents of fractional quantum Hall

systems [18-20]. The systematic measurement of shot noise in a single-electron transistor (SET) has been executed

by embedding a SET in a resonance circuit [21]. The shot noise detectors have been realized through operating

high-frequency signals [22,23]. Through investigating electron shot noise, frequency-selective single-photon detection

has been contrived by employing a DQD device [24].

Andreev reflection takes place in a normal metal-superconductor (NS) hybrid junction. As an incident electron

transports from normal metal to superconductor, a hole is reflected, and a Cooper pair quasi-particle with net charge

q = 2e is transferred through the junction [25]. The Andreev reflection opens a channel for electron to tunnel

as the energy of electron is smaller than the energy gap of superconductor. Specular Andreev reflection occurs

when Dirac fermions transport through a normal metal-superconductor interface in graphene, where the electron and

hole occupy different valleys of the band structure [26-28]. Nonlocal Andreev reflection occurs when the separation

of a tunnel barrier is comparable to the superconducting coherence length [29-31]. The entangled Andreev pairs

and collective excitations in nanoscale superconductors have been investigated to provide future strategies for the
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detection of entangled electron pairs in solid-state devices [32]. Positive cross-correlation has been detected in hybrid

superconductive and normal-metal three-terminal devices, from which the entangled electrons can be generated [33].

As a QD is connected to a normal metal and a superconductor, resonant transport of electron is strongly affected

by the superconductor, and novel resonant tunneling properties are induced by the Andreev reflection [34,35]. The

tunable Andreev reflection in an AB interferometer with four coupled QDs connecting to a normal metal and a

superconductor exhibits extremely narrow resonant current peak and antiresonance current dip [36]. The Josephson

current through strongly coupled DQD is adjusted by the parameters of the DQD, where the Kondo effect and the

interdot superexchange coupling take important role[37]. The hybrid TQD system is investigated, where a normal

metal and a superconductor are coupled to the central QD, while the other two QDs are laterally coupled to the central

QD[38]. The shot noise formula has been derived by Anantram and Datta [39] through using elastic scattering matrix

theory approach. The shot noise of hybrid nanodevices relating to the single QD molecular and DQD interferometer

has been investigated theoretically by employing the nonequilibrium Green’s function (NGF) approach [40,41].

In this Letter, we investigate the shot noise of the hybrid TQD system with three separate QDs coupled to each

other, and the coupled TQD is connected to two normal metal terminals and one superconductor. Through evaluating

the current correlations we have derived the general shot noise formula by employing the NGF approach. The self-

correlation and cross-correlation of current components associated with normal electrons, quasi-particles, and Andreev

reflecting particles contribute to the shot noise effectively.

2. Model and Formalism

Our hybrid TQD system is composed of three coupled QDs forming a triangular interferometer, where two QDs are

connected to two normal terminals, and one QD is connected to a superconductive terminal. We present the system

in Fig. 1 for helping to understand it graphically. The superconductor is denoted as terminal 1, and the normal metal

terminals are denoted as terminal 2, and terminal 3.

The system Hamiltonian H is settled by summing up the separate sub-Hamiltonian and the tunneling term

H =
∑

σ

[ 3∑

j=1

εjd
†
jσdjσ +

∑

i<j

(tijeiϕij d†iσdjσ + H.c.)
]

+
∑

γk

[ ∑
σ

εγka†γ,kσaγ,kσ −
(
∆γa†γ,k↑a

†
γ,−k↓

+∆∗
γaγ,−k↓aγ,k↑

)]
+

∑

kσ

3∑

j=1

(Tjk,ja
†
j,kσdjσ

+H.c.), (1)

where d†jσ and djσ (j = 1, 2, 3) are the creation and annihilation operators of electrons in the TQD, and εj is the
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energy level of the jth QD. The coupling constants between separate QDs satisfy tij = t∗ji. The phase differences

ϕij = −ϕji are associated with the AB flux Φ. We choose the gauge ϕ12 = ϕ23 = ϕ31 = φ/3 , where φ = 2πΦ/Φ0

is the AB phase, and Φ0 = h/e is the flux quantum. In the Hamiltonian, a†γ,kσ, aγ,kσ (γ = 1, 2, 3) represent the

creation and annihilation operators of electrons in the γth lead. The energy gap of the γth terminal is defined by

∆γ =| ∆γ | eiθγ , where θγ is the phase. The energy gap is zero for a normal metal (∆2 = ∆3 = 0), and it is nonzero

for the superconductive terminal (∆1 6= 0). Tjk,j is the tunneling strength associated with the interaction of electrons

between the jth terminal and the jth QD. The terminals are considered as macroscopic electron reservoirs which

are described by the grand canonical ensembles when the terminals are uncoupled from the central region. In the

derivations of current and noise formulas, we choose the chemical potential of the superconductor as the reference

point. The bias voltage Vγ between the γth terminal and the superconductor 1 is determined by the difference of

chemical potentials µγ − µ1 = eVγ . To proceed the derivations, we make the Bogoliubov transformation over the

Hamiltonian of superconductor by introducing quasi-particles to diagonalize the superconductor.

The tunneling current in the γth terminal is determined by the continuity equation and Heisenberg equation [42].

Here we are interested in the tunneling currents and shot noise in the normal metal terminals. The current operator

in the γth normal terminal is presented as Îγ(t) = ie
~

∑
kσ

[
Tγk,γa†γ,kσ(t)dγσ(t) − T ∗γk,γd†γσ(t)aγ,kσ(t)

]
, for γ = 2, 3,

where ~ = h/2π, and h ≈ 6.626× 10−34 J.s is the Planck constant. The tunneling current in the γth terminal is given

by taking ensemble average over the current operator above Iγ(t) = 〈Îγ(t)〉 . It is expressed by the Green’s function

matrices GX
ijσ(t, t′) and self-energy matrices ΣX

γ (t1, t) of the γth terminal in the Nambu representation

Iγ(t) = 2eRe
∑

σ

∫
dt1

[
Gr

γγσ(t, t1)Σ<
γ (t1, t)

+ G<
γγσ(t, t1)Σa

γ(t1, t)
]
11

. (2)

The Green’s function matrices GX
ijσ(t, t′) of coupled TQD in the Nambu representation are defined by

GX
ijσ(t, t′) =



〈〈diσ(t), d†jσ(t′)〉〉X , 〈〈diσ(t), djσ̄(t′)〉〉X

〈〈d†iσ̄(t), d†jσ(t′)〉〉X , 〈〈d†iσ̄(t), djσ̄(t′)〉〉X


 ,

where X ∈ {r, a, <, >} represents the retarded, advanced and Keldysh Green’s function matrices. The steady state

tunneling current is described by the Fourier transformation of the Green’s function matrices and self-energy matrices

of the γth terminal. The subscripts i, j denote the three separate QDs to form matrix blocks in the Nambu representa-

tion. The self-energy matrices of the terminals ΣX
ij (ε) are directly related to the connected terminal of corresponding

QD, and only the diagonal elements of terminal self-energy matrices exist in our system, i.e., ΣX
ij (ε) = ΣX

i (ε)δij . In
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the wide-band limit, the linewidth of the γth normal terminal is a constant Γγ . Generally, the retarded self-energy

matrix of the γth terminal is given by Σr
γ(ε) = − i

2 Γγργ(ε), where the matrix ργ(ε) is defined as

ργ(ε) =




Nγ(ε+γ ), wγ(ε+γ )

w∗γ(ε−γ ), Nγ(ε−γ )


 ,

with ε∓γ = ε∓ µγ1. Here µγ1 is the chemical potential difference between terminals γ and 1 stated as µγ1 = µγ − µ1,

and the voltage between the two corresponding terminals Vγ is settled by µγ1 = eVγ . The functions Nγ(ε) and wγ(ε)

are defined by Nγ(ε) =| ε | /√
ε2− | ∆γ |2, wγ(ε) = ∆γ/

√
ε2− | ∆γ |2, which contribute effectively to the mesoscopic

transport in the regimes | ε |>| ∆γ |, and | ε |<| ∆γ |. The Keldysh self-energy of the γth terminal is determined by

Σ<,>
γ (ε) = ±iΓγρ<,>

γ (ε), where the matrix ρ<,>
γ (ε) is defined as

ρ<,>
γ (ε) =




Ñγ(ε+γ )f<,>(ε+γ ), w̃γ(ε+γ )f<,>(ε+γ )

w̃∗γ(ε−γ )f<,>(ε−γ ), Ñγ(ε−γ )f<,>(ε−γ )


 ,

with ε∓γ = ε ∓ µγ1, and f<(ε) = f(ε), f>(ε) = 1 − f(ε). The Fermi distribution function of quasi-particles f(ε) =

1/[exp(ε/KBT ) + 1] is included in the self-energy matrix of terminal . The functions Ñγ(ε) and w̃γ(ε) are associated

with the density of state (DOS) of the superconductor defined by Ñγ(ε) = θ(| ε | − | ∆γ |) | ε | /
√

ε2− | ∆γ |2, w̃γ(ε) =

θ(| ε | − | ∆γ |)∆γ/
√

ε2− | ∆γ |2. For the normal terminals, we have Nγ(ε) = Ñγ(ε) = 1, and wγ(ε) = w̃γ(ε) = 0.

The Keldysh Green’s function matrices of the system G<,>
γγ′σ(ε) are determined by the retarded and advanced Green’s

function matrices G
r(a)
γ`σ (ε) through the relation G<,>

γγ′σ(ε) =
∑

` Gr
γ`σ(ε)Σ<,>

`` (ε)Ga
`γ′σ(ε), where the summation with

respect to ` runs over the three terminals. The Keldysh, retarded and advanced Green’s function matrices abide

by the relation Gr
γγ′σ(ε) −Ga

γγ′σ(ε) = G>
γγ′σ(ε) −G<

γγ′σ(ε) = −i
[
Gr

σ(ε)Γ(ε)Ga
σ(ε)

]
γγ′

, where Γ(ε) =
∑

γ Γγ(ε), and

Γγ(ε) = Γγργ(ε) is the 2× 2 matrix in the Nambu representation. If we obtain the retarded Green’s function matrix,

the advanced Green’s function matrix is settled by the retarded Green’s function matrix through Ga
σ(ε) = Gr

σ(ε)†.

To proceed the investigation of transport behaviors for our hybrid system, we employ the equation of motion (EOM)

method to derive the Green’s function matrices. We define the interaction matrix T ij and the Green’s function matrix

gr
di

(ε) of each isolated QD in the Nambu representation as

T ij =




tije
iϕij 0

0 −t∗ije
−iϕij


 , gr

di
(ε) =




1
ε−εi+iη 0

0 1
ε+εi+iη


 .

In the Nambu representation, the EOM of the retarded Green’s function matrix is expressed by

Gr
ijσ(ε) = gr

di
(ε)δij + gr

di
(ε)

[T ii−1G
r
i−1jσ(ε)

+T ii+1G
r
i+1jσ(ε) + Σr

i (ε)G
r
ijσ(ε)

]
, (3)
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where i, j = 1, 2, 3. Due to the coupling of the QDs, the elements of Green’s function matrix are coupled to each

other. The normal and abnormal Green’s functions are involved in the recurrence equation. Writing out the concrete

equations for separate elements of Green’s function matrix, and solving the equations consistently, we can obtain the

retarded Green’s function matrix.

From Eq. (2), one can derive the steady state tunneling current formula in the γth normal terminal

Iγ =
e

h

∑

βσ

∫
dε

{
Tγβ(ε)

[
f(ε+γ )− f(ε+β )

]

+TA
γβ(ε)

[
f(ε+β )− f(ε−β )

]}
. (4)

The transmission coefficients Tγβ(ε) represent the transport of electrons and quasi-particles from the γth terminal to

the βth terminal (β 6= γ) defined by Tγβ(ε) =
[
Γγ(ε)Gr

γβσ(ε)Γβ(ε)Ga
βγσ(ε)

]
11

. The transmission coefficients consist of

electron tunneling from the γth normal terminal to the other normal terminal, and the transport of quasi-particles to

the superconductive terminal. The quasi-particles transporting through the superconductor require that their energies

are restricted by | ε |> ∆, where ∆ =| ∆1 |. The transmission coefficients TA
γβ(ε) describe the Andreev reflection of

electron from the γth normal terminal back to the same normal terminal for β = γ, and to the other normal terminal

for β 6= γ defined by TA
γβ(ε) = Γγ,11(ε)Gr

γβσ,12(ε)Γβ,22(ε)Ga
βγσ,21(ε), where β 6= 1. The electrons with energy | ε |< ∆

and | ε |≥ ∆ can contribute to the Andreev tunneling current.

Shot noise Sγγ′(Ω) is generated by the current correlation defined by the relation 2πSγγ′(Ω)δ(Ω + Ω′) =

〈δÎγ(Ω)δÎγ′(Ω′)〉 + 〈δÎγ′(Ω′)δÎγ(Ω)〉, where δÎγ(Ω) = Îγ(Ω) − 〈Îγ(Ω)〉 is the current fluctuation operator [14]. Ω,Ω′

represent the frequencies related to the Fourier transformation over times t and t′. Substituting the current opera-

tor into the current correlation formula, and employing the Wick’s theorem we can express the current correlations

by Green’s function matrices. The normal and abnormal operator correlations contribute to shot noise due to the

coupling of superconductor. Through some technical evaluations we express shot noise by the Green’s function

matrices of the central coupled QDs. The shot noise related to the normal terminals γ and γ′ is determined by
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Sγγ′(Ω) = 2S
(1)
γγ′(Ω)− S

(+)
γγ′ (Ω), where we have defined the functions S

(1)
γγ′(Ω) and S

(+)
γγ′ (Ω) as the following forms

S
(1)
γγ′(Ω) = −2e2

h
Re

∫
dε

∑
σ

{
W >

γγ′,11(ε̃)W
<
γ′γ,11(ε)

+ W̃
>

γγ′,11(ε̃)W̃
<

γ′γ,11(ε)−G>
γγ′σ,11(ε̃)Q

<
γ′γ,11(ε)

− Q>
γγ′,11(ε̃)G

<
γ′γσ,11(ε)− δγγ′

[
G>

γγσ(ε̃)Σ<
γ (ε)

+ Σ>
γ (ε̃)G<

γγσ(ε)
]
11

}
, (5)

S
(+)
γγ′ (Ω) = −2e2

h
Re

∫
dε

∑
σ

{
W >

γγ′(ε̃)W
<
γ′γ(ε)

+ W̃
>

γγ′(ε̃)W̃
<

γ′γ(ε)−G>
γγ′σ(ε̃)Q<

γ′γ(ε)

− Q>
γγ′(ε̃)G

<
γ′γσ(ε)− δγγ′

[
G>

γγσ(ε̃)Σ<
γ (ε)

+ Σ>
γ (ε̃)G<

γγσ(ε)
]}

11
, (6)

with ε̃ = ε + ~Ω. In above formulas we have defined the matrices by Q<,>
γ′γ (ε) = Σr

γ′(ε)G
r
γ′γσ(ε)Σ<,>

γ (ε) +

W̃
<,>

γ′γ (ε)Σa
γ(ε), W <,>

γ′γ (ε) = Gr
γ′γσ(ε)Σ<,>

γ (ε) + G<,>
γ′γσ(ε)Σa

γ(ε), and W̃
<,>

γ′γ (ε) = Σr
γ′(ε)G

<,>
γ′γσ(ε) + Σ<,>

γ′ (ε)Ga
γ′γσ(ε)

for writing the formulas compactly. In general, Eqs. (5) and (6) contain the information of cross-correlation noise

(γ 6= γ′), and self-correlation noise (γ = γ′) at arbitrary frequency Ω. Through substituting the obtained Green’s

function matrices into above formulas one can completely determine the shot noise. In this Letter, we only present

the derivation of self-correlation noise at zero frequency Ω = 0, i.e., Sγγ = Sγγ(0). Thermal noise is also included

in the above noise formula, and it vanishes as temperature approaches zero. As a result of derivation, we obtain the

shot noise at zero temperature

Sγγ =
2e2

h

∫
dε

∑
σ

{ ∑

β 6=γ

Tγβ(ε)
[
1−

∑

β′ 6=γ

Tγβ′(ε)
]

×F (ε+γ , ε+β ) + 2TA
γγ′(ε)T

Q
γγ′(ε)F (ε−γ′ , ε

+
γ′)

+2TA
γγ(ε)

[
1− TA

γγ(ε)−
∑

β 6=γ

Tγβ(ε)
]
F (ε−γ , ε+γ )

+Tγ1(ε)Tγγ′(ε)F (ε, ε+γ′)
}

, (7)

where γ and γ′ (γ 6= γ′) denote different normal terminals. We have defined the function F (ε, ε′) = f>(ε)f<(ε′) +

f<(ε)f>(ε′), and the transmission coefficient TQ
γγ′(ε) = ΓγΓγ′ | Gr

γγ′σ,11(ε) |2. The term contains F (ε+γ , ε+β ) describes

the contribution of electrons and quasi-particles transporting from the γth normal terminal to the other normal and

superconductive terminals. This behavior induces the suppression of shot noise. The term accompanying F (ε−γ′ , ε
+
γ′)

describes the noise contributed by the Andreev reflection and transport of electrons from the γth normal terminal to



8

the γ′th normal terminal. This effect is ascribed to the correlation of Andreev reflecting current and normal tunneling

current between the two normal terminals, which enhances the shot noise. The term containing F (ε−γ , ε+γ ) is the

contribution of Andreev reflecting current in the γth normal terminal. The correlations of Andreev reflecting current

with the transporting currents coming from different terminals suppress shot noise. The last term associated with

F (ε, ε+γ′) describes the correlation of electron and quasi-particle transport, which results in the enhancement of shot

noise.

A special case of the shot noise formula Eq. (7) is given by restricting the transport behavior in the regime

eVγ = eVγ′ = eV , and | eV |< ∆. The normal tunneling current correlation disappears, and the current correlations

of Andreev reflection and electron transport in different normal terminals γ and γ′ determine shot noise

Sγγ =
4e2

h

∫
dε

∑
σ

{
TA

γγ(ε)
[
1− TA

γγ(ε)−
∑

β 6=γ

Tγβ(ε)
]

×F (ε−γ , ε+γ ) + TA
γγ′(ε)T

Q
γγ′(ε)F (ε−γ′ , ε

+
γ′)

}
, (8)

where γ 6= γ′, and γ, γ′ = 2, 3. In Eq. (8), the quasi-particle transport associated with Tγ1(ε) disappears, since the

applied source-drain bias | eV |> ∆ is required to overcome the threshold of superconductor for the quasi-particles.

The transmission coefficient Tγγ′(ε) contains the normal electron transmission and Andreev reflection of electrons

between the two normal terminals γ and γ′ determined by TQ
γγ′(ε) and TA

γγ′(ε), respectively. Compared with the two

terminal hybrid system, here the transmission of electrons between different normal terminals enlarges the shot noise

of our hybrid three terminal TQD interferometer.

As the voltages of two normal terminals are equal eV2 = eV3 = eV , the two normal metal terminals together take

the role of source, and the superconductive terminal is the drain of TQD. At zero temperature and | eV |< ∆, the

tunneling current is completely induced by the Andreev reflection

Iγ =
e

h

∑

βσ

∫
dεTA

γβ(ε)
[
f(ε+β )− f(ε−β )

]
, (9)

where β = 2, 3. The tunneling current is contributed by the Andreev reflection described by the transmission of

electrons in the same normal terminal TA
γγ , and the transmission between different normal terminals TA

γγ′ . Shot noise

in this regime is contributed by: (a) self-correlation of Andreev currents in the same terminal; (b) cross-correlations

among Andreev reflecting currents in different normal terminals; (c) cross-correlation of Andreev current and normal

electron current in different normal terminals.

Another special case of our system is the TQD coupled to one normal and one superconductive terminals. The

transmission coefficients of the quasi-particles disappear when the source-drain bias | eV |< ∆ at zero temperature,
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and the shot noise formula reduces to

Sγγ =
4e2

h

∫
dε

∑
σ

TA
γγ(ε)

[
1− TA

γγ(ε)
]
F (ε−γ , ε+γ ). (10)

The Fano factor is defined by Fγ = Sγγ/2qIγ , where q = 2e is the charge of Cooper pair in the superconductor.

The shot noise in this regime is completely generated by the Andreev reflecting current, and it is related to the

sub-Poissonian shot noise with Fγ < 1. However, for the hybrid three terminal TQD system, the shot noise described

by Eq. (7) is enhanced sufficiently to exhibit super-Poissonian shot noise with Fγ > 1.

3. Numerical calculations

In this section we perform the numerical calculations on the transmission coefficients, shot noise, and Fano factor of

terminal 2 (γ = 2) at zero temperature. We choose the energy gap of superconductor as energy scale by setting ∆ = 1,

and the shot noise is scaled by S0 = 4e2/h. We consider the symmetric coupling constants as t12 = t13 = t23 = 0.8,

Γ1 = Γ2 = Γ3 = 0.3. The gate voltages Vgj are introduced in the three separate QDs by replacing the energy

levels of QDs as εj → Ej − eVgj , where Ej is the energy of the jth QD. We investigate the modification of transport

characteristics by adjusting the energy levels, gate voltages, AB phase, and terminal bias voltages.

In Fig. 2, we present the transmission coefficient TA
22 at the incident energy of electrons ε = 0.9. The Fano peak-

valley resonant structures appear periodically with respect to the AB phase φ. In general, the period of oscillation is

2π shown by the dotted and circled curves. However, for the completely symmetric situation as E1 = E2 = E3 = 0.1,

and eVg1 = eVg2 = eVg3 = 0.1, the transmission coefficient TA
22 oscillates with period π shown by the solid curve. The

oscillation period of Andreev reflection in the same normal terminal may be controlled from 2π to π by adjusting

the parameters from asymmetric to completely symmetric system. As the energy levels and gate voltages of QDs

take several different values, one of the peaks in a period is suppressed, and the valleys are raised to display one

higher and one lower Fano-type oscillation with period 2π. The transmission TA
22 may be forbidden at φ = π(2n + 1),

(n = 0,±1,±2, ...) shown by the dotted curve as we adjust the parameters.

The transmission coefficients associated with the Andreev reflection in the same normal terminal TA
γγ(φ), and

between different normal terminals TA
γγ′(φ) (γ 6= γ′) behave quite differently. Fig. 3 shows the transmission coefficient

TA
23, which represents the Andreev reflection of electrons from terminal 2 to terminal 3. The specific energy level of

each QD affects the transport behaviors of electrons. Through adjusting the applied gate voltages Vgj (j = 1, 2, 3)

concrete characteristics are exhibited. For the completely symmetric situation with equal energy levels and equal gate

voltages, the oscillation structure appears two lager peaks and two smaller peaks in a period 2π (the solid curve).

The enhancement of asymmetric structure ( E1 = 0.1, E2 = −0.1, E3 = 0.2, and eVg1 = eVg2 = eVg3 = 0.1 ) results in
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the suppression of the dips to zero at φ = π(2n+1), (n = 0,±1,±2, ...), and the Fano peak-valley resonant oscillation

becomes more obvious (the dotted curve). For the completely asymmetric situation ( E1 = 0.1, E2 = −0.1, E3 = 0.2,

eVg1 = 0.3, eVg2 = 0.1, eVg3 = −0.3 ) shown by the circled curve, the magnitude of transmission coefficient TA
23 reduces,

and the zeros exhibit periodically at around φ = 2nπ, (n = 0,±1,±2, ...). Electrons transporting from terminal 2

into terminals 1 and 3 experience different obstacle barriers. Electrons transporting in the path from terminal 2 to

1 feel the superconducting barrier first, while electrons transporting from terminal 2 to 3 feel the normal obstacle

first. The electrons from different paths continue to travel, and at last they meet to form constructive and destructive

interference. The unbalanced interference of electrons from different paths results in the Fano peak-valley structure,

and the applied gate voltages control the behavior of oscillation structures.

In Fig. 4 we present the transmission coefficient TQ
23(φ) as the function of AB phase φ. This coefficient represents

the transport of electrons between terminal 2 and terminal 3. The higher-lower peak structure appears periodically

with the period 2π, and the valleys separating the higher-lower peaks are located at (2n + 1)π, (n = 0,±1,±2, ...).

Compared with the Andreev transmission coefficients shown in Figs. 2, and 3, we observe that the normal electron

transmission is much larger, and they possess quite different shapes. The oscillation behavior exhibits that the

transmission of electrons between the two normal terminals can not be suppressed to zero by changing AB phase.

For the completely asymmetric parameters shown by the circled curve, the magnitude of TQ
23(φ) is suppressed, and

the peak-valley structure is smeared to form single peak structure. Although this transmission is closely related to

the normal electron transport from terminal 2 to 3, the influence of superconductive terminal is obviously observed

by comparing with the solid ( ∆ 6= 0) and the dashed ( ∆ = 0) curves. The modification of superconductive terminal

is induced through involving the DOS of the superconductive terminal in the linewidth. The interference of electrons

coming from different paths is also efficiently affected by the superconductor.

The transmission coefficient of quasi-particles tunneling from the γth normal terminal to the superconductive termi-

nal is determined by Tγ1(ε) = ΓγΓ1

{
Ñ1(ε)

[ | Gr
γ1σ,11(ε) |2 + | Gr

γ1σ,12(ε) |2
]
+2Re[Gr

γ1σ,11(ε)w̃1(ε)Ga
1γσ,21(ε)]

}
, (γ 6=

1). The transmission Tγ1(ε) requires incident quasi-particles possessing the energy | ε |> ∆. For a normal TQD

system, only the first term of it contributes to the transport. As | ε |>> ∆, the effect of superconductive terminal

approaches the effect of normal metal terminal. We present the oscillation behavior of the transmission coefficient

T21(φ) as the function of φ in Fig. 5. The asymmetric Fano resonance structure appears explicitly, and the valleys

at (2n + 1)π, (n = 0,±1,±2, ...) are suppressed to zero when the energy levels and gate voltages take the completely

asymmetric values (the circled curve). This indicates that the transport is forbidden at these corresponding values of
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φ. The resonant peaks and valleys raise when the symmetric QDs and applied gate voltages are considered. Compar-

ing with Figs. 4 and 5, one observes that the transmission coefficients TQ
23(φ) ( electrons transport between normal

terminals) and T21(φ) (quasi-particle tunnelings) possess the same order. However, the valleys of TQ
23(φ) at 2nπ

are raised compared with the ones in T21(φ). The asymmetric Fano resonant peaks are generated from unbalanced

interference related to the asymmetric paths of electron transport.

A. The case for eV2 = eV3 = eV , | eV |< ∆

At zero temperature, the shot noise of the system with equal terminal bias voltages eV2 = eV3 = eV as | eV |< ∆

is determined by Eq. (8). The shot noise in this regime is contributed by the Andreev reflection, and the correlation

of Andreev tunneling with the normal electron transport. We present the variation of shot noise S22 versus the AB

phase φ at eV2 = eV3 = −0.9 in Fig. 6. The contentions of normal tunneling and Andreev reflection, as well as

the interference of charged particles generate the shot noise with several oscillation structures. For the completely

symmetric situation, the oscillation structure exhibits one higher and one lower resonant configuration in a period

2π (the solid curve). One resonant peak emerges between the two resonant peaks when we adjust the gate biases

and energy levels to form the completely asymmetric situation (the circled curve). This indicates that the oscillation

structure is sensitively dependent on the nature of QDs, and external gate voltages. The coherent correlation of the

Andreev reflecting and normal tunneling electrons generates the constructive and destructive interference. Although

transmission coefficients contain zeros with respect to the AB phase, the shot noise is not blockaded to zero when

we adjust the AB phase. This signifies that the shot noise is associated with multiple tunneling effects, and the

competition of these transport aspects determines the appearance of shot noise.

The system is controlled by three gate voltages Vgi(i = 1, 2, 3), which provide us wider controlling means for

adjusting the current characteristics and noise behaviors. We display the shot noise S22 with respect to the gate bias

eVg3 by setting the other gate biases as definite values exhibited in Fig. 7. When the gate bias eVg3 approaches zero,

an inverse resonance appears to show the minimum value of shot noise 0.01S0. The concrete appearance of shot noise

is modified with respect to supplying different values of energy levels and the other gate voltages. For the system

with equal energy levels and equal gate biases ( solid curve), the shot noise reaches its maximum value 0.36S0 at

about eVg3 = −6. The shot noise behaves asymmetrically with lower right apex value 0.3S0 at about eVg3 = 5. The

asymmetric configuration is strengthened as the energy levels and gate voltages are deviated from the equally chosen

ones.

The Fano factor versus gate bias eVg3 for the system with equal terminal biases eV2 and eV3 in the Andreev reflection
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regime is presented in Fig. 8. Varying the gate voltages in the case as eV2 = eV3 = eV , and | eV |< ∆, the Fano

factor remains F2 < 1, and the type of sub-Poissonian noise exhibits the suppression effect. An inverse resonant dip

appears as eVg3 approaches -1, and the asymmetric Fano resonant peak-valley structure is displayed obviously for

equally chosen parameters ( the solid curve). The asymmetric structure can be enhanced as we adjust the energy

levels of QDs and gate bias eVgi. As E1 = 0.1, E2 = −0.1, E3 = 0.2, and eVg1 = eVg2 = 0.1, the Fano factor reaches its

maximum value F2 ≈ 0.75 at about eVg3 = −5 (the dotted curve). The Factor reaches its minimum value F2 ≈ 0.23

at about eVg3 = 5 with the changing rate 69% for the dotted curve. The left apex and right peak-valley structure

is modified drastically to form double-peak structure by changing the parameters to eVg1 = 0.1, eVg2 = −0.2 ( the

circled curve), while keeping the energy levels unchanged as the ones of dotted curve.

B. The case for | eV2 |< ∆, | eV3 |> ∆

For the system applied with different terminal bias voltages Vi, the electron transmissions between different terminals

induce additional current correlations. These current correlations enhance the shot noise described by Eq. (7). We

present the shot noise S22 of terminal 2 by changing the gate bias eVg3 in Fig. 9 when eV2 = −0.9, eV3 = 1.2.

The resonant structure of shot noise appears with the magnitude S22 ≈ 0.48S0 as eVg3 ≈ 0 for the hybrid TQD

interferometer. The dependence of shot noise on different energy levels and gate voltages is depicted by different curves.

The competition of enhancement and suppression of shot noise is attributed to: (a) the self-correlations of Andreev

reflection, normal electrons, and quasi-particles; (b) the cross-correlation of Andreev reflection and normal electrons;

(c) the cross-correlation of normal electrons and quasi-particles; (d) the cross-correlation of Andreev reflection and

quasi-particles. The structure of shot noise exhibits Fano asymmetric resonance deviating from the Breit-Wigner

form obviously. The shot noise of normal system (the dashed curve) is given by ∆ → 0, which is smaller than that

of the hybrid system. This signifies that the cross-correlations among Andreev reflection, normal and quasi-particles

enhance the shot noise of the TQD interferometer.

The Fano factor F2 in the regime eV2 = −0.9, eV3 = 1.2 is exhibited in Fig. 10 as the function of eVg3. The

resonant behavior is displayed with the magnitude about F2 ≈ 1.62 for the hybrid system shown by different curves.

The affection of energy levels and gate voltages on the Fano factor exhibits indistinctly around the resonant regime.

However, it varies drastically in the regime away from the resonant peak. The enhancement of shot noise comes from

the cross-correlations of currents in different normal terminals, and the Andreev reflecting currents induced by the

superconductive terminal. The shot noise reaches super-Poissonian form with F2 > 1 when the absolute value of gate

voltage | eVg3 |< 5. The Fano factor of normal metal system is presented by the dashed curve. Although in large
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regime of eVg3 the shot noise belongs to sub-Poissonian, the magnitude of Fano factor can still reach F2 ≈ 1.15 around

the resonant regime. In this regime, the shot noise for the normal metal system belongs to super-Poissonian. This

indicates that the influence of superconductor on noise results in larger Fano factor. The coherent current exhibits

simple relation in this regime. The complicated correlations of different current components generate the enhancement

of shot noise.

4 Concluding Remarks

The shot noise formula of a hybrid TQD interferometer has been derived by employing the NGF method. The shot

noise is contributed by the self-correlation of Andreev reflecting current in the γth terminal, the cross-correlation of

Andreev reflection between γ and γ′ normal terminals, and electron transport between different normal terminals. The

behaviors of shot noise and Fano factor are intimately dependent on the terminal biases, where sub-Poissonian and

super-Poissonian noise appears in different regimes of eVγ . In the regime eVγ = eVγ′ = eV (γ 6= γ′), and | eV |< ∆,

the shot noise presents sub-Poissonian contributed by the Andreev reflection, and correlation of Andreev tunneling

with the normal electron transport. The inverse resonance structure displays when we adjust one of the gate voltages

by setting the other gate voltages. The asymmetric structure can be enhanced as we adjust the energy levels of QDs

and the gate bias eVgi. Although the transmission coefficients can be blockaded to zero when we change the AB

phase, the corresponding shot noise can not be suppressed to zero. Super-Poissonian shot noise exhibits in the regime

| eVγ |< ∆, | eVγ′ |> ∆, (γ 6= γ′), where the resonance structure appears with respect to one of the gate voltages. The

competition of self-correlation and cross-correlation between different current components achieves the enhancement

resonant shot noise.
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FIG. 2: (Color online) The Andreev transmission coefficient T A
22(φ) versus φ at ε = 0.9. The parameters are chosen as E1 =

E2 = E3 = 0.1, and eVg1 = eVg2 = eVg3 = 0.1 for the solid curve; E1 = 0.1, E2 = −0.1, E3 = 0.2, and eVg1 = eVg2 = eVg3 = 0.1

for the dotted curve; E1 = 0.1, E2 = −0.1, E3 = 0.2, and eVg1 = 0.3, eVg2 = 0.1, eVg3 = −0.3 for the circled curve.
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FIG. 3: (Color online) The Andreev transmission coefficient T A
23(φ) versus φ at ε = 0.9. The parameters are chosen as E1 =

E2 = E3 = 0.1, and eVg1 = eVg2 = eVg3 = 0.1 for the solid curve; E1 = 0.1, E2 = −0.1, E3 = 0.2, and eVg1 = eVg2 = eVg3 = 0.1

for the dotted curve; E1 = 0.1, E2 = −0.1, E3 = 0.2, and eVg1 = 0.3, eVg2 = 0.1, eVg3 = −0.3 for the circled curve.
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FIG. 4: (Color online) The transmission coefficient T Q
23(φ) versus φ at ε = 0.9. The parameters are chosen as E1 = E2 = E3 =

0.1, and eVg1 = eVg2 = eVg3 = 0.1 for the solid curve; E1 = 0.1, E2 = −0.1, E3 = 0.2, and eVg1 = eVg2 = eVg3 = 0.1 for the

dotted curve; E1 = 0.1, E2 = −0.1, E3 = 0.2, and eVg1 = 0.3, eVg2 = 0.1, eVg3 = −0.3 for the circled curve. The dashed curve

is depicted for the normal system by setting ∆ = 0, and the parameters are chosen as the ones of the solid curve.
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FIG. 5: (Color online) The transmission coefficient T21(φ) versus φ at ε = 1.2. The parameters are chosen as E1 = E2 = E3 =

0.1, and eVg1 = eVg2 = eVg3 = 0.1 for the solid curve; E1 = 0.1, E2 = −0.1, E3 = 0.2, and eVg1 = eVg2 = eVg3 = 0.1 for the

dotted curve; E1 = 0.1, E2 = −0.1, E3 = 0.2, and eVg1 = 0.3, eVg2 = 0.1, eVg3 = −0.3 for the circled curve. The dashed curve

is depicted for the normal system by setting ∆ = 0, and the parameters are chosen as the ones of the circled curve.
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FIG. 6: (Color online) The shot noise S22 versus φ at eV2 = eV3 = −0.9. The parameters are chosen as E1 = E2 = E3 = 0.1,

and eVg1 = eVg2 = eVg3 = 0.1 for the solid curve; E1 = 0.1, E2 = −0.1, E3 = 0.2, and eVg1 = eVg2 = eVg3 = 0.1 for the dotted

curve; E1 = 0.1, E2 = −0.1, E3 = 0.2, and eVg1 = 0.3, eVg2 = 0.1, eVg3 = −0.3 for the circled curve.
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FIG. 7: (Color online) The shot noise S22 versus eVg3 at eV2 = eV3 = −0.9, and φ = π/3. The parameters are chosen as

E1 = E2 = E3 = 0.1, eVg1 = eVg2 = 0.1 for the solid curve; E1 = 0.1, E2 = −0.1, E3 = 0.2, and eVg1 = eVg2 = 0.1 for the

dotted curve; E1 = 0.1, E2 = −0.1, E3 = 0.2 with eVg1 = 0.3, eVg2 = 0.1 for the circled curve.
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FIG. 8: (Color online) The Fano factor F2 versus eVg3 at eV2 = eV3 = −0.9, and φ = π/3. The parameters are chosen as

E1 = E2 = E3 = 0.1, eVg1 = eVg2 = 0.1 for the solid curve; E1 = 0.1, E2 = −0.1, E3 = 0.2, and eVg1 = eVg2 = 0.1 for the

dotted curve; E1 = 0.1, E2 = −0.1, E3 = 0.2 with eVg1 = 0.3, eVg2 = 0.1 for the circled curve.
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FIG. 9: (Color online) The shot noise S22 versus eVg3 at eV2 = −0.9, eV3 = 1.2, and φ = π/3. The parameters are chosen as

E1 = E2 = E3 = 0.1, eVg1 = eVg2 = 0.1 for the solid curve; E1 = 0.1, E2 = −0.1, E3 = 0.2, and eVg1 = eVg2 = 0.1 for the

dotted curve; E1 = 0.1, E2 = −0.1, E3 = 0.2 with eVg1 = 0.3, eVg2 = 0.1 for the circled curve. The dashed curve is related to

∆ = 0 with parameters chosen as those in solid curve.
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FIG. 10: (Color online) The Fano factor F2 versus eVg3 at eV2 = −0.9, eV3 = 1.2, and φ = π/3. The parameters are chosen

as E1 = E2 = E3 = 0.1, eVg1 = eVg2 = 0.1 for the solid curve; E1 = 0.1, E2 = −0.1, E3 = 0.2, and eVg1 = eVg2 = 0.1 for the

dotted curve; E1 = 0.1, E2 = −0.1, E3 = 0.2 with eVg1 = 0.3, eVg2 = 0.1 for the circled curve. The dashed curve is related to

∆ = 0 with parameters chosen as those in solid curve.


