
Chiral Spin Liquid in a Frustrated Anisotropic Kagome Heisenberg Model

Yin-Chen He,1 D. N. Sheng,2 and Yan Chen1,3
1Department of Physics, State Key Laboratory of Surface Physics and Laboratory of Advanced Materials,

Fudan University, Shanghai 200433, China
2Department of Physics and Astronomy, California State University, Northridge, California 91330, USA

3Department of Physics and Center of Theoretical and Computational Physics,
The University of Hong Kong, Pokfulam Road, Hong Kong, China

(Received 10 January 2014; revised manuscript received 20 February 2014; published 4 April 2014)

Kalmeyer-Laughlin (KL) chiral spin liquid (CSL) is a type of quantum spin liquid without time-reversal
symmetry, and it is considered as the parent state of an exotic type of superconductor—anyon
superconductor. Such an exotic state has been sought for more than twenty years; however, it remains
unclear whether it can exist in a realistic system where time-reversal symmetry is breaking (T breaking)
spontaneously. By using the density matrix renormalization group, we show that KL CSL exists in a
frustrated anisotropic kagome Heisenberg model, which has spontaneous T breaking. We find that our
model has two topological degenerate ground states, which exhibit nonvanishing scalar chirality order and
are protected by finite excitation gap. Furthermore, we identify this state as KL CSL by the characteristic
edge conformal field theory from the entanglement spectrum and the quasiparticles braiding statistics
extracted from the modular matrix. We also study how this CSL phase evolves as the system approaches the
nearest-neighbor kagome Heisenberg model.
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Topological order, an exotic state of matter that hosts
fractionalized quasiparticles with anyonic braiding sta-
tistics, is one of the core topics in modern condensed-
matter physics [1]. A quantum spin liquid (QSL) [2] is a
prominent example of topological order, which is thought
to exist in some frustrated magnets [3]. Among various
types of QSL [3–11], there is a class of time-reversal
symmetry violating QSL called chiral spin liquid (CSL)
[12–14]. A CSL shares some similar properties with the
fractional quantum Hall effect; however, the CSL
is special for both possessing topological order and
spontaneous time-reversal symmetry breaking.
The simplest CSL is the Kalmeyer-Laughlin (KL)

CSL (ν ¼ 1=2 Laughlin state) [12], in which spinons
obey semionic fractional statistics. It is theoretically
shown that if one dopes the KL CSL with holes [15], an
exotic type of superconductivity—anyon superconduc-
tivity [16]—will emerge. Inspired by the fundamental
interest and prospect of finding exotic superconductors,
researchers have shown much interest in the KL CSL
[17–29]. There was no experimental or theoretical
evidence supporting the existence of this state until
very recently. Several artificial models were found that
can host a KL state [26–28]. For example, one can
directly induce scalar chirality order by a 3-spin parity
and time-reversal-violating interaction [28] on a kagome
lattice to produce the KL state. However, it remains
elusive whether the KL state can exist in a system with
time-reversal symmetry, which may be more closely
related to real materials. It has been suggested that the

KL state may exist in magnetic frustrated systems
through spontaneously breaking time-reversal symmetry
[12,17], which are among the most difficult systems for
theorists to study exactly.
In this Letter, we show that the KL state is the ground

state of a frustrated anisotropic kagome Heisenberg model
(KHM) by using the density matrix renormalization group
(DMRG) [30], a numerical method which has been proven
powerful in solving quasi-one-dimensional frustrated
systems [31–34]. Compared with the previous systems
with multiple spin interactions [26–28], the system we
study here only involves two spin interactions, and the
Hamiltonian has time-reversal symmetry. By the technique
developed in Refs. [35,36], we find two topologically
degenerate ground states, both of which break time-reversal
symmetry spontaneously and exhibit a nonvanishing scalar
chirality order. We also get a finite energy excitation gap
and small correlation length, which support that we have a
gapped phase. Furthermore, the entanglement spectrum of
the ground states fits the edge conformal field theory of the
KL state. Last but not least, we calculate the modular
matrix using the two ground states [36–38], which gives
the braiding statistics [1] of emergent anyons that is the
same as what is expected for the KL state. To the best
of our knowledge, this is the first model that breaks time-
reversal symmetry spontaneously and hosts a KL CSL. We
also show how the system evolves as it approaches the
nearest-neighbor KHM.
Model Hamiltonian.—We study a frustrated anisotropic

KHM, whose Hamiltonian is
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H ¼ J
X
hi;ji

Si · Sj þ J2
X
hhi;jii

Szi S
z
j þ J3

X
hhhi;jiii

SziS
z
j; (1)

where the nearest-neighbor interaction hi; ji is the isotropic
Heisenberg interaction, and the second hhi; jii and third
hhhi; jiii nearest-neighbor interactions are Ising-type inter-
actions with the same magnitude, J2 ¼ J3 ¼ J0. All the
interactions are antiferromagnetic, and we take J ¼ 1. To
establish the nature of the CSL here, we mainly focus on
the point J0 ¼ 1, where we find the CSL is very robust.
We calculate the kagome lattice spin system wrapped on

a cylinder with YC or XC geometry (see the Supplemental
Material [39]). Both finite DMRG and infinite DMRG
(iDMRG) [40] are used, and those two different algorithms
give almost the same results with differences around the
truncation error (energy ∼10−6, entropy ∼10−4) (see the
Supplemental Material [39]). The CSL spontaneously
breaks time-reversal symmetry; thus, we use both real
and complex variable codes, although the Hamiltonian is
real. We mainly focus on the system with an even number
of sites on the column where the finite size effect is smaller.
We have kept up to 8000 states in the DMRG simulation,
and the truncation error is smaller than 10−6 for YC8, XC8
cylinders and 5 × 10−5 for YC12, XC12 cylinders. These
truncation errors are small enough to obtain the highly
accurate results for the gapped CSL we find.
Degenerate ground states and their properties.—

Topological degeneracy is usually defined on a torus,
but for an infinite cylinder (or sufficiently long cylinder),
one can also have a full set of topological degenerate states
in the bulk of the system. Using the technique developed in
Ref. [35], we can get two topological degenerate ground
states ψ1 and ψ s, which are distinguished by the absence or
presence of a spinon line, as shown in Fig. 1(b). We obtain
ψ1 naturally in the conventional DMRG simulation and get
ψ s by creating edge spinons (pin or remove one site). On
the other hand, by inserting a 2π flux in the cylinder,
we find that ψ1 (ψ s) adiabatically evolves into ψ s (ψ1)
[Fig. 1(c)], which indicates that the 2π flux insertion will
pump a spinon from one edge to the other edge, a property
for the ν ¼ 1=2 fractional quantum Hall state. We also
calculate the one column overlap [35] between states at
different fluxes, as shown in Fig. 1(d). From the overlaps
F1ðθÞ ¼ jhψðθÞjψðθ þ π=3Þij, we know the state evolves
adiabatically as the flux is inserted. Nevertheless, F2ðθÞ ¼
jhψð0ÞjψðθÞij decreases as the inserted flux θ increases
from 0 to 2π. In particular, ψ1 and ψ s have a very small
overlap (f ∼ 0.1), supporting the idea that they are distinct
states. The one column overlap (f) between two degenerate
states can also give us the correlation length of spinon
εs ¼ −1= log f ∼ 0.4 [35]. From the symmetry properties
of the entanglement spectrum [35] (also see Fig. 3), we also
find that ψ1 and ψ s are different topological degenerate
ground states related to the absence or presence of the
spinon line. The energy and entropy of the two states are

very close (Table I), and their difference drops quickly as
the system size increases. It is consistent with the theory of
topological degeneracy, where the energy difference is
expected to vanish exponentially with system width,
ΔE ∼ expð−Ly=εsÞ.
To check whether the state spontaneously breaks

time-reversal symmetry, we measure the scalar chirality
order [17]

χ▹ð◃Þi ¼ hSi1 · ðSi2 × Si3Þi; i1; i2; i3 ∈ ▹;◃: (2)

We find χ is homogeneous on a kagome lattice, where the
up and down triangles have the same chirality χ▹ ≈ χ◃. We
also calculate the overlap between ψ i and its conjugate ψ�

i ,
where a very small value (3 × 4 × 16 YC8 cylinder ∼10−6,
3 × 4 × 24 YC8 cylinder ∼10−8) is obtained. The ortho-
gonality between ψ i and ψ�

i indicates that we have two
orthogonal states with opposite chirality. We further com-
pare these two states with the results of real variable code
simulation, and we find ψ i and ψ�

i are minimal entangled
states [the superposition states ðψ � ψ�

i Þ=
ffiffiffi
2

p
will be

maximal entangled states] of a spontaneous time-reversal
symmetry-breaking system. The triplet gap and singlet gap
are calculated on a finite cylinder embedded in the middle
of the infinite cylinder (see the Supplemental Material
[39]). From the correlation length, singlet and triplet gaps,
we infer the existence of a large gap between the ground
state and the excited states. To confirm the absence of
magnetic order, we plot the spin correlation hSi · Siþri in
Fig. 2(a), which clearly exhibits an exponentially decaying
behavior. The nearest bond spin correlation is very homo-
geneous with a difference of around 1% [Fig. 1(a)], so we
can exclude the translational symmetry-breaking phase,
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FIG. 1 (color online). (a) Illustration of YC8 (Ly ¼ 4) kagome
lattice. Here, we plot the bond spin correlation distribution of two
ground states hSi · Sji − eα, where eα is the average of the bond
spin correlations, −0.206450 for ψ1 and −0.206486 for ψs.
(b) Two topological degenerate ground states ψ1 and ψs in CSL.
Response of YC8 cylinder under flux insertion: (c) The energy
evolution. (d) The one column overlap between states at different
fluxesF1ðθÞ ¼ jhψðθÞjψðθ þ π=3Þij and F2ðθÞ ¼ jhψð0ÞjψðθÞij.
Here, ψð0Þ ¼ ψ1 and ψð2πÞ ¼ ψs.
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such as a valence bond crystal. All these properties suggest
a CSL phase.
As a self-consistency check, we also calculate properties

of the system using a real-variable code. For a time-reversal
symmetry-breaking phase, a real-variable code will yield a
maximal entangled state ~ψ ∼ ðψ � ψ�Þ= ffiffiffi

2
p

; ~ψ has a doubly
degenerate entanglement spectrum, and its entropy is
ln 2 larger than that of ψ . For the time-reversal symmetric
state, ~ψ , the scalar chirality order in Eq. (2) is 0, but we
can extract it from the chiral correlation function hχiχiþri ¼
h½Si1 · ðSi2 × Si3Þ�½SðiþrÞ1 · ðSðiþrÞ2 × SðiþrÞ3Þ�i. Clearly
observed in Fig. 2(b) is a long-range chiral correlation,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
limr→∞hχiχiþri

p
≈ 0.09 (YC8) and 0.1 (YC12).

Entanglement spectrum.— The entanglement spectrum
can serve as a fingerprint for a topological chiral phase [41].
In the DMRG simulation, one can naturally obtain the
entanglement spectrum along a vertical cut. To see whether
the entanglement spectrum fits the conformal field theory,
one needs to calculate the momentum (along the y
direction) of each entanglement spectrum [36]. Since the
system has a Uð1Þ symmetry, each spectrum has an Sz
quantum number. From Fig. 3, one can see the pattern of ψ1

is symmetric about the positive and negative Sz, whereas
that of ψ s is symmetric about Sz ¼ 0 and Sz ¼ 1. This
distinct symmetry pattern is the consequence of the absence
or presence of the spinon line as shown in Fig. 1(b).
Moreover, one can clearly observe an entanglement

spectrum gap and the degeneracy pattern
(f1; 1; 2; 3; 5;…g) of the low-lying spectra. This is in
agreement with the edge conformal field theory of the
KL state [36].
Braiding statistics from a modular matrix.—Next, we

use ψ1 and ψ s to calculate the modular matrix [1], S, U,
which contains full information of a topological ordered
phase. For a topological chiral state, the modular matrix is

S ¼
�
S11 S1s
Ss1 Sss

�
; U ¼ e−ið2π=24Þc

�
h1 0

0 hs

�
: (3)

S1i ¼ Si1 ¼ di=D, where di is the quantum dimension of
quasiparticle (type i) andD ¼

ffiffiffiffiffiffiffiffiffiffiffiP
id

2
i

p
is the total quantum

dimension. The topological entanglement entropy [42,43]
can also give the quantum dimension [44]. The entry Sij
will give the braiding statistics of the anyon model.
Furthermore, c is the central charge of the system, and
hi is called the topological spin, which determines the self-
statistics of the type-i anyon. For Abelian anyons, one has
di ¼ 1 and Sij ¼ expðiθijÞ=

ffiffiffiffi
D

p
where θij is the phase

coming from a type-i anyon encircling a type-j anyon.
Following the procedure outlined in Refs. [36,37], we

get the modular matrix of the YC8 cylinder using
Monte Carlo sampling [45]

S¼ 1ffiffiffi
2

p
�
1 1

1 −1
�
þ10−2ffiffiffi

2
p

�−0.42 −2.2
−1.26 0.76−0.15i

�
(4)

and

U ¼ e−ið2π=24Þ
�
1 0

0 i

�
×

�
e0.011i 0

0 e−0.006i

�
: (5)

Generally, from the modular matrices, one can know:
(1) there are two types of quasiparticles, a trivial vacuum
1 and a spinon s—they are all Abelian quasiparticles with
quantum dimension di ¼ 1; (2) the spinon has semionic
braiding statistics relative to itself; (3) the fusion rules are
1 × 1 ¼ s × s ¼ 1, 1 × s ¼ s × 1 ¼ s; (3) the topological
spins of the two quasiparticles are h1 ¼ 1, hs ¼ i; and
(4) the central charge is c ¼ 1. From these results, we can
conclude that this CSL state is the KL state.

(b) (c)(a)

FIG. 2 (color online). (a) Spin correlation hSi · Siþri versus
distance r. The chiral correlation hχiχiþri versus the distance r:
(b) Results from the iDMRG. (c) Results from the finite DMRG.
The system sizes we calculated are 3 × 4 × 24 and 3 × 6 × 16YC
cylinders. Here, J0 ¼ 1.

TABLE I. The energy E, entropy S, correlation length ξ, chirality order χ▹, χ◃, singlet gap Δs, triplet gap Δt. The energy and entropy
of YC12 as well as XC12 cylinders have been extrapolated versus truncation error.

State E S ξ χ▹ χ◃ Δs Δt

ψ1, YC8 −0.463771 2.880 1.08 0.09 0.09 0.17 0.40
ψs, YC8 −0.463756 2.875 0.85 0.09 0.09 0.16 0.40
ψ1, YC12 −0.46356936 4.3688 0.60 0.104 0.104 0.24 0.42
ψs, YC12 −0.46356941 4.3687 0.60 0.104 0.104 0.24 0.42
ψ1, XC8 −0.463630 2.711 0.79 0.095 0.095 0.14 0.35
ψs, XC8 −0.463643 2.719 0.87 0.093 0.093 0.15 0.35
ψ1, XC12 −0.4635381 4.153 0.55 0.103 0.103 0.22 0.41
ψs, XC12 −0.4635382 4.154 0.55 0.103 0.103 0.22 0.41
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It is interesting to know the mechanism for the KL CSL
phase. An intriguing proposal for the emergence of a CSL
on the kagome lattice is given in Ref. [14]. They found that
a J1 ∼ J2 ∼ J3 SU(2) Heisenberg interaction on a kagome
lattice will lead to a classical chiral state with 12 spins
pointing toward the corners of a cuboctahedron. Quantum
fluctuation will disrupt the classical order and result in a
CSL state. However, our Ising antiferromagnetic interac-
tion does not favor such a complex classical state, as it only
prefers to align spins antiparallel along the z direction.
Moreover, the CSL proposed there is a Z2 CSL, different
from the KL-CSL we find here. We think the CSL here
comes from quantum frustration on the kagome lattice as
originally proposed by a KL [12], and the Ising antiferro-
magnetic interactions only play the role of stabilizing the
CSL state through enhancing the repulsive interactions
between spin particles. In a parallel work, a CSL has
also been found in an SU(2) rotational invariant Heisenberg
model [46] on a kagome lattice. It is interesting to study
whether real material relevant interactions [47] may also

stabilize the KL state on the kagome lattice, which will
help to find a KL CSL or even anyon superconductor
in real materials such as herbertsmithite ZnCu3ðOHÞ6Cl2.
Chiral spin liquid and nearest-neighbor KHM.—In the

following, we study how the CSL evolves into the limit
(J0 ¼ 0), nearest-neighborKHM,where a possibleZ2 SLwas
previously discovered [31]. To systematically study the state
evolution, we use both real- and complex-variable codes,
where we find the former has a bias towards a time-reversal
invariant spin liquid (TSL) [48], whereas the latter has a bias
towards aCSL (see SupplementalMaterial [39]). In thewhole
region J0 ∈ ½0; 1.2�, the two degenerate ground states ψ1 and
ψ s always exist; moreover, due to the finite size effect, these
two states behave differently as J0 decreases as shown in
Fig. 4.
Becauseof thebiasof the real andcomplexcode,wefind in

some regions (transition region) two codes give different
states: TSL and CSL. As shown by the scalar chirality order,
the transition region for ψ0 is around (0.6,0.8) and that
for ψ s is around (0.0,0.4). The energy difference of TSL and
CSL is very small (∼10−5), indicating the strong competition
between these two states. We find that, for the ψ0, TSL has a
lower energy thanCSLwhen J0 ≲ 0.7; in contrast, forψ s, the
CSLalwayshasaslightly lowerenergy thanTSL.TheCSLin
the spinon sector may be related to the excited state with
nonzero Chern number on nearest-neighbor KHM found in
the exact diagonalization study [49]. The two sectors may
also behave similarly as the system size increases. The
quantum phase transition between the two topological
phases, CSL and TSL, may result in new intriguing critical
behavior, which may explain the results we obtain in the
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(b)
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FIG. 3 (color online). Entanglement spectrum of YC12 cylinder
(Ly ¼ 6) (a) ψ1 and (b) ψs. The horizontal axis is the momentum
along the y direction, py ¼ 0; 2π=6;…; 5 × 2π=6 (up to a global
shift). The leading spectra are marked in red, above which there is
a spectrum gap marked with a dashed line. Other geometry and
size samples have similar results.

(a)-I

(a)-II

(a)-III

(b)-I

(b)-II

(b)-III

Complex Code

Real Code

Complex Code

Real Code

FIG. 4 (color online). J0-dependent behavior of the two
topological degenerate sectors: (a) normal sector ψ1 and (b) spi-
non sector ψ s. Here, we show results of calculations for the YC8
cylinder: (I) the chirality order, χ [Eq. (2)], where for the real
code, we define χ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

limr→∞hχiχiþri
p

; (II) the correlation
length ξ of the ground state; (III) the singlet gap Δs of the
ground state.
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transition region.We leave theseopenand challenging topics
for future study.
Conclusion.—Using the DMRG, we numerically show

that the KL CSL is the ground state of a frustrated
anisotropic KHM. We provide various evidence to support
the KL CSL’s existence, especially the presence of finite
scalar chirality order, topological degeneracy, large energy
gap, and the verification of the semionic fractional statistics
of the spinons. Our work shows that the KL CSL can
emerge in a realistic model for the first time, which only
involves time-reversal invariant two-spin exchange inter-
action terms. Furthermore, we study how the system
evolves into the nearest-neighbor KHM and provide some
explanation of the competing evidence between the CSL
and Z2 SL. It would be interesting to study much larger
systems using different approaches (such as tensor network
or projected wave function) to further establish the topo-
logical phase and exclude the possibility of a weak order.
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