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Abstract

In this paper, we study a continuous-time bivariate risk process in which each individual line of
business implements a dividend barrier strategy. The insurance portfolios of the two insurers are
correlated as they are subject to common shocks which induce dependent claims. To analyze the
expected discounted dividends until the joint ruin time of the bivariate process (i.e. exit from the
positive quadrant), we propose a discrete-time counterpart of the model and apply a bivariate extension
of the Dickson-Waters discretization (Dickson and Waters (1991)) with the use of a bivariate Panjer
type recursion (Walhin and Paris (2000)). Detailed numerical examples under different dependencies
via common shocks, copulas and proportional reinsurance are discussed, and applications to optimal
problems in reinsurance, capital allocation and dividends are given. It is also illustrated that the
optimal pair of dividend barriers maximizing the dividend function is dependent on the initial surplus
levels. A modified type of dividend barrier strategy is proposed towards the end.

Keywords: Bivariate risk process; Discretization; Dividend barrier strategy; Copulas; Capital allo-
cation; Proportional reinsurance.

1 Introduction

In the classical compound Poisson risk model, the surplus process {U∗(t)}t≥0 of a single line of insurance
business is modelled by

U∗(t) = u + ct−
N(t)∑

n=1

Xn, t ≥ 0,

where u ≥ 0 is the insurer’s initial surplus, c > 0 is the constant premium income per unit time,
{N(t)}t≥0 is a counting process that counts the number of claims, and Xn is the size (or severity) of the
n-th claim. It is assumed that {N(t)}t≥0 is a Poisson process with rate λ > 0, and {Xn}∞n=1 is a sequence
of independent and identically distributed (i.i.d.) random variables independent of {N(t)}t≥0. The time
of ruin of the process {U∗(t)}t≥0 is defined by T∗ = inf{t ≥ 0 : U∗(t) < 0}, which is the first time that
the surplus process drops below zero. One requires the positive security loading condition c > λE[X1] to
ensure that the event of ruin {T∗ < ∞} is not certain.

A drawback of the above model is that the surplus process {U∗(t)}t≥0 will grow to infinity in the long
run, which leads to the idea of redistributing some of the surplus to the shareholders of the insurance
company (de Finetti (1957)). One of the most commonly studied dividend strategies is the barrier
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strategy (see e.g. Gerber (1979), Lin et al. (2003), Dickson and Waters (2004) and Gerber et al. (2006)),
in which the entire incoming premium rate is paid to the shareholders as dividend immediately whenever
the surplus reaches a fixed barrier level b (as long as ruin has not occurred). Mathematically, the modified
surplus process {U(t)}t≥0 with U(0) = u ≥ 0 and u ≤ b can be described by

dU(t) =

{
cdt− d

∑N(t)
n=1 Xn, 0 ≤ U(t) < b.

−d
∑N(t)

n=1 Xn, U(t) = b.

The quantities of interest in the literature include the Gerber-Shiu expected discounted penalty function
(Gerber and Shiu (1998)) and the expectation or even the higher moments of the discounted dividends
payable until ruin (Dickson and Waters (2004)). The study of barrier strategy is of great importance
because it is known to be optimal in maximizing the expected discounted dividends until ruin when the
density of X1 is completely monotone (e.g. Loeffen (2008, Theorem 3)). In addition, for any given claim
distributions, the optimal dividend barrier is independent of the initial surplus level. We refer interested
readers to Albrecher and Thonhauser (2009) and Avanzi (2009) for comprehensive reviews of different
dividend strategies and related optimality results in the literature.

Recently, there has been increased interest in multi-dimensional risk theory in which the surplus
processes of more than one line of business are jointly analyzed. In multi-dimensional risk models, the
frequencies and/or the severities of insurance claims payable by different insurers are generally correlated.
Practically, such a situation arises when the insurers are subject to ‘common shocks’ as a result of
catastrophic events (e.g. earthquakes and tsunamis) inducing large and correlated claims to them at the
same time, or when an insurer transfers part of its claims to one or more reinsurers via a reinsurance
contract. In this paper, we follow the former formulation, although applications to the latter situation
are also possible (see Remark 1 and Section 3.3). We shall consider two lines of business, and each
of them implements a dividend barrier strategy. The bivariate surplus process {(U1(t), U2(t))}t≥0 with
initial surplus levels (u1, u2) = (U1(0), U2(0)) and dividend barriers (b1, b2) (where 0 ≤ u1 ≤ b1 and
0 ≤ u2 ≤ b2) is described by, for k = 1, 2,

dUk(t) =





ck dt− d
(∑Nkk(t)

n=1 Yk,n +
∑N12(t)

n=1 Zk,n

)
, 0 ≤ Uk(t) < bk.

−d
(∑Nkk(t)

n=1 Yk,n +
∑N12(t)

n=1 Zk,n

)
, Uk(t) = bk.

(1.1)

Here (c1, c2) are the premium rates of the two lines, and {N11(t)}t≥0, {N22(t)}t≥0 and {N12(t)}t≥0 are
mutually independent Poisson processes with respective parameters λ11, λ22 and λ12. Furthermore,
{Y1,n}∞n=1, {Y2,n}∞n=1 and {(Z1,n, Z2,n)}∞n=1 are mutually independent i.i.d. sequences, independent of
the above three Poisson processes and distributed as the generic random variables Y1, Y2 and (Z1, Z2)
respectively. For each k = 1, 2, the process {Nkk(t)}t≥0 counts the number of claims faced by the k-
th business only for claims that arise from the ‘usual’ claim occurrences with severity distributed as
Yk. On the other hand, {N12(t)}t≥0 counts the number of ‘common shocks’ which result in possibly
dependent claims distributed as (Z1, Z2) to the two lines. It is assumed that Y1, Y2 and (Z1, Z2) are
all positive continuous random variables with cumulative distribution functions (cdfs) F11(·), F22(·) and
F12(·, ·) respectively. It will be convenient to present F12(·, ·) in copula form (e.g. Nelsen (2006)) as
F12(z1, z2) = C(F1•(z1), F•2(z2)), where C(·, ·) is a copula and F1•(z1) and F•2(z2) are the marginal cdfs of
Z1 and Z2 respectively. For later use we also define the probability density functions (pdfs) f11(·) = F ′

11(·),
f22(·) = F ′

22(·), f1•(·) = F ′
1•(·) and f•2(·) = F ′

•2(·). For each k = 1, 2, we assume that the loading condition
ck > λkkE[Yk] + λ12E[Zk] holds. The time of ruin of the k-th line is Tk = inf{t ≥ 0 : Uk(t) < 0}.
Remark 1 Suppose that (Z1, Z2) is the result of the splitting of a claim W between an insurer and a
reinsurer via proportional reinsurance, i.e. (Z1, Z2) = (s1W, (1− s1)W ) for a positive continuous random
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variable W with cdf FW (·) and a constant s1 such that 0 < s1 < 1. Then one can let F1•(z1) = FW (z1/s1)
and F•2(z2) = FW (z2/(1−s1)) and apply the comonotonicity copula C(u, v) = min(u, v) for 0 ≤ u, v ≤ 1.
Hence, our formulation provides a unified approach to study common shocks and proportional reinsurance.
Examples concerning proportional reinsurance will be examined in Section 3.3. ¤

Unlike the classical univariate risk process in which ruin is defined to be the event that the surplus
process ever drops below zero, there are various ways to define ruin in a bivariate risk model. Commonly
studied definitions of ruin include (i) min(T1, T2) = inf{t ≥ 0 : min(U1(t), U2(t)) < 0}: the first time
when (at least) one of the two surplus processes drops below zero (i.e. the first exit from the positive
quadrant); (ii) inf{t ≥ 0 : max(U1(t), U2(t)) < 0}: the first time when both processes are below zero
simultaneously (i.e. the first entrance into the negative quadrant); and (iii) max(T1, T2): the first time
when both processes have ruined (but not necessarily simultaneously). Most papers in the literature of
multi-dimensional risk theory are concerned with the ruin probabilities associated with these definitions
of ruin in the absence of dividends. Exact solutions are rarely available, and the existing results are
mostly in the form of asymptotics (e.g. Li et al. (2007, Section 4), Chen et al. (2011), Hu and Jiang
(2013), and Huang et al. (2013)), bounds (e.g. Chan et al. (2003), Picard et al. (2003, Section 4),
Cai and Li (2005, 2007), Yuen et al. (2006), and Li et al. (2007, Sections 2 and 3)), and recursive
approximations (e.g. Dang et al. (2009), Rabehasaina (2009, Section 5), and Gong et al. (2012)). In
some special two-dimensional models involving proportional reinsurance, exact results were obtained by
Avram et al. (2008a,b) and Badescu et al. (2011) via transforming the bivariate problem to simpler
univariate problems. Numerical methods to evaluate ruin probabilities with particular applications in
excess-of-loss and stop-loss reinsurance can be found in Kaishev and Dimitrova (2006), Kaishev et al.
(2008, Section 4), Dimitrova and Kaishev (2010), and Castañer et al. (2013). We also refer interested
readers to e.g. Collamore (1996, 1998), Hult et al. (2005), Hult and Lindskog (2006), Blanchet and Liu
(2014), and Liu and Woo (2014) for the study of ruin-related quantities associated to the hitting of a
rare set in multi-dimensional models. A comprehensive overview of multi-dimensional risk processes is
given by in Asmussen and Albrecher (2010, Chapter XIII.9).

A recent work by Czarna and Palmowski (2011) took into account the effect of dividend payments in a
bivariate model with proportional reinsurance. One of their proposed models involves a barrier in the form
of aU1(t) + U2(t) = b, which is clearly different from our model dynamics (1.1). However, they implicitly
assumed that there is a transfer of capital between the two lines of business whenever the bivariate
process is on the barrier (see their Figure 1). This means that ruin (in terms of an exit from the positive
quadrant) may actually occur due to capital transfer, which is practically undesirable. In this paper, we
shall study the model (1.1) and define the time of ruin of the bivariate process {(U1(t), U2(t))}t≥0 to be
T = min(T1, T2) = inf{t ≥ 0 : min(U1(t), U2(t)) < 0}. The key quantity of our interest is the expected
discounted dividends until the joint ruin time for each of the two lines. For each k = 1, 2, we aim at
evaluating, for 0 ≤ u1 ≤ b1; 0 ≤ u2 ≤ b2,

Vk(u1, u2; b1, b2) = ck E

[∫ T

0
e−δtI{Uk(t) = bk}dt

∣∣∣(U1(0), U2(0)) = (u1, u2)
]

, (1.2)

where δ is the force of interest per unit time. It is instructive to note that even if there is no common shock
component, the dividends of the two lines are still dependent via the joint ruin time T . As mentioned
above, it is generally very difficult to derive exact results for multi-dimensional risk processes. Therefore,
similar procedures as in Dickson and Waters (1991) can be applied to establish a connection between our
continuous-time model and a discrete-time one which is easier to study. Then one can approximate (1.2)
using its discrete counterpart.
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This paper is organized as follows. In Section 2, the evaluation of the expected discounted divi-
dends until ruin in a discrete bivariate risk process is discussed. Despite being a stand-alone model, we
demonstrate how it can be used to approximate the continuous-time model (1.2) via Dickson-Waters
discretization with the help of a bivariate Panjer type recursion. The approximation is then supported
by some simulations. Section 3 is concerned with comparing how dependency between the two lines
affects dividends, and numerical examples involving common shocks, proportional reinsurance and the
use of different copulas are given. Section 4 provides more numerical examples which focus on the pair of
optimal dividend barriers maximizing the expected discounted dividends. Unlike the classical univariate
case, the optimal barriers in the bivariate framework depend on the initial surplus levels of the two lines.
This leads us to propose a modified type of barrier strategy. A capital allocation problem is also discussed
briefly. Section 5 ends the paper with a few concluding remarks.

2 A discrete bivariate risk process with dividend barriers

2.1 The model and dividends

Under a discrete framework, we consider the bivariate process {(Ud
1 (n), Ud

2 (n))}∞n=0 with the dividend
barriers (b1, b2), which is defined recursively via, for k = 1, 2,

Ud
k (n) = Ud

k (n− 1) + 1− I{Ud
k (n− 1) = bk;Xk,n = 0} −Xk,n, n = 1, 2, . . . , (2.1)

with the starting capital of Ud
k (0) = uk (where uk = 0, 1, . . . , bk). It is assumed that the premium income

is 1 in each period, and the claims {(X1,n, X2,n)}∞n=1 form a sequence of i.i.d. bivariate random vectors
distributed as (X1, X2) with common joint probability mass function (pmf) g(·, ·). In addition, X1 and
X2 are distributed on the set of non-negative integers. The dynamics (2.1) mean that a dividend of 1
is payable to the shareholders of line k at time n if (i) the surplus of line k is at level b at time n − 1;
and (ii) line k has no claim at time n (see Dickson and Waters (2004, Section 5)). For k = 1, 2, let
T d

k = inf{n ∈ {1, 2, . . .} : Ud
k (n) ≤ 0} be the ruin time of {Ud

k (n)}∞n=0 (see Remark 2). However, at
time 0 we allow the individual processes to start at level zero without ruin occurring. For each k = 1, 2,
the loading condition is given by E[Xk] < 1. The time of ruin for the joint bivariate surplus process
{(Ud

1 (n), Ud
2 (n))}∞n=0 is then defined as T d = min(T d

1 , T d
2 ).

Remark 2 In the study of discrete-time risk models, different researchers have adopted different defi-
nitions of ruin as to whether reaching level zero is regarded as a ruin event. But the current definition
(that reaching zero leads to ruin) is expected to work better especially when one applies the discrete-time
model to approximate a continuous-time one (see Dickson and Waters (1991, Section 8)). ¤

Assuming the force of interest to be α per period, we are interested in the expected discounted
dividend payment until the joint ruin time for each of the two lines. For each k = 1, 2, we define, for
u1 = 0, 1, . . . , b1; u2 = 0, 1, . . . , b2,

V d
k (u1, u2; b1, b2) = E




T d∑

n=1

e−αnI{Ud
k (n− 1) = bk; Xk,n = 0}

∣∣∣(Ud
1 (0), Ud

2 (0)) = (u1, u2)


 . (2.2)

In order to study the above quantity, we can condition on all possible events at time 1. Four cases need
to be distinguished based on the initial capital levels.

1. For u1 = 0, 1, . . . , b1− 1;u2 = 0, 1, . . . , b2− 1, the premium income of 1 for both lines will be added
to the respective surplus levels, and no dividends are payable at time 1. If the claims X1,1 and X2,1
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are no larger than u1 and u2 respectively, then the bivariate process will continue and there will be
potential future dividends; otherwise ruin occurs and no dividends will ever be paid. We arrive at,
for k = 1, 2,

V d
k (u1, u2; b1, b2) = e−α

u1∑

i=0

u2∑

j=0

g(i, j)V d
k (u1 + 1− i, u2 + 1− j; b1, b2). (2.3)

2. For u1 = b1; u2 = 0, 1, . . . , b2− 1, line 1’s premium income of 1 will be paid out as dividend if there
is no claim for this line. Both lines will survive at time 1 if the claims X1,1 and X2,1 are no larger
than b1 − 1 and u2 respectively, resulting in potential future dividends. This leads to

V d
1 (b1, u2; b1, b2) = e−α

∞∑

j=u2+1

g(0, j) + e−α
u2∑

j=0

g(0, j)[1 + V d
1 (b1, u2 + 1− j; b1, b2)]

+ e−α
b1∑

i=1

u2∑

j=0

g(i, j)V d
1 (b1 + 1− i, u2 + 1− j; b1, b2)

= e−α
∞∑

j=0

g(0, j) + e−α
u2∑

j=0

g(0, j)V d
1 (b1, u2 + 1− j; b1, b2)

+ e−α
b1∑

i=1

u2∑

j=0

g(i, j)V d
1 (b1 + 1− i, u2 + 1− j; b1, b2), (2.4)

and

V d
2 (b1, u2; b1, b2) = e−α

u2∑

j=0

g(0, j)V d
2 (b1, u2 + 1− j; b1, b2)

+ e−α
b1∑

i=1

u2∑

j=0

g(i, j)V d
2 (b1 + 1− i, u2 + 1− j; b1, b2). (2.5)

3. For u1 = 0, 1, . . . , b1 − 1;u2 = b2, the analyses are identical to those in Case 2 except that the roles
of line 1 and line 2 are reversed. Hence, we have

V d
1 (u1, b2; b1, b2) = e−α

u1∑

i=0

g(i, 0)V d
1 (u1 + 1− i, b2; b1, b2)

+ e−α
u1∑

i=0

b2∑

j=1

g(i, j)V d
1 (u1 + 1− i, b2 + 1− j; b1, b2), (2.6)

and

V d
2 (u1, b2; b1, b2) = e−α

∞∑

i=0

g(i, 0) + e−α
u1∑

i=0

g(i, 0)V d
2 (u1 + 1− i, b2; b1, b2)

+ e−α
u1∑

i=0

b2∑

j=1

g(i, j)V d
2 (u1 + 1− i, b2 + 1− j; b1, b2). (2.7)
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4. For u1 = b1; u2 = b2, each line will pay out the premium income of 1 as dividend if it has no claim,
plus potential future dividends if both lines survive time 1. This results in

V d
1 (b1, b2; b1, b2) = e−αg(0, 0)V d

1 (b1, b2; b1, b2) + e−α
∞∑

j=0

g(0, j)

+ e−α
b2∑

j=1

g(0, j)V d
1 (b1, b2 + 1− j; b1, b2) + e−α

b1∑

i=1

g(i, 0)V d
1 (b1 + 1− i, b2; b1, b2)

+ e−α
b1∑

i=1

b2∑

j=1

g(i, j)V d
1 (b1 + 1− i, b2 + 1− j; b1, b2), (2.8)

and

V d
2 (b1, b2; b1, b2) = e−αg(0, 0)V d

2 (b1, b2; b1, b2) + e−α
∞∑

i=0

g(i, 0)

+ e−α
b2∑

j=1

g(0, j)V d
2 (b1, b2 + 1− j; b1, b2) + e−α

b1∑

i=1

g(i, 0)V d
2 (b1 + 1− i, b2; b1, b2)

+ e−α
b1∑

i=1

b2∑

j=1

g(i, j)V d
2 (b1 + 1− i, b2 + 1− j; b1, b2). (2.9)

To conclude, for fixed b1 and b2, the b1b2 equations of (2.3) at k = 1, b2 equations of (2.4), b1 equations of
(2.6) and the single equation (2.8) form a system of (b1+1)(b2+1) linear equations for {V d

1 (u1, u2; b1, b2) :
u1 = 0, 1, . . . , b1; u2 = 0, 1, . . . , b2} to be solved. Similarly, {V d

2 (u1, u2; b1, b2) : u1 = 0, 1, . . . , b1; u2 =
0, 1, . . . , b2} can be solved from (2.3) at k = 2, (2.5), (2.7) and (2.9).

2.2 Deriving the approximation

Our goal is to approximate the expected discounted dividends Vk defined in (1.2) for the continuous-
time model (1.1) using the quantity V d

k defined in (2.2) for the discrete-time model (2.1). To this end,
we follow similar steps to those in Dickson and Waters (1991), who studied the finite-time survival
probabilities. Their approximation also proved to be useful in studying dividend problems as well (see
Dickson and Waters (2004) and Cheung and Drekic (2008)). However, the above applications were all
conducted under univariate risk processes. Under the present bivariate framework, there are additional
complications concerning the use of copula as well as a bivariate Panjer’s recursion (see Section 2.3). The
derivation of the approximation consists of the following four steps.

1. Step 1: Change of monetary unit

First, we apply a change of monetary unit in the continuous-time model (1.1). In particular, for some
positive constants β1 and β2 (known as scaling factors), define the random variables Y

(1)
k = βkYk

and Z
(1)
k = βkZk for k = 1, 2. If V

(1)
k (u1, u2; b1, b2) denotes the expected discounted dividends for

line k in the continuous-time model with generic jumps Y
(1)
1 , Y

(1)
2 and (Z(1)

1 , Z
(1)
2 ), Poisson rates

λ11, λ22 and λ12, force of interest δ, premium rates (β1c1, β2c2), initial surplus levels (u1, u2), and
barrier levels (b1, b2), it is immediate that Vk in (1.2) satisfies

Vk(u1, u2; b1, b2) =
1
βk

V
(1)
k (β1u1, β2u2; β1b1, β2b2). (2.10)
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Note that the copula for the scaled version (Z(1)
1 , Z

(1)
2 ) is also C(·, ·), i.e. identical to that of (Z1, Z2)

(see e.g. Denuit et al. (2005, Proposition 4.4.4(i))).

2. Step 2: Discretization of Y
(1)
1 , Y

(1)
2 , Z

(1)
1 and Z

(1)
2

The random variables Y
(1)
1 , Y

(1)
2 , Z

(1)
1 and Z

(1)
2 defined in Step 1 are then discretized on {0, 1, . . .}

to give the discretized versions Y
(2)
1 , Y

(2)
2 , Z

(2)
1 and Z

(2)
2 . The ‘mean preserving method’ (see e.g.

De Vylder and Goovaerts (1988, Section 7) and Dickson (2005, P.80)) is suggested and it is known
to yield good results (see Dickson and Waters (1991, 2004) and Cheung and Drekic (2008)). The
pmf of Y

(2)
k is given by, for k = 1, 2,

hkk(i) = βk

(∫ i+1
βk

i
βk

Fkk(y) dy −
∫ i

βk

i−1
βk

Fkk(y) dy

)
, i = 0, 1, . . . . (2.11)

For the discretized random vector (Z(2)
1 , Z

(2)
2 ), we apply the same copula C(·, ·) as the dependency

structure (see e.g. Bargès et al. (2009, Section 5.2)). Therefore, the joint pmf of (Z(2)
1 , Z

(2)
2 ),

namely h12(i, j), can be calculated from the associated joint cdf

i∑

k=0

j∑

l=0

h12(k, l) = C

(
β1

∫ i+1
β1

i
β1

F1•(y) dy, β2

∫ j+1
β2

j
β2

F•2(y) dy

)
, i, j = 0, 1, . . . . (2.12)

Denote by V
(2)
k (u1, u2; b1, b2) the expected discounted dividends for line k in the continuous-time

model with discrete generic jumps Y
(2)
1 , Y

(2)
2 and (Z(2)

1 , Z
(2)
2 ), Poisson rates λ11, λ22 and λ12, force

of interest δ, premium rates (β1c1, β2c2), initial surplus levels (u1, u2), and barrier levels (b1, b2). If
Y

(2)
1 , Y

(2)
2 and (Z(2)

1 , Z
(2)
2 ) are good approximations of Y

(1)
1 , Y

(1)
2 and (Z(1)

1 , Z
(1)
2 ) (i.e. when β1 and

β2 are ‘large’), then
V

(2)
k (u1, u2; b1, b2) ' V

(1)
k (u1, u2; b1, b2),

and hence from (2.10) one has

Vk(u1, u2; b1, b2) ' 1
βk

V
(2)
k (β1u1, β2u2; β1b1, β2b2). (2.13)

3. Step 3: Change of time unit

We now change the time unit of the continuous-time model with discrete claims in Step 2 such
that the premium income per time unit is 1. To achieve this, β1 and β2 introduced in Step 1 are
chosen such that β1c1 = β2c2. The model in Step 2 is then equivalent to a model in which the
discrete generic jumps are Y

(2)
1 , Y

(2)
2 and (Z(2)

1 , Z
(2)
2 ), the Poisson rates are λ11/β1c1, λ22/β1c1 and

λ12/β1c1, the force of interest is α = δ/β1c1, the premium rates are (1, 1), the initial surplus levels
are (u1, u2), and the barrier levels are (b1, b2). If we denote by V

(3)
k (u1, u2; b1, b2) the expected

discounted dividends for line k under the above setting, then

V
(3)
k (u1, u2; b1, b2) = V

(2)
k (u1, u2; b1, b2),

and hence from (2.13) we arrive at

Vk(u1, u2; b1, b2) ' 1
βk

V
(3)
k (β1u1, β2u2; β1b1, β2b2). (2.14)
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4. Step 4: Replacement of continuous-time model by discrete-time model

In this final step, the continuous-time model with discrete claims in Step 3 is replaced by a discrete-
time one (in which the event of ruin and the payment of dividend (if any) are only monitored once
per period). One can then approximate V

(3)
k (u1, u2; b1, b2) by

V
(3)
k (u1, u2; b1, b2) ' V d

k (u1, u2; b1, b2), (2.15)

where V d
k (u1, u2; b1, b2) is defined by (2.2) under the force of interest α = δ/β1c1 and the generic

discrete claims, for k = 1, 2,

Xk =
Mkk∑

n=1

Y
(2)
k,n +

M12∑

n=1

Z
(2)
k,n. (2.16)

Here Mkk has a Poisson distribution with mean γkk = λkk/β1c1 whereas M12 has a Poisson dis-
tribution with mean γ12 = λ12/β1c1. Moreover, {Y (2)

k,n}∞n=1 is i.i.d. with generic variable Y
(2)
k , and

{(Z(2)
1,n, Z

(2)
2,n)}∞n=1 is also i.i.d. with generic vector (Z(2)

1 , Z
(2)
2 ). Moreover, M11, M22, M12, {Y (2)

1,n }∞n=1,

{Y (2)
2,n }∞n=1 and {(Z(2)

1,n, Z
(2)
2,n)}∞n=1 are all mutually independent. Hence X1 and X2 are dependent

compound Poisson random variables. When β1 (and hence β2) is ‘large’, the time intervals between
the points where the surplus levels are checked are small, since one time unit in the present step is
equivalent to 1/β1c1 time unit in the original continuous-time model (1.1). Then (2.15) will be a
good approximation. To conclude, one has from (2.14) that

Vk(u1, u2; b1, b2) ' 1
βk

V d
k (β1u1, β2u2; β1b1, β2b2), (2.17)

and one requires β1u1, β2u2, β1b1 and β2b2 to be integers.

Formula (2.17) suggests that its left-hand side, namely the expected discounted dividends Vk in (1.2)
for the continuous-time model (1.1), can be approximated by its right-hand side which is in terms of V d

k

defined in (2.2) for the fully discrete model (2.1). It remains to evaluate the joint pmf of (X1, X2), namely
g(i, j), in order to apply the results in Section 2.1 to find V d

k . This will be the subject matter of the next
subsection via the use of Panjer-type recursion (see e.g. Klugman et al. (2008, Chapter 6.8)). Note also
that the above approximation is different from that in Yuen et al. (2006, Section 3), who approximated a
bivariate compound Poisson risk model by a bivariate compound binomial model. Their approximation
does not involve Panjer’s recursion for compound distribution, and in their model a common shock does
not result in dependent claims in the two lines.

2.3 Bivariate Panjer’s recursion for dependent compound Poisson distributions

With the components of the random vector (X1, X2) given by (2.16), the derivation of its joint pmf g(i, j)
can be done by slightly modifying the results in Walhin and Paris (2000, Section 4) who considered the
case where Z

(2)
1 and Z

(2)
2 are independent and distributed as Y

(2)
1 and Y

(2)
2 respectively. Under the

current setting, defining the probability generating function ĝ(r, s) =
∑∞

i=0

∑∞
j=0 risjg(i, j), it can be

proved that
ĝ(r, s) = e−γ11[1−ĥ11(r)]−γ22[1−ĥ22(s)]−γ12[1−ĥ12(r,s)].

Here ĥ11(r) =
∑∞

i=0 rih11(i), ĥ22(s) =
∑∞

j=0 sjh22(j) and ĥ12(r, s) =
∑∞

i=0

∑∞
j=0 risjh12(i, j) are the

probability generating functions pertaining to the pmf’s h11(·), h22(·) and h12(·, ·) defined via (2.11) and
(2.12) in Step 2; whereas γ11 = λ11/β1c1, γ22 = λ22/β1c1 and γ12 = λ12/β1c1 according to Step 4. By
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differentiating the above equation with respect to r, multiplying the resulting equation by r and then
equating coefficients of ri, we arrive at

g(i, j) = γ11

i∑

k=1

k

i
h11(k)g(i− k, j) + γ12

i∑

k=1

j∑

l=0

k

i
h12(k, l)g(i− k, j − l), i = 1, 2, . . . ; j = 0, 1, . . . .

(2.18)
Similarly,

g(i, j) = γ22

j∑

l=1

l

j
h22(l)g(i, j−l)+γ12

i∑

k=0

j∑

l=1

l

j
h12(k, l)g(i−k, j−l), i = 0, 1, . . . ; j = 1, 2, . . . . (2.19)

The starting point of the recursion is

g(0, 0) = e−γ11[1−h11(0)]−γ22[1−h22(0)]−γ12[1−h12(0,0)]. (2.20)

2.4 Numerical illustrations of the approximation

This subsection aims at demonstrating the quality of the approximation derived in Section 2.2. Since the
same approximation will be used in various numerical illustrations for the rest of the paper, we highlight
the procedures as far as programming work is concerned to approximate Vk(u1, u2; b1, b2) for k = 1, 2.

• Specify the parameters and distributional assumptions of the continuous-time model (1.1), which
include the premium rates (c1, c2), the Poisson rates (λ11, λ22, λ12), the cdfs F11(·), F22(·) and
F12(·, ·), and the copula C(·, ·). Specify the force of interest δ for the dividend function (1.2).

• Select the scaling factors (β1, β2) such that β1u1, β2u2, β1b1 and β2b2 are integers, and β1c1 = β2c2.

• Apply (2.11) and (2.12) to find h11(·), h22(·) and h12(·, ·).
• With γ11 = λ11/β1c1, γ22 = λ22/β1c1 and γ12 = λ12/β1c1, evaluate g(·, ·) recursively using (2.18)

and (2.19) subject to the starting point (2.20).

• Set α = δ/β1c1. Apply (2.3)-(2.9) (with b1 and b2 replaced by β1b1 and β2b2 respectively) to cal-
culate {V d

1 (u1, u2; β1b1, β2b2) : u1 = 0, 1, . . . , β1b1; u2 = 0, 1, . . . , β2b2} and {V d
2 (u1, u2; β1b1, β2b2) :

u1 = 0, 1, . . . , β1b1; u2 = 0, 1, . . . , β2b2}.
• Apply (2.17) to approximate Vk(u1, u2; b1, b2) for k = 1, 2.

It is instructive to note that as the scaling factors β1 and β2 increase (such that β1c1 = β2c2), the
approximation of the continuous-time bivariate process by a discrete-time one gets more accurate because
(i) the discretization in Step 2 in Section 2.2 gets finer (i.e. continuous claims are better approximated by
discrete ones); and (ii) the approximating discrete-time process in Step 4 is checked more frequently (and
becomes closer to the continuous-time model). Note that two opposing sources of errors always occur
when one approximates the dividend function Vk by V d

k . First, dividends are paid immediately in the
continuous-time model once the surplus of an individual line reaches its barrier; whereas in the discrete-
time model, reaching the barrier does not immediately result in a dividend unless there is no claim in the
next period. In this aspect, V d

k tends to underestimate the true value Vk due to discounting. In contrast,
the discrete-time model tends to survive longer due to the protection from delayed dividend payments,
which means that there can be more potential future dividends. This may cause V d

k to overestimate Vk.
In the following example, we shall gradually increase the scaling factors in computing the approximated
dividend values. Simulations are also conducted to verify the accuracy of the approximations and check
whether one of the afore-mentioned effects is always more dominant.
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Example 1 In this example, we assume the Poisson rates λ11 = λ22 = λ12 = 1 and the premium rates
c1 = 2.8 and c2 = 4.2. Line 1 is subject to claims with pdf f11(y) = f1•(y) = 0.8e−0.8y; whereas the claims
of line 2 have pdf f22(y) = f•2(y) = 0.5e−0.5y. Their means are 1.25 and 2 respectively, and they both have
coefficient of variation of 1. In the case of a common shock, it is assumed that Z1 and Z2 are independent
of each other, i.e. the independence copula C(u, v) = uv for 0 ≤ u, v ≤ 1 is used. The loading conditions
c1 = 2.8 > 2.5 = λ11E[Y1] + λ12E[Z1] and c2 = 4.2 > 4 = λ22E[Y2] + λ12E[Z2] are satisfied. The force of
interest is assumed to be δ = 0.05, and the barrier values are fixed to be b1 = b2 = 2 (see Section 5 for an
explanation regarding the choice of low barriers). According to the computational procedures outlined at
the beginning of this subsection, we require β1c1 = β2c2, or equivalently β1 = 1.5β2. The approximated
values of the expected discounted dividends for the two lines using different sets of (β1, β2) are given in
Tables 2.1(a)&(b).

V1

(β1, β2) = (3, 2)
HHHHHu1

u2 0 1 2

0 0.425 0.486 0.507
1 0.832 0.971 1.024
2 1.526 1.721 1.805

(β1, β2) = (6, 4)
HHHHHu1

u2 0 1 2

0 0.417 0.473 0.491
1 0.826 0.958 1.003
2 1.524 1.716 1.790

(β1, β2) = (15, 10)
HHHHHu1

u2 0 1 2

0 0.413 0.467 0.482
1 0.824 0.951 0.991
2 1.526 1.715 1.782

(β1, β2) = (30, 20)
HHHHHu1

u2 0 1 2

0 0.412 0.465 0.479
1 0.823 0.949 0.987
2 1.527 1.715 1.780

(β1, β2) = (60, 40)
HHHHHu1

u2 0 1 2

0 0.411 0.464 0.478
1 0.823 0.948 0.985
2 1.527 1.715 1.778

V2

(β1, β2) = (3, 2)
HHHHHu1

u2 0 1 2

0 0.957 1.493 2.268
1 1.193 1.869 2.717
2 1.267 2.003 2.886

(β1, β2) = (6, 4)
HHHHHu1

u2 0 1 2

0 0.956 1.496 2.276
1 1.187 1.869 2.725
2 1.253 1.990 2.882

(β1, β2) = (15, 10)
HHHHHu1

u2 0 1 2

0 0.958 1.501 2.285
1 1.184 1.870 2.733
2 1.245 1.984 2.881

(β1, β2) = (30, 20)
HHHHHu1

u2 0 1 2

0 0.958 1.503 2.289
1 1.184 1.871 2.736
2 1.243 1.982 2.881

(β1, β2) = (60, 40)
HHHHHu1

u2 0 1 2

0 0.959 1.504 2.291
1 1.184 1.872 2.738
2 1.242 1.981 2.881

Tables 2.1(a)&(b): Approximated dividends in the two lines for various sets of (β1, β2)

V1

HHHHHu1

u2 0 1 2

0 0.411 0.463 0.476
1 0.823 0.945 0.983
2 1.527 1.715 1.777

V2

HHHHHu1

u2 0 1 2

0 0.959 1.506 2.292
1 1.182 1.870 2.739
2 1.240 1.979 2.880

Tables 2.2(a)&(b): Simulated dividends in the two lines
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From Table 2.1, it is clear that for a given set of (β1, β2), the dividend functions for both lines are
increasing in the initial surplus levels u1 and u2 as they must be. When we increase the values of (β1, β2)
for each fixed pair of initial surplus levels (u1, u2), the dividend values of line 1 always decrease (except
when (u1, u2) = (2, 0)); whereas those of line 2 either increase or decrease. In all cases, the dividends
for both lines appear to be converging as (β1, β2) increases. To further verify the results, we have also
run some simulations in the continuous-time risk model and obtained Tables 2.2(a)&(b) for the dividend
functions of the two lines. In Table 2.2, each pair of (V1, V2) is calculated using 1, 000, 000 sample paths
generated up to the joint ruin time. Comparing Table 2.1 with Table 2.2, it can be seen that scaling
factors of (β1, β2) = (60, 40) produce very good results: the dividend values are always the same up to
at least two decimal places. More interestingly, the results obtained by smaller scaling factors of, say
(β1, β2) = (15, 10), are indeed still comparable to those by simulations. However, the simulation results
are sometimes a bit larger than and sometimes a bit smaller than the discrete-time approximations.
Therefore, one cannot conclude whether our approximation tends to underestimate or overestimate the
true value of dividends, i.e. neither the effect of delayed dividends nor the effect of prolonged survival is
always more dominant. Nonetheless, for each fixed pair of initial surplus levels (u1, u2), the approximated
values in Table 2.1 approach the corresponding simulated values in Table 2.2 either from above or below
as (β1, β2) increase. (Indeed, we have separately run the Dickson-Waters type of algorithm in Cheung
and Drekic (2008) for a single line dual risk process with a dividend barrier. It was found that the
approximated dividend values either increase or decrease to the true value as the scaling factor increases,
depending on the initial surplus and the barrier level.) ¤

3 Three different types of dependencies

In this section, we examine the bivariate risk process (1.1) in which the two lines of business are subject
to different types of dependencies via some numerical examples. These include (i) common shocks; (ii)
copulas; and (iii) proportional reinsurance. Throughout this entire section, the barrier values b1 = b2 = 2
are applied because high scaling factors (β1, β2) will be used (see concluding remarks in Section 5).

3.1 Different levels of common shocks

Example 2 In this example, we aim at examining the impact of different levels of common shocks on the
dividends by varying the values of λ11, λ22 and λ12 while keeping λ11+λ12 = λ22+λ12 = 2 fixed, i.e. each
individual line of business is subject to the same total claim arrival rate of 2. To illustrate the versatility
of the approximation, we use the more complicated density functions f11(y) = f1•(y) = 8e−2y sin2 y,
f22(y) = f•2(y) = (1/4)(0.62ye−0.6y) + (3/4)(92ye−9y). These two distributions have rational Laplace
transforms, and they were used in Cheung and Drekic (2008). They both have mean 1, and their
coefficients of variation are 0.50 and 1.80 respectively. While f22(y) represents a standard mixture of two
Erlang(2) distributions, the less common f11(y) is the pdf of a damped squared sine distribution with
low variability. In particular, the density f11(y) is strictly increasing starting from f11(0) = 0 until it
reaches the global maximum of 0.83152 at π/4 = 0.78540, from which f11(y) is strictly decreasing until
zero is reached at π = 3.14159. Due to the periodicity induced by the sine function, f11(y) also achieves
(i) global and local minimum of zero at y = nπ for n = 1, 2, . . .; and (ii) local maximum at y = nπ + π/4
for n = 1, 2, . . .. Nonetheless, f11(y) is very very close to zero for y > π, and f11(y) is strictly unimodal
for y ≥ 0. The premium rates are assumed to be c1 = 2.2 and c2 = 3.3, so that the loading conditions
c1 = 2.2 > 2 = λ11E[Y1] + λ12E[Z1] and c2 = 3.3 > 2 = λ22E[Y2] + λ12E[Z2] hold true. (Note that the
premium of line 2 is assumed to have a larger loading factor because its claims have larger variance.)
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The remaining model assumptions are same as those in Example 1: Z1 and Z2 are independent in case
of a common shock; the force of interest is δ = 0.05, and the barrier values are b1 = b2 = 2. Using
the scaling factors (β1, β2) = (60, 40), we follow the approximation procedures outlined at the beginning
of Section 2.4 and the resulting dividend values are listed in Tables 3.1(a)&(b). The tables start with
the extreme case of λ11 = λ22 = 2 and λ12 = 0 in which the two lines of business only face their own
claims independently with no common shocks at all. Then as we move down the tables, λ11 and λ22 are
decreased by 0.5 whereas λ12 is increased by 0.5 each time until we reach another extreme case where
λ11 = λ22 = 0 and λ12 = 2. The last case indicates that the two lines are only subject to common shocks.

V1

λ11 = λ22 = 2, λ12 = 0
HHHHHu1

u2 0 1 2

0 0.260 0.303 0.308
1 0.689 0.801 0.816
2 1.404 1.601 1.627
λ11 = λ22 = 1.5, λ12 = 0.5

HHHHHu1

u2 0 1 2

0 0.305 0.342 0.347
1 0.769 0.873 0.886
2 1.503 1.688 1.712
λ11 = λ22 = 1, λ12 = 1

HHHHHu1

u2 0 1 2

0 0.358 0.387 0.390
1 0.857 0.950 0.962
2 1.609 1.781 1.803
λ11 = λ22 = 0.5, λ12 = 1.5

HHHHHu1

u2 0 1 2

0 0.419 0.437 0.439
1 0.955 1.035 1.045
2 1.722 1.880 1.900
λ11 = λ22 = 0, λ12 = 2

HHHHHu1

u2 0 1 2

0 0.490 0.493 0.494
1 1.062 1.127 1.135
2 1.842 1.986 2.004

V2

λ11 = λ22 = 2, λ12 = 0
HHHHHu1

u2 0 1 2

0 0.906 1.401 2.113
1 1.637 2.458 3.318
2 1.946 2.910 3.846
λ11 = λ22 = 1.5, λ12 = 0.5

HHHHHu1

u2 0 1 2

0 1.041 1.538 2.260
1 1.799 2.621 3.483
2 2.092 3.067 4.005
λ11 = λ22 = 1, λ12 = 1

HHHHHu1

u2 0 1 2

0 1.193 1.686 2.417
1 1.971 2.791 3.655
2 2.244 3.231 4.170
λ11 = λ22 = 0.5, λ12 = 1.5

HHHHHu1

u2 0 1 2

0 1.365 1.845 2.584
1 2.156 2.969 3.834
2 2.402 3.401 4.341
λ11 = λ22 = 0, λ12 = 2

HHHHHu1

u2 0 1 2

0 1.558 2.018 2.763
1 2.352 3.155 4.022
2 2.566 3.578 4.519

Tables 3.1(a)&(b): Approximated dividends in the two lines for different levels of common shocks

A look at Table 3.1 reveals that the dividend values for both lines increase as the rate of common
shocks increases. This can be interpreted as follows. For the case where λ11 = λ22 = 2 and λ12 = 0, the
surplus processes of the two lines are indeed independent, and the mean total number of claim events per
unit time, namely λ11 + λ22 + λ12, is 4. As we move towards the most dependent case of λ11 = λ22 = 0
and λ12 = 2 where there are common shocks only, the mean total number of claim events per unit time
decreases to 2. Since each instant of a claim event can potentially be the joint ruin time T = min(T1, T2),
the bivariate process is likely to survive longer when there are more common shocks (keeping the total
claim arrival rate for each line fixed), resulting in more dividends. Note that the dividends for both lines
cease once ruin has occurred in one of the two lines. Another interpretation of our results is that when
there are no common shocks at all, one of the lines in fact has positive surplus at the joint ruin time T
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but no further dividends are paid, i.e. the situation is not economical. In contrast, when common shocks
are more frequent, it is more likely that both lines have negative surplus at the joint ruin time T anyway,
i.e. there is less chance that resources are wasted. These observations complement the numerical results
in Gong et al. (2012, Figure 1) who studied the joint ruin probability in the absence of dividends. ¤

3.2 Different copulas

In this subsection, we apply different parametric copulas to describe the dependency between Z1 and Z2

when a common shock strikes both lines. Three copulas will be considered: (i) Ali-Mikhail-Haq (AMH)
copula (e.g. Nelsen (2006, Exercises 2.14(d) and 5.10)); (ii) Farlie-Gumbel-Morgenstern (FGM) copula
(e.g. Nelsen (2006, Examples 3.12 and 5.2)); and (iii) Gaussian (or normal) copula (e.g. Denuit et al.
(2005, Chapter 4.3.3 and Exercise 5.4.6)). Each copula’s definition and Kendall’s tau τ (or Kendall’s
rank correlation coefficient) are summarized in Table 3.2 below.

Copula C(u, v) for 0 ≤ u, v ≤ 1 Range of θ Kendall’s tau τ Range of τ

AMH uv
1−θ(1−u)(1−v) −1 ≤ θ ≤ 1 3θ−2

3θ − 2(1−θ)2 ln(1−θ)
3θ2 −0.18173 ≤ τ ≤ 0.33333

FGM uv + θuv(1− u)(1− v) −1 ≤ θ ≤ 1 2
9θ −0.22222 ≤ τ ≤ 0.22222

Gaussian Φθ(Φ−1(u), Φ−1(v)) −1 < θ < 1 2
π arcsin θ −1 < τ < 1

Table 3.2: Copulas and their Kendall’s rank correlation coefficients

In the definition of the Gaussian copula, Φ(·) is the standard normal cdf whereas Φθ(·, ·) represents the
bivariate standard normal cdf with covariance θ. Note that the Kendall’s rank correlation coefficient, as a
measure of dependency, is only specific to a given copula and is independent of the marginal distributions
(e.g. Nelsen (2006, Theorem 5.1.3)). In all three copulas, θ = 0 corresponds to the case of independence
(i.e. C(u, v) = uv for 0 ≤ u, v ≤ 1), and the resulting Kendall’s tau is zero. It is instructive to note that
all these three copulas have one parameter. This means that from the point of view of calibration, if one
of these copulas has been identified as suitable for a given set of data, then the parameter follows in a
straightforward manner once the Kendall’s rank correlation has been estimated (see e.g. McNeil et al.
(2005, Section 5.5.1)).

The application of copulas as a tool for risk management in finance and insurance was discussed
extensively in Embrechts et al. (2002, 2003), and we also refer interested readers to Frees and Valdez
(1998), Klugman and Parsa (1999), and Trivedi and Zimmer (2005) for general actuarial applications
and fitting of bivariate loss distributions using copulas. The reasons for the choice of the above three
copulas are as follows. First, the AMH copula belongs to the class of Archimedean copulas, which possess
nice properties and are popular for modelling (see e.g. Genest and MacKay (1986), Denuit et al. (2005,
Chapter 4.5), and Nelsen (2006, Chapter 4)). See also Denuit et al. (2004) for the use of Archimedean
copulas in non-life insurance. A plot of the AMH copula pdf can be found in Panjer (2006, Figure 8.8).
Second, the FGM copula belongs to the class of polynomial copulas (see e.g. Drouet-Mari and Kotz (2001,
Chapter 4.5.2)). It is a tractable copula which is a first order approximation of both the Plackett copula
and the Frank copula (see e.g. Nelsen (2006, Exercises 3.39 and 4.9)). Due to its simplicity, the FGM
copula has become increasingly popular in modelling aggregate claims in insurance risk models (see e.g.
Cossette et al. (2010), Bargès et al. (2011), Woo and Cheung (2013, Section 4), and Chadjiconstantinidis
and Vrontos (2014)). While AMH and FGM copulas only allow moderate dependence (which is evident
from the range of Kendall’s tau), stronger dependency can be modelled by the Gaussian copula which
is commonly used for comparison purposes. See e.g. Denuit et al. (2005, Figure 4.4) which depicts the
increasing dependency of the components of a bivariate Gaussian copula as θ increases. It is known (e.g.
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Trivedi and Zimmer (2005, Chapter 2.3.3)) that the bivariate Gaussian copula attains the Fréchet lower
and upper bounds respectively when θ tends to −1 and 1.

Example 3 In this example, we follow the same assumptions as in Example 2 of Section 3.1 under the
Poisson rates λ11 = λ22 = λ12 = 1, except that the three copulas in Table 3.2 are applied to the pair
(Z1, Z2) arising from common shocks. For a fair comparison among different copulas, we fix the value of
Kendall’s tau τ and then solve for the appropriate parameter θ. First, setting τ = 0.2 yields θ = 0.71349,
θ = 0.9 and θ = 0.30902 respectively for AMH, FGM and Gaussian copulas. Tables 3.3(a)&(b) summarize
the approximated dividend values calculated using the procedures at the beginning of Section 2.4 under
the scaling factors (β1, β2) = (60, 40). If we instead fix a negative Kendall’s tau τ = −0.2, it is found that
θ = −0.9 and θ = −0.30902 for FGM and Gaussian copulas respectively; whereas the AMH copula cannot
reach such a Kendall’s tau according to the last column of Table 3.2. The corresponding approximated
dividend values are given in Tables 3.4(a)&(b).

V1

AMH
HHHHHu1

u2 0 1 2

0 0.369 0.398 0.402
1 0.881 0.975 0.987
2 1.636 1.810 1.831

FGM
HHHHHu1

u2 0 1 2

0 0.371 0.401 0.404
1 0.885 0.980 0.991
2 1.641 1.815 1.837

Gaussian
HHHHHu1

u2 0 1 2

0 0.372 0.401 0.405
1 0.887 0.982 0.994
2 1.643 1.818 1.840

V2

AMH
HHHHHu1

u2 0 1 2

0 1.230 1.727 2.458
1 2.035 2.863 3.729
2 2.307 3.304 4.244

FGM
HHHHHu1

u2 0 1 2

0 1.236 1.733 2.465
1 2.045 2.876 3.743
2 2.318 3.318 4.258

Gaussian
HHHHHu1

u2 0 1 2

0 1.239 1.736 2.468
1 2.052 2.885 3.752
2 2.327 3.330 4.271

Tables 3.3(a)&(b): Approximated dividends in the two lines for different copulas with τ = 0.2

V1

FGM
HHHHHu1

u2 0 1 2

0 0.345 0.374 0.377
1 0.831 0.923 0.935
2 1.578 1.748 1.770

Gaussian
HHHHHu1

u2 0 1 2

0 0.344 0.373 0.376
1 0.830 0.921 0.933
2 1.577 1.746 1.768

V2

FGM
HHHHHu1

u2 0 1 2

0 1.153 1.640 2.371
1 1.901 2.709 3.570
2 2.173 3.148 4.085

Gaussian
HHHHHu1

u2 0 1 2

0 1.152 1.639 2.369
1 1.901 2.708 3.569
2 2.172 3.147 4.084

Tables 3.4(a)&(b): Approximated dividends in the two lines for different copulas with τ = −0.2

Within each of the four Tables 3.3(a)&(b) and 3.4(a)&(b), it is clear that the dividend values are
considerably close for different copulas with the Kendall’s tau being fixed. When one compares the values
across Tables 3.1 (i.e. the case with λ11 = λ22 = λ12 = 1), 3.3 and 3.4, the dividend function for each
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line increases as the Kendall’s tau changes from −0.2 to 0 and then to 0.2. The intuition behind is as
follows. For each of the three copulas, for fixed (u, v) the value of C(u, v) increases with the parameter
θ, which in turn increases with the Kendall’s tau. Thus, for fixed values of z1 and z2, the joint cdf
F12(z1, z2) = C(F1•(z1), F•2(z2)) increases with respect to the Kendall’s tau. In other words, when
dependency is positive, the possibility for (Z1, Z2) to lie outside (0, z1]× (0, z2] is smaller, leading to less
chance of ruin of the bivariate process from a given common shock and hence more dividends. ¤

3.3 Proportional reinsurance

In this subsection, we illustrate the interpretation and application of our model (1.1) in problems involving
proportional reinsurance (see Remark 1). To begin, we first discuss the formulation and some notations
that will be used throughout. In the absence of any reinsurance, it is assumed that line 1 of business
faces two independent classes of aggregate claims with Poisson arrival rates λ11 and λ12 and generic claim
severities Y1 and W respectively. In addition, line 2 is only subject to an aggregate claims process with
Poisson rate λ22 and generic claim Y2. Suppose that the generic claim W is more dangerous than Y1

(e.g. W is heavy-tail and Y1 is light-tail), and line 1 wants to reduce its risk exposure by purchasing
reinsurance from line 2 for part of the risk W . We assume a proportional reinsurance contract such that
line 1 retains a proportion s1 of each claim W (and reinsures the remaining portion of 1− s1) for some
0 < s1 < 1. Under the reinsurance arrangements described above, the model (1.1) is applicable by letting
(Z1, Z2) = (s1W, (1 − s1)W ). With FW (·) being the cdf of the positive continuous random variable W ,
one has F1•(y1) = FW (y1/s1) and F•2(y2) = FW (y2/(1− s1)). Because Z1 and Z2 are comonotonic, the
comonotonicity copula C(u, v) = min(u, v) for 0 ≤ u, v ≤ 1 should be applied. It is assumed that line
1 imposes the security loading factors η11 and η12 to the claims Y1 and W ; whereas line 2 imposes the
loadings η21 and η22 to Y2 and Z2. Thus, the net premium income rates c1 and c2 are given by

{
c1 = (1 + η11)λ11E[Y1] + [(1 + η12)− (1 + η22)(1− s1)]λ12E[W ].
c2 = (1 + η21)λ22E[Y2] + (1 + η22)(1− s1)λ12E[W ].

(3.1)

Practically, the loading factor η22 charged by the reinsurer is no less than the loading η12. Otherwise, line
1 can simply reinsure the entire risk W to earn a risk-free profit. In addition, line 1 of business should
not choose to accept the risk W unless it can generate positive expected net profit. This gives rise to the
condition

[(1 + η12)− (1 + η22)(1− s1)]λ12E[W ] > s1λ12E[W ]. (3.2)

The left-hand side of the above equation represents the net premium income of line 1 upon accepting the
risk W and reinsuring part of it; while the right-hand side is line 1’s expected net claims arising from W
after reinsurance.

Example 4 In this example, we assume λ11 = λ22 = λ12 = 1, f11(y) = 8e−2y sin2 y, fW (y) = 5 · 85/(y +
8)6 and f22(y) = (1/4)(0.62ye−0.6y) + (3/4)(92ye−9y). Note that Y1 and Y2 are both light-tail with mean
1 while W is heavy tail with mean 2. As in previous examples, the force of interest is assumed to be
δ = 0.05 and the barrier values are (b1, b2) = (2, 2). In addition, the loading factors are η11 = 0.2,
η12 = η21 = 0.5 and η22 = 1. Plugging in these assumptions into the inequality (3.2) yields s1 > 0.5.
Then, the values of c1 and c2 are calculated according to (3.1) based on different choices of s1. We shall
again apply the approximation procedures stated in Section 2.4 to produce the dividend values. Note that
it is not possible to apply the same scaling factors (β1, β2) for different values of s1 due to the constraint
β1c1 = β2c2. In order to make a fair comparison of the dividends across different s1, the values of β1 (or
β2) are chosen such that the resulting values of β1c1 (or β2c2) are comparable for different s1, so that the
approximating discrete-time processes are checked at roughly the same frequency. (Recall that one time
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unit in the approximating discrete-time model is equivalent to 1/β1c1 time unit in the continuous-time
model.) Our study is performed under a set of (β1, β2) whose values of β1c1 are all around 160. The
approximated expected discounted dividends for the two lines as well as their sums for various values of
s1 are given in Tables 3.5(a),(b)&(c).

V1

s1 = 0.55
(β1, β2) = (66, 48), β1c1 = 158.4

HHHHHu1

u2
0 1 2

0 0.696 0.750 0.757

1 1.361 1.563 1.578

2 2.157 2.481 2.516

s1 = 0.6
(β1, β2) = (62, 52), β1c1 = 161.2

HHHHHu1

u2
0 1 2

0 0.829 0.899 0.907

1 1.553 1.778 1.796

2 2.370 2.727 2.758

s1 = 0.65
(β1, β2) = (58, 56), β1c1 = 162.4

HHHHHu1

u2
0 1 2

0 0.966 1.053 1.064

1 1.743 1.991 2.012

2 2.579 2.966 2.996

s1 = 0.7
(β1, β2) = (54, 60), β1c1 = 162

HHHHHu1

u2
0 1 2

0 1.104 1.211 1.224

1 1.931 2.202 2.227

2 2.783 3.196 3.229

s1 = 0.75
(β1, β2) = (50, 64), β1c1 = 160

HHHHHu1

u2
0 1 2

0 1.242 1.372 1.388

1 2.114 2.411 2.440

2 2.982 3.420 3.458

V2

s1 = 0.55
(β1, β2) = (66, 48), β1c1 = 158.4

HHHHHu1

u2
0 1 2

0 1.642 2.214 2.968

1 2.391 3.399 4.280

2 2.594 3.770 4.732

s1 = 0.6
(β1, β2) = (62, 52), β1c1 = 161.2

HHHHHu1

u2
0 1 2

0 1.523 2.085 2.828

1 2.173 3.123 3.995

2 2.342 3.453 4.389

s1 = 0.65
(β1, β2) = (58, 56), β1c1 = 162.4

HHHHHu1

u2
0 1 2

0 1.392 1.942 2.673

1 1.950 2.844 3.706

2 2.091 3.131 4.048

s1 = 0.7
(β1, β2) = (54, 60), β1c1 = 162

HHHHHu1

u2
0 1 2

0 1.252 1.788 2.506

1 1.727 2.565 3.416

2 1.843 2.809 3.713

s1 = 0.75
(β1, β2) = (50, 64), β1c1 = 160

HHHHHu1

u2
0 1 2

0 1.106 1.626 2.331

1 1.505 2.289 3.128

2 1.601 2.494 3.385

Sum

s1 = 0.55
(β1, β2) = (66, 48), β1c1 = 158.4

HHHHHu1

u2
0 1 2

0 2.338 2.964 3.725

1 3.752 4.962 5.858

2 4.751 6.251 7.248

s1 = 0.6
(β1, β2) = (62, 52), β1c1 = 161.2

HHHHHu1

u2
0 1 2

0 2.353 2.984 3.735

1 3.725 4.901 5.790

2 4.712 6.181 7.147

s1 = 0.65
(β1, β2) = (58, 56), β1c1 = 162.4

HHHHHu1

u2
0 1 2

0 2.358 2.995 3.736

1 3.693 4.835 5.718

2 4.669 6.097 7.044

s1 = 0.7
(β1, β2) = (54, 60), β1c1 = 162

HHHHHu1

u2
0 1 2

0 2.356 2.999 3.730

1 3.657 4.768 5.643

2 4.626 6.005 6.942

s1 = 0.75
(β1, β2) = (50, 64), β1c1 = 160

HHHHHu1

u2
0 1 2

0 2.348 2.998 3.719

1 3.620 4.700 5.568

2 4.583 5.914 6.843

Tables 3.5(a),(b)&(c): Approximated dividends for different s1 with β1c1 ≈ 160

From Table 3.5, it can be observed that for each fixed pair of initial capital levels under consideration,
the dividend values for line 1 increase while those for line 2 decrease as s1 increases by steps of 0.05 from
0.55 to 0.75. (We have also tested larger values of s1 up to s1 = 1 and the same pattern prevails.) If one’s
interest is to maximize the sum of the dividend functions of the two lines, we note that the maximum is
attained at different values of s1 depending on the initial surplus levels. Among the nine pairs of initial
surplus levels, six of them have the optimal joint dividends achieved at s1 = 0.55. The exceptions include
the cases of (u1, u2) = (0, 0) and (u1, u2) = (0, 2) for which the optimal s1 is 0.65, along with the case of
(u1, u2) = (0, 1) for which the optimal s1 is 0.7. The results suggest that in order to maximize the joint
dividends in a proportional reinsurance contract, the optimal retention level s1 should not be chosen at
the extremes of 0 or 1, i.e. the risk should be shared. ¤
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4 The optimal dividend barriers for the bivariate process

In the standard univariate compound Poisson risk process under a dividend barrier strategy, it is known
(see Gerber et al. (2006, Section 4)) that the optimal dividend barrier b∗ which maximizes the expected
discounted dividends until ruin (with respect to the barrier level b) is independent of the initial surplus
u ≥ 0, as long as u ≤ b∗. If u > b, it is typically assumed that the excess amount u− b over the barrier
is paid immediately as a lump sum dividend so that the process will be starting at b. Under this setting,
Gerber et al. (2006, Section 5) found that the dividend function also attains a local maximum at b = b∗

even for u > b∗, and they commented that in many cases this is expected to be the global maximum as
well. See also Gerber et al. (2010, Section 5) for discussion of the optimal dividend barrier in a univariate
discrete-time model.

Under a bivariate risk model, we will adopt the convention that if a certain line of business has its
initial surplus above its own barrier level then the excess is paid immediately as dividend. Therefore, in
the continuous-time setting one has

V1(u1, u2; b1, b2) =





V1(u1, b2; b1, b2), 0 ≤ u1 ≤ b1; u2 > b2

u1 − b1 + V1(b1, u2; b1, b2), u1 > b; 0 ≤ u2 ≤ b2

u1 − b1 + V1(b1, b2; b1, b2), u1 > b; u2 > b2

for line 1. Similar definition applies to line 2 and for the discrete-time model as well. We are mostly
interested in the optimal pair of dividend barriers that maximize the sum of the dividend functions of the
two lines. However, the techniques used to analyze the optimal barrier in the single line case as in Gerber
et al. (2006) do not apply to the bivariate continuous-time model. Consequently, we will work with
the discrete-time model and apply the approximation procedures in Section 2.4 to give some numerical
illustrations which will provide more insights to the problem.

4.1 Are the optimal barriers independent of the initial surplus levels?

Under the bivariate (or more generally multivariate) framework, one does not expect the pair of optimal
dividend barriers to be independent of the initial surplus levels. In the following brief example, we provide
a fully discrete case to justify our claim.

Example 5 We consider the discrete bivariate risk process introduced in Section 2.1. The generic claims
X1 and X2 are assumed independent so that g(i, j) = g1(i)g2(j) for i, j = 1, 2, . . .. It is assumed that X1

and X2 follow different zero-modified geometric distributions. For line 1, we assume g1(0) = 0.78 and
g1(k) = 0.55× 0.6(1− 0.6)k for k = 1, 2, . . ., and thus E[X1] = 0.367. For line 2, g2(0) = 0.8 and g2(k) =
0.4×0.5(1−0.5)k for k = 1, 2, . . ., and hence E[X2] = 0.4. Let the force of interest be α = 0.05. Using the
system of equations developed in Section 2.1, we have computed the dividend values for integer values of
barriers (b1, b2) (as the barriers can only take integer values in the fully discrete model) and searched for
the optimal barriers (b∗1, b

∗
2) that maximize the total dividends V d

1 (u1, u2; b1, b2) + V d
2 (u1, u2; b1, b2). For

1 ≤ u1, u2 ≤ 9, the optimal barriers are provided in Table 4.1, and the resulting optimal total dividend
values are given in Table 4.2. It is clear from Table 4.1 that although most combinations of initial surplus
levels do share the same pair of optimal barriers (b∗1, b

∗
2) = (5, 6), in general the values of (b∗1, b

∗
2) do

depend on the initial surplus levels (u1, u2).
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HHHHHu1

u2
1 2 3 4 5 6 7 8 9

1 (5,6) (5,6) (5,5) (5,5) (5,5) (5,5) (5,5) (5,5) (5,5)
2 (5,6) (5,6) (5,6) (5,5) (5,5) (5,6) (5,6) (5,6) (5,6)
3 (5,6) (5,6) (5,6) (5,6) (5,5) (5,6) (5,6) (5,6) (5,6)
4 (4,5) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6)
5 (4,5) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6)
6 (4,5) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6)
7 (4,5) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6)
8 (4,5) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6)
9 (4,5) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6)

Table 4.1: The optimal pair of barriers (b∗1, b
∗
2) for 1 ≤ u1, u2 ≤ 9

HHHHHu1

u2
1 2 3 4 5 6 7 8 9

1 11.248 12.995 14.345 15.501 16.634 17.634 18.634 19.634 20.634
2 12.918 14.898 16.404 17.660 18.823 19.889 20.889 21.889 22.889
3 14.106 16.230 17.832 19.145 20.317 21.439 22.439 23.439 24.439
4 15.187 17.324 18.981 20.329 21.521 22.652 23.652 24.652 25.652
5 16.187 18.369 20.042 21.401 22.599 23.732 24.732 25.732 26.732
6 17.187 19.369 21.042 22.401 23.599 24.732 25.732 26.732 27.732
7 18.187 20.369 22.042 23.401 24.599 25.732 26.732 27.732 28.732
8 19.187 21.368 23.042 24.401 25.599 26.732 27.732 28.732 29.732
9 20.187 22.368 24.042 25.401 26.599 27.732 28.732 29.732 30.732

Table 4.2: The optimal total dividends for 1 ≤ u1, u2 ≤ 9

¤
4.2 Examination of the table of the joint dividends

For the rest of the paper, we follow closely the model settings as in Example 2 in Section 3.1 with Poisson
rates λ11 = λ22 = λ12 = 1, i.e. the premium rates are c1 = 2.2 and c2 = 3.3, the claim pdf’s are
f11(y) = f1•(y) = 8e−2y sin2 y and f22(y) = f•2(y) = (1/4)(0.62ye−0.6y) + (3/4)(92ye−9y) with Z1 and
Z2 independent, and the force of interest is δ = 0.05. The approximation procedures outlined at the
beginning of Section 2.4 will be applied throughout. Because we will look at larger barrier levels, the
smaller scaling factors of (β1, β2) = (3, 2) will be applied throughout (see concluding remarks in Section
5). As in the fully discrete Example 5, we have tested that the optimal barriers depend on the initial
capital levels. Since we use (β1, β2) = (3, 2), the initial surplus levels (u1, u2) and the barriers (b1, b2)
(and hence the optimal barriers (b∗1, b

∗
2)) in the continuous-time model being approximated can be in the

fractional form of e.g. (91
3 , 101

2). However, for illustrative purposes, we only consider integer values of
(u1, u2) and (b1, b2) for convenience.

HHHHHb1

b2
1 2 3 4 . . . 9 10 11 12

1 11.741 10.912 10.045 9.139 . . . 6.175 5.988 5.859 5.770
2 12.596 12.158 11.670 11.083 . . . 7.978 7.568 7.224 6.936
3 12.638 12.583 12.537 12.396 . . . 10.144 9.656 9.202 8.786
4 12.175 12.391 12.704 12.973 . . . 12.063 11.621 11.167 10.719

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8 10.174 10.567 11.221 12.014 . . . 14.603 14.641 14.556 14.374
9 10.029 10.385 11.000 11.765 . . . 14.500 14.596 14.567 14.435
10 9.943 10.267 10.845 11.576 . . . 14.336 14.467 14.473 14.374
11 9.893 10.193 10.739 11.436 . . . 14.155 14.303 14.329 14.251

Table 4.3: Approximated total dividends when (u1, u2) = (5, 5)
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HHHHHb1

b2
1 2 3 4 . . . 9 10 11 12

1 12.741 11.912 11.045 10.139 . . . 6.469 6.197 6.009 5.879
2 13.596 13.158 12.670 12.083 . . . 8.567 8.067 7.648 7.297
3 13.638 13.583 13.537 13.396 . . . 10.942 10.382 9.861 9.384
4 13.175 13.391 13.704 13.973 . . . 13.010 12.519 12.013 11.513

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8 11.174 11.567 12.221 13.014 . . . 15.726 15.763 15.668 15.469
9 11.029 11.385 12.000 12.765 . . . 15.619 15.718 15.681 15.534
10 10.943 11.267 11.845 12.576 . . . 15.450 15.584 15.583 15.471
11 10.893 11.193 11.739 12.436 . . . 15.264 15.415 15.434 15.343

Table 4.4: Approximated total dividends when (u1, u2) = (5, 6)
HHHHHb1

b2
1 2 3 4 . . . 9 10 11 12

1 13.741 12.912 12.045 11.139 . . . 6.881 6.485 6.212 6.023
2 14.596 14.158 13.670 13.083 . . . 9.248 8.641 8.131 7.704
3 14.638 14.583 14.537 14.396 . . . 11.786 11.150 10.556 10.012
4 14.175 14.391 14.704 14.973 . . . 13.960 13.422 12.864 12.310

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8 12.174 12.567 13.221 14.014 . . . 16.794 16.831 16.726 16.508
9 12.029 12.385 13.000 13.765 . . . 16.686 16.785 16.740 16.577
10 11.943 12.267 12.845 13.576 . . . 16.514 16.648 16.640 16.512
11 11.893 12.193 12.739 13.436 . . . 16.324 16.475 16.487 16.381

Table 4.5: Approximated total dividends when (u1, u2) = (5, 7)

In order to study how the barrier values affect the total expected discounted dividends, we have fixed
(u1, u2) to be (5, 5), (5, 6) and (5, 7) in turn and then tabulated the approximated total dividend values
for various choices of (b1, b2) in Tables 4.3-4.5. The bold number in each table shows the largest dividend
value for its specific combination of (u1, u2). We first look at Table 4.3 for which (u1, u2) = (5, 5). If one
fixes b1 = 1, b1 = 2 or b1 = 3, then the total dividend value is decreasing in b2, i.e. b2 = 1 gives the largest
total dividends. If the value of b1 is fixed to be larger, then a larger value of b2 is required to maximize
the total dividends. This is also depicted graphically in Figure 4.1, which plots the approximated total
dividends against the barrier value b2 for each fixed b1 = 2, 4, 6, 8, 10, 12. Similar phenomenon is observed
if one instead fixes the value of b2 and varies b1, and the same is true even when one looks at Tables 4.4
and 4.5. This suggests that in order to achieve high joint dividends, the barriers should be fairly close
to each other. In addition, as indicated by the bold number in each table, it is found that the maximum
total dividend value is achieved at the barriers (b∗1, b

∗
2) = (8, 10) for all three pairs of initial surplus levels

considered. This will be further discussed in Section 4.3.

INSERT FIGURE 4.1

Figure 4.1: Plot of approximated total dividends against b2 when (u1, u2) = (5, 5)

Note that each of Tables 4.3-4.5 is divided into four sections: (i) b1 < u1 and b2 < u2; (ii) b1 ≥ u1

and b2 < u2; (iii) b1 < u1 and b2 ≥ u2; and (iv) b1 ≥ u1 and b2 ≥ u2. In the first section, the barrier
level is lower than the initial surplus for each line, and therefore each line pays a dividend at time 0 and
the bivariate process actually starts at (b1, b2). Going from Table 4.3 to Table 4.4, the only change is
that line 2 possesses one more unit of initial capital, and this explains the fact that each dividend value
in Table 4.4 is exactly one unit larger than the corresponding value in Table 4.3 within the first section.
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The same observation applies to Tables 4.4 and 4.5 as well. For the second section, the dividend values
show the same properties as those in the first section because it is line 2 that pays a dividend at time 0
and then the process starts at (u1, b2). In the third section, line 1 (instead of line 2) needs to pay the
excess of u1 over b2 and then the process starts at (b1, u2). In the fourth section, none of the two lines
pay out immediate dividends at time 0. Note that all the dividend values in Table 4.5 are higher than
the corresponding ones in Table 4.4, which are in turn larger than those in Table 4.3. This is expected
since the dividends must be increasing in the initial capital u2.

4.3 Optimal barriers and restricted optimal barriers

In this section, we are interested in the pair of optimal barriers for every combination of (integer values
of) (u1, u2) for 1 ≤ u1 ≤ 9 and 1 ≤ u2 ≤ 12. The optimal barriers and the corresponding optimal joint
dividend values are given in Tables 4.6 and 4.7 respectively.

HHHHHu1

u2
1 2 3 4 5 6 7 8 9 10 11 12

1 (3,1) (3,1) (3,1) (3,1) (3,1) (3,1) (3,1) (3,1) (3,1) (3,1) (3,1) (3,1)
2 (8,9) (8,9) (7,8) (3,1) (3,1) (3,1) (3,1) (3,1) (3,1) (3,1) (3,1) (3,1)
3 (8,9) (8,9) (8,9) (8,9) (8,9) (7,8) (7,8) (7,8) (7,8) (7,8) (7,8) (7,8)
4 (8,10) (8,10) (8,10) (8,10) (8,9) (8,9) (8,9) (8,9) (8,9) (8,9) (8,9) (8,9)
5 (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10)
6 (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10)
7 (6,8) (7,9) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10)
8 (6,8) (7,9) (7,9) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (9,11) (9,11) (9,11)
9 (6,8) (7,9) (7,9) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (9,11) (9,11) (9,11)

Table 4.6: The optimal barriers for 1 ≤ u1 ≤ 9 and 1 ≤ u2 ≤ 12

HHHHHu1

u2
1 2 3 4 5 6 7 8 9 10 11 12

1 4.309 5.309 6.309 7.309 8.309 9.309 10.309 11.309 12.309 13.309 14.309 15.309
2 5.839 6.752 7.644 8.622 9.622 10.622 11.622 12.622 13.622 14.622 15.622 16.622
3 7.250 8.400 9.498 10.534 11.521 12.498 13.473 14.460 15.460 16.460 17.460 18.460
4 8.371 9.701 10.959 12.133 13.241 14.295 15.315 16.318 17.316 18.316 19.316 20.316
5 9.291 10.766 12.156 13.445 14.641 15.763 16.831 17.863 18.874 19.875 20.875 21.875
6 10.083 11.672 13.164 14.539 15.807 16.986 18.098 19.160 20.189 21.198 22.198 23.198
7 11.012 12.537 14.074 15.512 16.831 18.051 19.193 20.276 21.318 22.332 23.332 24.332
8 12.012 13.537 15.044 16.467 17.810 19.049 20.206 21.300 22.348 23.374 24.383 25.383
9 13.012 14.537 16.044 17.467 18.810 20.049 21.206 22.300 23.348 24.379 25.390 26.390

Table 4.7: Approximated optimal dividends for 1 ≤ u1 ≤ 9 and 1 ≤ u2 ≤ 12

From Table 4.6, although the optimal barriers (b∗1, b
∗
2) vary with the initial surplus level (u1, u2), they

often take the value of (b∗1, b
∗
2) = (8, 10). The anomalies of lower optimal barriers usually happen when

u1 or u2 is small. In particular, when line 1 possesses low initial surplus of u1 = 1 or u1 = 2, the optimal
barriers (b∗1, b

∗
2) are mostly the small values of (3, 1). Intuitively, when one of the two lines possesses

low initial surplus, the bivariate process is likely to ruin early anyway. To optimize joint dividends, it is
important to ensure that some early dividends are paid before ruin (in terms of immediate dividend at
time 0 or reaching the barrier early), resulting in lower optimal barriers (b∗1, b

∗
2). However, this effect is a

bit less obvious when u2 is low. One possible explanation is that line 2 has a higher security loading (as it
has higher premium rate but the same expected claim costs compared to line 1) and hence lower chance
of early ruin than line 1, all else being equal. It is also instructive to note that the optimal barriers are
always either both high or both low, i.e. it is not optimal for one insurer to set a high barrier if the other
one has a low barrier and vice versa. This can be attributed to the fact that dividend payments for both
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lines cease at the joint ruin time T , and if one of the lines has large positive surplus at time T it would
have been better paid as a dividend at the beginning. See Section 3.1 for similar comments.

Turning to Table 4.7, it is clear that the discounted dividend increases with respect to both initial
surplus levels. The table can also help us study an optimal allocation problem as well if the criterion
is to maximize the total dividends of the two lines. (See also e.g. Loisel (2005, Section 5) or Gong et
al. (2012, Section 6.3) for discussion of a capital allocation that minimizes multivariate risk measures.)
Suppose that both business lines belong to a larger corporation who wants to choose (u1, u2) to maximize
V1(u1, u2; b1, b2)+V2(u1, u2; b1, b2) subject to the constraint u1+u2 = K (and of course u1 ≥ 0 and u2 ≥ 0)
for a given total initial capital of K > 0. This can be regarded as a two-step procedure. First, the optimal
pairs of barriers (b∗1, b

∗
2) and the resulting optimal joint dividends are determined as in Tables 4.6 and

4.7. Then, we can look at the line u1 + u2 = K in Table 4.7 to find the optimal combination of (u∗1, u
∗
2)

that gives the highest dividend value. For easy reference, we additionally plot the optimal joint dividends
against the capital u2 allocated to line 2 given that K = 5, 6, 7, 8, 9, 10 in Figure 4.2. For example, if
K = 7 then u∗2 = 3 yields the highest joint dividends and hence u∗1 = K − u∗2 = 4; if K = 10 then
(u∗1, u

∗
2) = (5, 5) (and in both cases (b∗1, b

∗
2) = (8, 10)). It is noted that the optimal allocation (u∗1, u

∗
2)

appears to occur at places where the total capital K is roughly equally split. The intuitive reason is that
if the allocation is at either extreme end, then it is more likely that one of the two lines possesses positive
surplus at the joint ruin time T and resources are wasted (see Section 3.1).

INSERT FIGURE 4.2

Figure 4.2: Plot of approximated optimal dividends against u2 under u1 + u2 = K

So far, when we maximize the joint dividends we place no restrictions on whether the barriers should
be below or above the respective initial surplus levels of the two lines. However, we already know from
Table 4.6 that this could lead to optimal barriers that are much lower than the initial surplus levels,
leading to earlier ruin than the case if higher barriers are applied. Practically, early ruin may not
be desirable for risk management purposes even dividends are maximized. These lead to the idea of
maximizing dividends under a penalty at ruin or a ruin probability constraint (see e.g. Dickson and
Waters (2004), Dickson and Drekic (2006), Gerber et al. (2006), and Thonhauser and Albrecher (2007)).
In the present context, we can delay ruin by maximizing the joint dividends under the constraint that
the barrier levels should be no less than the respective initial surplus levels. The resulting barrier levels
will be called ‘restricted optimal barriers’. Tables 4.8 and 4.9 give the restricted optimal barriers and the
resulting joint dividend values respectively.

HHHHHu1

u2
1 2 3 4 5 6 7 8 9 10 11 12

1 (3,1) (3,2) (4,3) (5,4) (5,5) (6,6) (7,7) (7,8) (8,9) (8,10) (9,11) (9,12)
2 (8,9) (8,9) (7,8) (7,8) (5,5) (6,6) (7,7) (7,8) (8,9) (8,10) (9,11) (9,12)
3 (8,9) (8,9) (8,9) (8,9) (8,9) (7,8) (7,8) (7,8) (8,9) (8,10) (9,11) (9,12)
4 (8,10) (8,10) (8,10) (8,10) (8,9) (8,9) (8,9) (8,9) (8,9) (8,10) (9,11) (9,12)
5 (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (9,11) (9,12)
6 (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (9,11) (9,12)
7 (7,9) (7,9) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (9,11) (9,12)
8 (8,10) (7,9) (7,9) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (9,11) (9,11) (9,12)
9 (9,11) (9,11) (9,11) (9,11) (9,11) (9,11) (9,11) (9,11) (9,11) (9,11) (9,11) (9,12)

Table 4.8: The restricted optimal barriers for 1 ≤ u1 ≤ 9 and 1 ≤ u2 ≤ 12
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PPPPPPu1

u2 1 2 3 4 5 6 7 8 9 10 11 12

1 4.309 4.906 5.553 6.222 6.899 7.532 8.108 8.634 9.089 9.483 9.812 10.092
2 5.839 6.752 7.644 8.505 9.397 10.354 11.231 12.037 12.736 13.345 13.854 14.289
3 7.250 8.400 9.498 10.534 11.521 12.498 13.473 14.460 15.359 16.146 16.804 17.369
4 8.371 9.701 10.959 12.133 13.241 14.295 15.315 16.318 17.316 18.245 19.026 19.699
5 9.291 10.766 12.156 13.445 14.641 15.763 16.831 17.863 18.874 19.875 20.751 21.511
6 10.083 11.672 13.164 14.539 15.807 16.986 18.098 19.160 20.189 21.198 22.143 22.970
7 10.932 12.537 14.074 15.512 16.831 18.051 19.193 20.276 21.318 22.332 23.324 24.199
8 11.680 13.395 14.998 16.467 17.810 19.049 20.206 21.300 22.348 23.374 24.383 25.288
9 12.267 14.068 15.747 17.281 18.678 19.960 21.151 22.273 23.344 24.379 25.390 26.306

Table 4.9: Approximated restricted optimal dividends for 1 ≤ u1 ≤ 9 and 1 ≤ u2 ≤ 12

In both Tables 4.8 and 4.9, the numbers in bold correspond to the positions where the values are
identical to those in Tables 4.6 and 4.7. These cells are mainly where the initial surplus levels are of fairly
balanced values. At many other positions, the restricted optimal barriers in Table 4.8 are much higher
than the globally optimal barriers in Table 4.6. Moreover, since Table 4.9 is a result of constrained
optimization, its values are no larger than those in Table 4.7. However, it is instructive to note that
except when u1 = 1 the dividend values in Table 4.9 are still comparable to those in Table 4.7. This
suggests that applying the restricted optimal barriers can actually delay ruin (due to higher barriers)
without sacrificing much dividends. Nonetheless, Table 4.8 shows the same phenomenon as in Table 4.6
that the restricted optimal barriers of the two lines are always of similar values. The intuitive reason is
similar to that for the globally optimal barriers. When one turns to the problem of capital allocation
based on the restricted optimal barriers, the results of the optimal allocation are identical to the case
where the globally optimal barriers are used, at least up to K = 10. This is depicted in Figure 4.3.

INSERT FIGURE 4.3

Figure 4.3: Plot of approximated restricted optimal dividends against u2 under u1 + u2 = K

4.4 A modified type of barrier strategy

In this section, we shall study a modified type of barrier strategy based on some observations from Table
4.7 regarding the dividend values under the globally optimal barriers. It has been always assumed that
at time 0 the two lines of business fix their barrier levels that will not be changed later on. But if time
0 is a decision time to set the barriers, it would make sense to allow immediate dividends to be paid
at time 0 so that the bivariate process moves to a better starting position from which the new globally
optimal barriers are implemented.

The above idea can be illustrated with a concrete example as follows. Suppose that the bivariate
risk process starts with initial surplus levels (u1, u2) = (3, 8). From Tables 4.6 and 4.7, we know that
the optimal joint dividend value is 14.460 under the optimal barriers (7, 8). However, if line 2 pays an
immediate dividend of 1, then the bivariate process moves to the new position (3, 7) and the optimal
barriers for the initial surplus levels (3, 7) (which happen to be (7, 8) also) can be applied. This will
result in higher total joint dividends of 1 + 13.473 = 14.473. But if line 2 continues paying an immediate
dividend of 1, moving the bivariate process to (3, 6), then the total joint dividends will be even higher at
14.498. The procedure continues, and no further improvement is possible upon reaching position (3, 4)
where total joint dividends of 14.534 can be enjoyed. To summarize, starting with (u1, u2) = (3, 8), the
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overall strategy would be for line 2 to pay 4 at time 0, and then implement the barriers (8, 9) so that the
expected present value of future dividends is 10.534.

Following the above arguments, we have tabulated the optimal parameters of the modified barrier
strategy in Table 4.10. In each cell, the upper pair is the target starting position while the lower
pair represents the optimal barriers for the new starting position. Table 4.11 gives the dividend values
accordingly.

HHHHHu1

u2
1 2 3 4 5 6 7 8 9 10 11 12

1
(1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1)
(3,1) (3,1) (3,1) (3,1) (3,1) (3,1) (3,1) (3,1) (3,1) (3,1) (3,1) (3,1)

2
(2,1) (2,1) (2,1) (2,1) (2,1) (2,1) (2,1) (2,1) (2,1) (2,1) (2,1) (2,1)
(8,9) (8,9) (8,9) (8,9) (8,9) (8,9) (8,9) (8,9) (8,9) (8,9) (8,9) (8,9)

3
(3,1) (3,2) (3,3) (3,4) (3,4) (3,4) (3,4) (3,4) (3,4) (3,4) (3,4) (3,4)
(8,9) (8,9) (8,9) (8,9) (8,9) (8,9) (8,9) (8,9) (8,9) (8,9) (8,9) (8,9)

4
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (4,7) (4,8) (4,8) (4,8) (4,8) (4,8)
(8,10) (8,10) (8,10) (8,10) (8,9) (8,9) (8,9) (8,9) (8,9) (8,9) (8,9) (8,9)

5
(4,1) (5,2) (5,3) (5,4) (5,5) (5,6) (5,7) (5,8) (5,9) (5,10) (5,10) (5,10)
(8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10)

6
(4,1) (5,2) (6,3) (6,4) (6,5) (6,6) (6,7) (6,8) (6,9) (6,10) (6,10) (6,10)
(8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10)

7
(4,1) (5,2) (6,3) (6,4) (7,5) (7,6) (7,7) (7,8) (7,9) (7,10) (7,10) (7,10)

(8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10)

8
(4,1) (5,2) (6,3) (6,4) (7,5) (7,6) (8,7) (8,8) (8,9) (8,10) (8,11) (8,11)

(8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (9,11) (9,11) (9,11)

9
(4,1) (5,2) (6,3) (6,4) (7,5) (7,6) (8,7) (8,8) (8,9) (9,10) (9,11) (9,11)
(8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (8,10) (9,11) (9,11) (9,11)

Table 4.10: Optimal parameters of the modified barrier strategy

HHHHHu1

u2
1 2 3 4 5 6 7 8 9 10 11 12

1 4.309 5.309 6.309 7.309 8.309 9.309 10.309 11.309 12.309 13.309 14.309 15.309

2 5.839 6.839 7.839 8.839 9.839 10.839 11.839 12.839 13.839 14.839 15.839 16.839

3 7.250 8.400 9.498 10.534 11.534 12.534 13.534 14.534 15.534 16.534 17.534 18.534

4 8.371 9.701 10.959 12.133 13.241 14.295 15.315 16.318 17.318 18.318 19.318 20.318

5 9.371 10.766 12.156 13.445 14.641 15.763 16.831 17.863 18.874 19.875 20.875 21.875

6 10.371 11.766 13.164 14.539 15.807 16.986 18.098 19.160 20.189 21.198 22.198 23.198

7 11.371 12.766 14.164 15.539 16.831 18.051 19.193 20.276 21.318 22.332 23.332 24.332

8 12.371 13.766 15.164 16.539 17.831 19.051 20.206 21.300 22.348 23.374 24.383 25.383

9 13.371 14.766 16.164 17.539 18.831 20.051 21.206 22.300 23.348 24.379 25.390 26.390

Table 4.11: Approximated optimal dividends under modified barrier strategy

First, the cells in Tables 4.9-10 with white background indicate positions (i) where there does not
exist any modified barrier strategy that can beat the (globally) optimal barrier strategy in Tables 4.6-7;
(ii) that are not the target starting positions for other starting initial surplus levels under consideration;
and (iii) that do not involve any immediate dividends at time 0. Second, a (partial) column or row with
black numbers and the same grey background in Tables 4.9-10 represents positions that all collapse to
the uppermost or leftmost cell within that (partial) column or row. For example, as long as u1 = 3 and
4 ≤ u2 ≤ 12, line 2 should pay a dividend of u2−4 at time 0 and then the two lines should implement (8, 9)
as the barriers. As another example, within the group where 5 ≤ u1 ≤ 9 and u2 = 2, line 1 immediately
pays out u1−5 and then the two lines apply the barriers (8, 10). Except for the target positions, all these
cells with grey background in Table 4.10 have strictly higher dividend values than the corresponding ones
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under the (globally) optimal barrier strategy given in Table 4.7. Finally, each remaining cell with the
darkest background and white number actually has the same modified barrier strategy as the (globally)
optimal barrier strategy, but the interpretation is slightly more complicated. For example, when u1 = 5
and 10 ≤ u2 ≤ 12, Table 4.6 indicates (globally) optimal barriers of (b∗1, b

∗
2) = (8, 10). Since u2 ≥ b∗2,

this essentially means that line 2 should pay an immediate dividend of u2 − 10 (moving the bivariate
process to (5, 10)) and continue to apply the barriers (8, 10). Again from Table 4.6, it is known that the
(globally) optimal barriers corresponding to the initial surplus levels (u1, u2) = (5, 10) are also (8, 10).
Therefore, the above description is indeed identical to the modified strategy given in Table 4.10, with
(5, 10) being the target starting position and (8, 10) the new barriers.

It is instructive to note that the dividend values in Table 4.11 are no less than those in Table 4.7
under the (globally) optimal barriers. More importantly, in some cases where the (globally) optimal
barriers are low in Table 4.6, application of our proposed modified barrier strategy can lead to later ruin
time as well. For example, when u1 = 2 and 4 ≤ u2 ≤ 12, under both strategies in Tables 4.6 and 4.10
the bivariate process essentially starts at the initial surplus levels (2, 1) after payment of an immediate
dividend at time 0. But the higher barriers of (8, 9) applied under the modified strategy (compared to
the barriers (3, 1) in Table 4.6) mean that the bivariate process can now survive longer. Therefore, our
proposed modified strategy could have the advantage of increased joint dividends and delayed ruin time
in comparison with the standard barrier strategy. Finally, Figure 4.4 shows that our modified barrier
strategy leads to the same optimal capital allocation as in Figures 4.2 and 4.3 for at least up to K = 10.

INSERT FIGURE 4.4

Figure 4.4: Plot of approximated optimal dividends against u2 under u1 + u2 = K

with the modified barrier strategy

5 Concluding Remarks

In this paper, a discretization procedure is developed to approximate a continuous-time bivariate risk
process. Applications to related optimal problems in reinsurance, capital allocation and dividends are
illustrated with numerical examples. A modified dividend barrier strategy which can lead to increased
dividends and longer survival time is proposed.

There are various directions for future research. First, with the barrier levels (b1, b2) in the continuous-
time model along with the scaling factors (β1, β2), one needs to solve a system of (β1b1+1)(β2b2+1) linear
equations in the discrete model according to the approximation procedures outlined at the beginning of
Section 2.4. In cases where (b1, b2) and (β1, β2) are both large, the computer can actually run out of
memory. (This explains the choices of low barriers in Section 3 and low scaling factors in Section 4.) More
efficient computational methods should be explored. Second, in principle our procedures can be extended
from bivariate to multivariate processes. But the calculations will be far more tedious, and again better
algorithms will be needed. Third, the present model may be modified so that capital transfer between
lines (e.g. Hult and Lindskog (2006)) is possible when one business line is in danger while the other has
abundant capital. Finally, one may also attempt to obtain explicit expressions under the simplest model
assumptions such as exponential claims with common shocks only or under proportional reinsurance. We
leave these as open questions.
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