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Abstract

This paper discusses the problem of estimating the population spectral distri-
bution from high-dimensional data. We present a general estimation procedure
that covers situations where the moments of this distribution fail to identify the
model parameters. The main idea is to use generalized functional expectations
as a substitute for the moments. Beyond the consistency, we also prove a cen-
tral limit theorem for the proposed estimator. An application to the analysis of
the eigenvalues of the sample correlation matrix of S&P 500 daily stock returns
is proposed.
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1. Introduction

Let x1, . . . ,xn be a sequence of i.i.d. zero-mean random vectors in Rp or Cp, with
a common population covariance matrix Σp. When the population size p is not
negligible with respect to the sample size n, modern random matrix theory indi-
cates that the sample covariance matrix Sn =

∑n
i=1 xix

∗
i /n does not approach Σp.

Therefore, classical statistical procedures based on an approximation of Σp by Sn
become inconsistent in such high-dimensional data situations.

More precisely, the spectral distribution (SD) FA of an m×m Hermitian matrix
(or real symmetric) A is the measure generated by its eigenvalues {λAi },

FA =
1

m

m∑
i=1

δλAi
,

where δb denotes the Dirac point measure at b. Let (σi)1≤i≤p be the p eigenvalues
of the population covariance matrix Σp. We are particularly interested in the SD

Hp := FΣp =
1

p

p∑
i=1

δσi .

This SD or its limit H (see below) is referred as the population spectral distribution
(PSD) of the observation model.

The main observation is that for high-dimensional data, the observed SD Fn =
FSn of the sample covariance matrix is far from the PSD Hp. Indeed, under rea-
sonable assumptions, when both dimensions p and n grow proportionally, almost



surely, the empirical SD Fn will weakly converge to a deterministic distribution F ,
called limiting spectral distribution (LSD), which in general has no explicit form but
is expressed via an implicit equation (Marčenko and Pastur 1967; Silverstein 1995).

A natural question here is the recovering of the PSD Hp (or its limit H) from
the sample covariance matrix Sn. This question has a central importance in sev-
eral popular statistical methodologies like principal component analysis (Johnstone
2001) or factor analysis that all rely on an efficient estimation of some population
covariance matrices.

Recent works on this problem include Mestre (2008) where the author introduces
a method based on contour integration under an eigenvalue splitting condition.
Most recently, Li and Yao (2013) has provided an extension of Mestre’s method to
situations where the eigenvalue splitting condition cannot be met. Some related
references include El Karoui (2008), Rao et al. (2008), Bai et al. (2010), Chen et al.
(2011), and Li et al. (2013).

However, except El Karoui (2008) and Li et al. (2013), all the cited estimation
methods are based on the moments of the PSD H. It may happen and that has been
a surprise, that these moments can not help to identify model parameters. Such an
example is provided in Section 4, where the underlying PSD H has a normalized
unit mean and infinite variance whatever the values of model parameter. Clearly,
any estimation procedure based on the moments of H fails in such situations.

The main motivation of this work is to propose a new estimator to cover these
intriguing situations. Inspired by the generalized method of moments, we consider
empirical statistics linked to a class of general test functions f . These test func-
tions are usually smaller than the monomials zj and thus expected to have a finite
expectation with respect to the unknown PSD H. In the example of stock returns
data, H has a infinite variance but test functions like f(x) = sin(x) do have a finite
integral with respect to H, which makes its estimation possible.

2. Generalized expectation estimation

Let G be a measure on the real line, the support of G is denoted by SG. The Stieltjes
transform of G is

sG(z) =

∫
1

x− z
dG(x), z ∈ C+,

which is a one-to-one map defined on the upper half complex plane C+ = {z ∈
C : =(z) > 0}. The transform can be trivially extended to C \ SG by using the
same functional form, which will be adopted throughout the paper.

Suppose that the underlying PSD H belongs to a parametric family H = {H(θ) :
θ ∈ Θ ⊂ Rq}. Denote by c the limiting ratio of p/n, and F the LSD with respect to
H and c. Let f be an analytic function on an open region containing the support
SF of F , and H(f) be the expectation of f with respect to H, i.e.

H(f) =

∫
f(t)dH(t).

We call this integral generalized expectation of the PSD H. It will be shown that
H(f) connects to F through the Stieltjes transform s(z) of cF + (1 − c)δ0 by a
contour integral:

H(f) = K(c, f) +
1

2πic

∮
C
zs′(z)f(−1/s(z))dz, (2.1)



where s′(z) stands for the derivative of s(z), K(c, f) is a constant related to c and
f , and C is a positive oriented contour enclosing the support SF (see Theorem 3.1).
When an empirical SD Fn := FSn is obtained, we may use the Stieltjes transform
sn(z) of (p/n)Fn + (1 − p/n)δ0 and its derivative s′n(z) to estimate s(z) and s′(z),
respectively, in the formula (2.1), and then get an estimate

Ĥ(f) := K(p/n, f) +
n

p

1

2πi

∮
C
zs′n(z)f(−1/sn(z))dz. (2.2)

Now with the help of H(f) and its estimate Ĥ(f), we consider the estimation
of the PSD H. Let f1, . . . , fq be analytic functions on an open region containing
SF , γ = (H(fj))1≤j≤q be a q dimensional vector of generalized expectations. In
order to make θ identifiable from γ, we assume that the vector function g from Rq
to Rq: θ 7→ γ is invertible in Θ. Under this assumption, the generalized expectation
estimator (GEE) of θ is

θ̂n = g−1(γ̂n),

where γ̂n = (Ĥ(fj))1≤j≤q with elements defined by (2.2).

3. Asymptotic properties

In this section, we study the asymptotic properties of the expectations {Ĥ(fj)} and

the GEE θ̂n. All these properties are based on the following assumptions.

Assumption (a). The sample and population sizes n, p both tend to infinity, and
in such a way that p/n→ c ∈ (0,∞).

Assumption (b). There is a doubly infinite array of i.i.d. complex-valued random
variables (wij), i, j ≥ 1 satisfying

E(w11) = 0, E(|w11|2) = 1, E(|w11|4) <∞,

such that for each p, n, letting Wn = (wij)1≤i≤p,1≤j≤n, the observation vectors can

be represented as xj = Σ
1/2
p w.j where w.j = (wij)1≤i≤p denotes the j-th column of

Wn.

Assumption (c). The PSD Hp of Σp weakly converges to a probability distribution
H on [0,∞) as n→∞. Moreover, the sequence of spectral norms (||Σp||) is bounded
in p.

Assumptions (a)-(c) are classical conditions for the central limit theorem (CLT)
of linear spectral statistics, see Bai and Silverstein (2004, 2010).

Theorem 3.1. Under the assumptions (a)-(c), for each j (1 ≤ j ≤ q),

(i) the generalized expectation H(fj) can be re-expressed as

H(fj) = K(c, fj) +
1

2πic

∮
C
zs′(z)fj(−1/s(z))dz,

where C is a positively oriented contour, taking values in C \ (SF ∪ {0}) and
enclosing the support SF of F , and K(c, fj) = (1− 1/c)fj(0) if C enclosing 0,
and zero otherwise;



(ii) the empirical expectation Ĥ(fj) based on sn(z) converges almost surely.

Theorem 3.2. Under the assumptions (a)-(c),

(i) the random vector

n
(
Ĥ(fj)−Hp(fj)

)
1≤j≤q

(3.1)

forms a tight sequence in n, where the centralization term Hp(fj) stands for
the generalized expectation of Hp.

(ii) If w11 and Σp are real and E(w4
11) = 3, then (3.1) converges weakly to a

Gaussian distribution Nq(µ,Φ), with mean vector

µ =

(
− 1

2πi

∮
C
fj(−1/s(z))

∫
t2s′(z)2dH(t)

s(z)(1 + s(z))3
dz

)
1≤j≤q

and covariance matrix Φ = (φij)q×q with

φij =
−1

4π2c2

∮
C

∮
C′
fi(−1/s(z1))fj(−1/s(z2))k(z1, z2)dz1dz2,

where k(z1, z2) = 2s′(z1)s′(z2)/(s(z1) − s(z2))2 − 2/(z1 − z2)2. The contours
C and C ′ shares the same properties and are assumed non-overlapping.

(iii) If w11 is complex with E(w2
11) = 0 and E(|w11|4) = 2, then (ii) also holds,

except the mean vector is zero and the covariance matrix is Φ/2.

Next, we present the asymptotic properties of the GEE θ̂n.

Theorem 3.3. In addition to the assumptions (a)-(c), suppose that the true value
of the parameter θ0 is an inner point of Θ. Also, suppose that the function g(θ)
is differentiable in a neighborhood of θ0 and the Jacobian matrix J(θ) = ∂g/∂θ is
invertible at θ0. Then,

(i) the GEE θ̂n is strongly consistent,

(ii) moreover, if assumptions in (ii) or (iii) of Theorem 3.2 on w11 hold, then

n(θ̂n − g−1(γp))
D−→ Nq(J

−1(θ0)µ(θ0),Γ(θ0)),

where γp = (Hp(fj))1≤j≤q and Γ(θ0) = J−1(θ0)Φ(θ0)(J−1(θ0))′, with µ and Φ
defined in Theorem 3.2.

4. Application to S&P 500 daily stocks data

We consider an empirical correlation matrix of daily returns from stocks listed in
the Standard & Poor Index and analyze the distribution of its eigenvalues. The
time period is from September, 2007 to September 2011 covering 1001 trading days.
As 12 stocks listed as by September 2011 do not have a complete history, they are
removed from the analysis and in total 488 U.S. stocks have been included. The
total data matrix of the returns is then with data dimension p = 488 and sample size



n = 1000. Next the 488×488 sample correlation matrix of these returns is computed
and we obtain its 488 sample eigenvalues.

It is well known that for correlation matrices from stock returns or macro-
economic time series, a few large eigenvalues detach from the bulk of the eigenvalues
and they are termed as spikes, see Johnstone (2001). Here we concentrate ourselves
on the analysis of the bulk eigenvalues by removing the 6 first largest ones which
are deemed as spike eigenvalues.

The question we address here is: what is the structure of the eigenvalues at
the population level that has led to these observed eigenvalues. To this end and
following Bouchaud and Potters (2009) and Li et al. (2013), an inverse cubic density
is assumed for PSD H associated to the bulk eigenvalues, that is,

h(t|α) =
c

(t− a)3
I(t ≥ α), 0 ≤ α < 1,

where c = 2(1− α)2 and a = 2α− 1.
As already noticed, moments-based methods fail to estimate the parameter for

α that the moments of H(α) can not identify the parameter: H has infinite variance
and unit mean whatever the value of α. However, expectations of a suitably-chosen
“test” function with respect to H can help to identify α.
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Figure 1: Curves of H(f, α) (left) and ∂H(f, α)/∂α (right).

Here, we provide an example with the test function f(z) = sin(z), that is, we
consider the expectation

H(f, α) =

∫
sin(t)h(t|α)dt,

which exists and is increasing with respect to α (although H(f, α) has no analytic
expression), see Figure 1 .

The estimate of the expectation turns out to be Ĥ(f, α) = 0.5546 which indi-
cates α̂ = 0.3205. To make a comparison, we plot in Figure 2 the limiting spectral
density predicted by the random matrix theory (derived from H(α̂)) and the em-
pirical density function of bulk eigenvalues (an estimate using a Gaussian kernel
with bandwidth h = 0.01). It shows that our estimation yields a very accurate fit
to the empirical density. Potential applications in the future of these findings can
be done through an explicit factor modeling where factor scores and loadings, once
estimated, will provide important information on the correlations, at the population
level, between returns of the listed stocks.
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Figure 2: The empirical density of the sample eigenvalues (plain black) compared
to the limiting spectral densities corresponding to H(α̂) (blue).
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