
                             Elsevier Editorial System(tm) for Transportation Research Part B 
                                  Manuscript Draft 
 
 
Manuscript Number: TRB-D-13-00278R2 
 
Title: A new schedule-based transit assignment model with travel strategies and supply uncertainties
  
 
Article Type: Research Paper 
 
Keywords: User equilibrium; Schedule-based transit assignment; Strategy; Supply uncertainty 
 
Corresponding Author: Dr. Wai Yuen Szeto, PhD 
 
Corresponding Author's Institution: The University of Hong Kong 
 
First Author: Younes Hamdouch 
 
Order of Authors: Younes Hamdouch; Wai Yuen Szeto, PhD; Y. Jiang 
 
 
 
 
 
 



Statement of contributions 

 

A transit assignment model is useful in estimating or predicting how passengers utilize a 

given transit system. In the literature of transit assignment studies, these models used 

either frequency-based (static) or schedule-based (dynamic) approach to model transit 

route choice. The optimal strategy approach is one of the commonly adopted 

formulations in these approaches. However, most of existing related studies did not 

consider the effect of uncertainty in transit networks on route choice. 

 

In fact, due to supply side uncertainty, in-vehicle travel times and waiting times, 

especially for buses and mini-buses, are highly uncertain. Studies such as Jackson and 

Jucker (1982) and Szeto et al. (2011b) found that travel time uncertainty does affect the 

route choice of passengers. It is essential to capture this realistic travel behavior into the 

transit modeling framework. Therefore, transit assignment models have recently 

emphasized the influence of uncertainties in frequency-based frameworks and their 

transit network design applications (Yang and Lam, 2006; Li et al. 2008, 2009; Sumalee 

et al., 2011, Szeto et al., 2011a, b). These transit assignment models can be used to study 

aggregated stochastic effects of a specific line from a static perspective. However, 

uncertainties exist in both vehicle running and dwelling process in line operation and the 

schedule-based models provide a means to investigate uncertainties within the vehicle 

process (Zhang et al., 2010). Hence, Zhang et al. (2010) developed a schedule-based 

transit assignment model to capture the uncertainties. Nevertheless, they proposed a path-

based model and hence path enumeration or column generation is needed to obtain 

solutions. Optimal strategies and hence the concept of set of attractive lines are also not 

explicitly considered in their model.  

 

The objective of the paper is to extend the schedule-based transit assignment model in 

Hamdouch and Lawphongpanich (2008) to consider supply uncertainties in the transit 

network and optimal strategies. This extension is not straightforward, as the resultant 

problem is a stochastic and dynamic optimization problem. We propose an analytical 

model that captures the stochastic nature of the transit schedules and in-vehicle travel 

times due to road conditions, incidents or adverse weather. We adopt a mean variance 

approach that can consider the covariance of travel time between links in a space time 

graph but still lead to a robust transit network loading procedure when optimal strategies 

are adopted. The method of successive averages (MSA) is adopted to solve the model. 

Numerical studies are performed to illustrate the properties of the model and the 

effectiveness of the algorithm. This paper differs from Zhang et al. (2010) in threefold. 

First, this paper adopts a mean-variance approach to consider strategies while they adopt 

effective travel cost as the factor affecting passengers’ line choice. Second, their model is 

path-based and requires path enumeration and column generation, but ours is strategy-

based and relies on Bellman’s recursion principle to deal with network loading. Third, we 

consider hard capacity constraints but they consider a chance constraint for dealing with 

the capacity. 

 

The contributions of this paper include the following: 

1. Statement of contribution/potential impact



1. This paper proposes a schedule-based transit assignment model with the 

consideration of both supply uncertainties and optimal strategies. 

2. The proposed solution method does not rely on path enumeration or column 

generation technique. The transit network loading procedure relies on the usage of 

Bellman’s recursion principle, and is quite robust. 

3. The model and the solution method allow us to evaluate the performance of 

transit systems under supply uncertainties, assess the effectiveness of operational 

strategies, and develop a larger model to plan transit schedules. 
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Abstract

This paper proposes a new scheduled-based transit assignment model. Unlike

other schedule-based models in the literature, we consider supply uncertainties and

assume that users adopt strategies to travel from their origins to their destinations.

We present an analytical formulation to ensure that on-board passengers contin-

uing to the next stop have priority and waiting passengers are loaded on a first-

come-first-serve basis. We propose an analytical model that captures the stochastic

nature of the transit schedules and in-vehicle travel times due to road conditions,

incidents, or adverse weather. We adopt a mean variance approach that can con-

sider the covariance of travel time between links in a space-time graph but still lead

to a robust transit network loading procedure when optimal strategies are adopted.

The proposed model is formulated as a user equilibrium problem and solved by an

MSA-type algorithm. Numerical results are reported to show the effects of supply

uncertainties on the travel strategies and departure times of passengers.

Keywords: User equilibrium; Schedule-based transit assignment; Strategy;

Supply uncertainty

1 Introduction

A transit assignment model is useful in estimating or predicting how passengers utilize

a given transit system. In the literature of transit assignment studies, these models

∗Corresponding author, Email: ceszeto@hku.hk
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used either the frequency-based (static) or the schedule-based (dynamic) approach to

model transit route choice. Similar to the traditional static user equilibrium assignment

models, frequency-based transit assignment models (Spiess and Florian, 1989; De Cea and

Fernandez, 1993; Cantarella, 1997; Lam et al., 1999, 2002; Kurauchi et al., 2003; Cepeda

et al., 2006; Schmöcker et al., 2009; Sumalee et al., 2009; Schmöcker et al., 2011; Cortés

et al., 2013; Trozzi et al., 2013; Szeto and Jiang, 2014) often assume that passengers

select transit routes to minimize their perceived expected travel cost, and departure time

is not the concern. These static transit assignment models are commonly adopted for the

strategic and long-term planning/evaluation of transit networks.

Schedule-based transit assignment models (Wilson and Nuzzolo, 2004; Poon et al.,

2004; Hamdouch and Lawphongpanich, 2008; Hamdouch et al., 2011; Zhang et al., 2010;

Nuzzolo et al., 2012) are typically dynamic and are better suited to short-term tran-

sit operations and service planning such as transit timetabling and vehicle scheduling.

In a schedule-based model, the temporal dimension is the most important part as it is

assumed that transit passengers choose not only their transit routes, but also their de-

parture times for minimizing their individual generalized cost. Researchers incorporate

this time dependent choice in different ways which is classified by Poon et al. (2004) as

(a) diachronic graph representation (Nuzzolo et al., 2001); (b) dual graph representation

(Moller-Pedersen, 1999); (c) forward star network formulation (Tong and Wong, 1998),

and; (d) space-time formulation (Nguyen et al., 2001; Hamdouch and Lawphongpanich,

2008; Hamdouch et al., 2011). In the last representation, the schedule-based transit net-

work is represented by a time-expanded graph. This graph has an explicit representation

of single runs and allows a more straightforward treatment of congestion when capacity

constraints are considered. Moreover, it can explicitly represent passenger movements

through the in-vehicle and waiting links in the space-time network. This representation

and the first one both consider space-time nodes and links. However, a time-expanded

network is built on a two dimension graph with one time axis and one space axis. A

diachronic network is built in a three dimension graph with two space axes and one time

axis.

To model the route choice, one commonly approach is to adopt the concept of optimal

strategy. In the frequency-based approach, the core idea for an optimal strategy is that a

traveler selects, at each node of the network, a set of attractive lines that allows him/her

to reach his/her destination at a minimum expected cost (Spiess and Florian, 1989; Wu

et al., 1994; Cepeda et al., 2006; Schmöcker et al., 2009). Different from the previous

static models, Hamdouch and Lawphongpanich (2008) developed a dynamic schedule-

based transit assignment where the choice of strategy is an integral part of user behavior.

2
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In that study, passengers specified their individual travel strategy by providing, at each

transit station and each point in time, an ordered list of transit lines they preferred to use

to continue their own journey. For a given passenger, the user-preference set at each time-

expanded (TE) node collectively yielded a set of potential paths that departed from the

passenger’s origin at the same time and generally arrived at the destination at different

times. Also, when loading a transit vehicle at a station, on-board passengers continu-

ing to the next station remained on the vehicle and waiting passengers were loaded in a

first-come-first-serve (FCFS) basis. To explicitly consider vehicle capacities, the model

assigned the fail-to-board passengers to the wait arc to wait for their next preferred tran-

sit services with residual capacities. Hamdouch et al. (2011) extended the model in

Hamdouch and Lawphongpanich (2008) to differentiate the discomfort level experienced

by the sitting and standing passengers. Each class of passengers, grouped by their re-

maining journey lengths and times already spent on-board, was assigned success-to-sit,

success-to-stand, and failure-to-board probabilities. These probabilities were computed

by performing a dynamic network loading. The stimulus of a standing passenger to sit

increased with his/her remaining journey length and time already spent on-board. When

a vehicle was full, passengers unable to board must wait for the next vehicle to arrive.

The above studies do not consider the effect of the uncertainties of transit networks

on route choice. In fact, due to supply side uncertainties, in-vehicle travel times and

waiting times, especially for buses and mini-buses, are highly uncertain. Studies such as

Jackson and Jucker (1982) and Szeto et al. (2011b) found that travel time uncertainty

does affect the route choice of passengers. It is essential to capture this realistic travel

behaviour into the transit modelling framework. Therefore, transit assignment models

have recently emphasized the influence of uncertainties in the frequency-based framework

and their transit network design applications (Yang and Lam, 2006; Li et al., 2008, 2009;

Sumalee et al., 2011; Szeto et al., 2011b, 2013) as in traffic assignment (Shao et al., 2006;

Szeto et al. 2011a). These transit assignment models can be used to study the aggregated

stochastic effects of transit lines from a static perspective. However, uncertainties exist in

both the vehicle running and dwelling processes in line operation and the schedule-based

models provide means to investigate uncertainties within the vehicle processes (Zhang et

al., 2010). Hence, Zhang et al. (2010) developed a schedule-based transit assignment

model to capture the uncertainties, wherein they adopted the effective travel cost as

the factor affecting the route choice of passengers and considered chance constraint for

dealing with the capacity. Nevertheless, they proposed a path-based model and hence

path enumeration or column generation is needed to obtain solutions. Optimal strategies

and hence the concept of the set of attractive lines are also not explicitly considered in

3
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their model.

The objective of the paper is to extend the schedule-based transit assignment model

proposed by Hamdouch and Lawphongpanich (2008) to consider supply uncertainties in

the transit network, optimal strategies, and hard capacity constraints. This extension is

not straightforward, as the resultant problem is a stochastic and dynamic optimization

problem. We propose an analytical model that captures the stochastic nature of the

transit schedules and in-vehicle travel times due to road conditions, incidents, or adverse

weather. We adopt a mean variance approach that can consider the covariance of travel

time between links in a space-time graph but still lead to a robust transit network loading

procedure when optimal strategies are adopted. We formulate the problem as a user

equilibrium problem. We adopt a user equilibrium (UE) framework instead of a stochastic

user equilibrium (SUE) framework because of the following:

i) It is easier to illustrate the concept of travel strategy and the model formulation

clearly and analyze the model properties without being smeared by other factors

such as the perception error of passengers on travel costs.

ii) SUE transit assignment models require a probabilistic choice model to depict the

travel choice behavior of passengers. However, a realistic choice model always has

some limitations. For example, the Probit model used in SUE transit assignment

(e.g., Nielsen, 2000 and Nielsen and Frederiksen, 2006) relies on simulation that

suffers from computational burden. The Logit model used in transit assignment

models (e.g., Lam et al., 1999; 2002) suffer from the path overlapping issue. Solving

C-Logit (Cassetta et al., 1996) and other path-based choice models often requires

a path set generation or path enumeration algorithm, and an efficient link based

algorithm that obviates the path set generation or enumeration procedure has not

yet been developed to solve these models.

iii) A UE framework has a good mathematical property that allows the dynamic pro-

gramming technique to be used during the solution process. The technique does not

rely on path set generation or path enumeration during that process.

The proposed model is formulated as a variational inequality (VI) model, unlike the

nonlinear complementarity problem (NCP) model (e.g., Lo et al. 2003) and the fixed

point (FP) model (Cantarella, 1997) in the transit assignment literature. Nevertheless,

according to Nagurney (1993), our proposed VI model can be reformulated into an NCP

model and a FP model so that other solution techniques developed for solving NCP and

FP models can be used. In this paper, the method of successive averages, which is often

4
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used to solve FP models, is adopted to solve our model. Numerical studies are given

to illustrate the effects of supply uncertainties, vehicle capacity, and early/late arrival

penalty parameters on travel strategies and/or departure times of passengers. The effects

of the value of travel time variability (which was termed by Jenelius (2012) and Brjesson

et al. (2012)) or equivalently the degree of risk aversion (termed by Jackson and Jucker

(1982)) are also investigated.

The contributions of this paper include the following:

i) This paper proposes a schedule-based transit assignment model with the consider-

ation of both supply uncertainties and optimal strategies.

ii) The solution method developed does not rely on any path enumeration or column

generation technique. The transit network loading procedure relies on the usage of

Bellman’s recursion principle, and is quite robust.

iii) The model and the solution method allow us to evaluate the performance of transit

systems under supply uncertainties, assess the effectiveness of operational strategies

under these uncertainties, and develop a larger model to plan transit schedules to

cope with these uncertainties.

For the remainder, Section 2 presents the network representation, notations, and as-

sumptions of the proposed model. Section 3 depicts how to determine the mean and

variance travel times and arrival probabilities. Travel strategies and the computation of

the effective strategy costs are described in Section 4. Section 5 formulates the transit

assignment problem as a variational inequality and proposes an MSA-based solution al-

gorithm. Section 6 presents numerical results and Section 7 discusses the applicability of

our model in real-life applications. Finally, Section 8 concludes the paper.

2 Network representation, notations, and assump-

tions

2.1 Network representation

Consider a transit network that consists of nodes and arcs. Nodes include origins, desti-

nations, and station nodes where a transit vehicle stops to load and unload passengers.

Arcs are used to connect nodes. They consist of walk arcs and in-vehicle arcs. An example

is given in Figure 1 that displays a transit system with two origin nodes q and o, two

5
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destination nodes r and y, and three transit lines l1, l2, and l3. Nodes labeled a, b, c,

and d are station nodes. In this example, there are four walk arcs: two access arcs (q, a)

and (o, b), and two egress arcs (d, r) and (c, y). The remaining arcs correspond to route

segments of the three transit lines. As an example, Line 1 or l1 begins its route at node

a, travels to node b, then to node c, and finally terminates at node d. Thus, {a, b, c, d} is

the route sequence associated with line l1.

 

 

 

 

 

q a c 

b d r 

5 min 

5 min 

  Travel Time 

o 
5 min 

y 
5 min 

Line 1 ( ): a → b →c →d 

Line 2 ( ): a → c  

Line 3 ( ): b →d 

   T ab  

   T ac  

   T bc  

   T bd  

   T cd  

Figure 1: A small network with three transit lines

In the transit network, the number next to each arc (j, k) is the “travel time” Tjk. For

walk arcs, Tjk is assumed to be constant (Tjk = tjk) and represents the time to walk from

j to k. When (j, k) corresponds to a transit-line segment, {Tjk} is assumed to follow a

discrete distribution with the probabilities Pjk(t), a mean E(Tjk) = µjk and a variance

V ar(Tjk) = σ2
jk.

As in Hamdouch and Lawphongpanich (2008) and Hamdouch et al. (2011), we use a

time-expanded (TE) approach to model transit supply in a schedule-based setting. The

time horizon is represented as a set of discrete points of the form Γ = {t0, t0 + δ, t0 +

2δ, · · · , t0 + nδ}, where δ is the duration of each time interval and Ω = {0, 1, 2, 3, · · · , n}
is the set of time intervals. All time related variables in the model are then specified as

a multiple of δ. In general, each node j in the transit network is expanded into multiple

nodes jτ , where τ ∈ Ω, in the TE network. Similarly, an in-vehicle arc (j, k) in the

transit network is expanded into multiple in-vehicle arcs (jτ , kτ ′′) where τ ′′ denotes the

time interval to reach node k. Similarly, arcs (q, k) and (j, r) are expanded into multiple

access arcs (qτ , k(τ+Tqk)), and egress arcs (jτ , r(τ+Tjr)), respectively. These two types of arcs

represent walking from an origin to a station and from another station to a destination,

respectively. In addition, there are arcs of the form (jτ , jτ+1) that represents passengers

having to wait at station j from time τ to (τ + 1).

6
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2.2 Notations

Sets

N set of nodes (with i, j, k ∈ N)

A set of arcs (with a ∈ A)

Ω set of time intervals (with τ, τ ′, τ ′′ ∈ Ω, where τ stands

for the time interval considered; τ ′ and τ ′′, respectively,

represent the arrival time interval not later and earlier

than the current time interval, i.e., τ ′ ≤ τ ,τ ′′ ≥ τ

L set of transit lines (with l ∈ L)

Lj set of transit lines that traverse node j

Ljk set of lines traversing on arc (j, k) with Njk its cardinality

I+(jτ ) set of successor nodes for the time-expanded node jτ

I−(jτ ) set of predecessor nodes for the time-expanded node jτ

S(q,r) set of strategies for OD pair (q, r) (with s ∈ S(q,r))

Es,τ
j user-preference set for strategy s, node j, and time τ

W τ,τ ′

j set of passengers who have reached node j at time τ ′ ≤ τ

W τ,0,1
j set of passengers who have continuance priority at node j

at time τ and travel on the run with the highest

probability to reach node j at time τ

{j1(l), j2(l), . . . , jNl
(l)} set of route sequence nodes associated with line l

{DT1,jn(l), DT2,jn(l), . . . , DTMl,jn(l)} set of the departure/arrival times at transit node jn(l)

with the first subscript is for run

Mjτ ,l set of runs of line l that have positive probabilities

to reach node j at time τ

7
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Parameters

δ duration of a time interval

dg(q,r) travel demand for OD pair (q, r) and group g

[t−(q,r)(g), t
+
(q,r)(g)] desired arrival time interval for OD pair (q, r) and group g

tjk travel time for access/egress arc a = (j, k) ∈ A

Tjk random travel time for in-vehicle arc a = (j, k) ∈ A

Y lm
jk random travel time for arc (j, k) and transit line lm

under no effects from the previous arc

µjk mean travel time for in-vehicle arc a = (j, k) ∈ A

σ2
jk variance of the travel time for in-vehicle arc a = (j, k) ∈ A

ϕ, ϕl
0, ϕ

l
m coefficients used in the autoregressive model

cjk, c
l
jk constants used in the autoregressive model

Pjk(t) probability that the travel time Tjk is equal to t

Ml number of runs for transit line l (with 1 ≤ m ≤Ml)

Nl number of transit nodes for line l (with 1 ≤ n ≤ Nl)

Pm,jn(l)(τ) probability that the departure/arrival time for the mth

transit vehicle at node jn(l) is equal to τ

uτjk transit capacity for arc (j, k) at time τ

uτjkml transit capacity for the mth run of line l

serving arc (j, k) at time τ

vτjk transit fare on arc (j, k) at time τ

ηg1 early arrival penalty (in monetary units) for group g

ηg2 late arrival penalty (in monetary units) for group g

ηg3 value of travel time variability for group g

η4 crowding penalty (in monetary units)

γtravel value of time for travelling

γwait value of time for waiting

eτ,gjr late penalty cost for egress arc (jτ , r(τ+Tjr)) and group g

êτjk crowding cost function on arc (j, k) at time τ

Decision variables

xs,τ
s

(q,r,g) number of passengers for OD pair (q, r) and group g

assigned to strategy s and who leaves q at time τ s (starting time of strategy s)

X strategy assignment (SA) vector (with its components xs,τ
s

(q,r,g))

8
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Functions of decision variables

f s,τ,τ ′′

jkml number of passengers using strategy s and traveling on arc

(jτ , kτ ′′) and run m of line l

f s,τ,τ ′′

jk number of passengers using strategy s and traveling on arc

(jτ , kτ ′′) (f
s,τ,τ ′′

jk =
∑
l∈Lj

∑
m∈Ml

f s,τ,τ ′′

jkml )

f s,τ
jk number of passengers using strategy s and traveling on arc

(j, k) at time τ (f s,τ
jk =

∑
τ ′′≥τ

f s,τ,τ ′′

jk )

f τ
jk number of passengers traveling on arc (j, k) at time τ

πs,τ,τ ′′

jk probability that a passenger using strategy s travels on arc (jτ , kτ ′′)

πs,τ
jk probability that a passenger using strategy s

accesses arc (j, k) at time τ (πs,τ
jk =

∑
τ ′′≥τ

πs,τ,τ ′′

jk )

πs,τ
j probability that a passenger using strategy s

waits at node j from time τ to time τ + 1

zs,τ,τ
′

jml number of passengers using strategy s, travelling on run m of line l,

and having reached node j at time τ ′ ≤ τ ; τ ′ = 0 represents

the case that these passengers have continuance priority

zs,τjml number of passengers using strategy s and travelling on run m of line l

who reach node j at time τ

zs,τ,τ
′

j number of passengers using strategy s

and having reached node j at time τ ′ ≤ τ ; τ ′ = 0 represents

the case that these passengers have continuance priority

zs,τj number of passengers using strategy s

who reach node j at time τ (zs,τj =
∑
l∈Lj

∑
m∈Ml

zs,τjml)

Y s,τ
j random variable representing the node selected from the preference set Es,τ

j

Cg
jk random cost associated with link (j, k) for passenger group g

Cs,τs

(q,r,g) cost for passenger group g reaching destination r from origin q

using strategy s at time τ s

C vector of strategy costs (with its components Cs,τs

(q,r,g))

ECs,τs

(q,r,g) effective cost for passenger group g reaching destination r from origin q

using strategy s at time τ s

EC vector of effective strategy costs (with its components ECs,τs

(q,r,g)).
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2.3 Model assumptions

Seven main assumptions are made within the model as in the literature and are presented

below.

i) The demand for each OD pair and group g is assumed to be fixed. However, network

uncertainties are incorporated in the model through the stochastic nature of the

transit schedules and in-vehicle travel times due to road conditions, incidents or

adverse weather.

ii) The dwelling time (time for passengers to board and alight) is negligible and the

mean travel time, µjk, denotes the difference between the scheduled departure times

(arrival times) at stations j and k.

iii) When loading a vehicle, on-board passengers continuing to the next station remain

on the transit vehicle and waiting passengers are loaded on a First-Come-First-Serve

(FCFS) basis.

iv) Transit fares are collected based on arcs. This assumption is reasonable for the cases

of additive or distance-based fare structures. (i.e., the fares are directly proportional

to the travel distance or time.) However, if the fares are not directly proportional

to the travel distance or the fares are non-additive over arcs (such as the zone-based

fare), one can construct a direct in-vehicle arc between each pair of connected nodes

in the TE network. The drawback is an increase in the number of arcs in the TE

network (see, e.g., Lo et al. (2003) for more details).

v) All wait arcs have zero fares, zero penalties, and infinite capacities.

vi) All access and egress arcs have zero fares and infinite capacities. However, there

are penalties associated with egress arcs to account for lost opportunities associated

with arrivals outside the desired interval. Typically, these penalties are different for

various groups because of their different values of time or trip purposes.

For egress arcs (jτ , r(τ+Tjr)), one form of such penalty is as follows:

eτ,gjr = ηg1 max{0, t−(q,r)(g)− (τ + Tjr)}+ ηg2 max{0, (τ + Tjr)− t+(q,r)(g)}. (1)

vii) All in-vehicle arcs have transit fares and transit capacities. In addition, there is a

discomfort penalty for having too many passengers on board. For example, such a

discomfort function can be defined as follows:

êτjk(f
τ
jk) = η4

(
f τ
jk

uτjk

)2

, (2)
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where uτjk is the capacity of arc (j, k) at time τ , and f τ
jk is the total number of

passengers on arc (j, k) at time τ .

3 Travel time and arrival probabilities

Let Lj ⊂ L be the set of transit lines that traverse node j. For each line l ∈ Lj, node j

can be viewed as j = jn(l), (1 ≤ n ≤ Nl). To consider correlation between arcs belonging

to the same transit line l, we adopt a first-order discrete autoregressive (DAR(1)) model

(see Brockwell and Davis, 1991; Biswas and Song (2009) ) that accounts for the travel

time’ effects of an arc on its subsequent one within transit line l. For each 2 ≤ n ≤ Nl−1,

given {Tjn−1(l)jn(l)} = {Tij} with the probabilities Pij(t), a mean µij and a variance σ2
ij,

{Tjn(l)jn+1(l)} = {Tjk} can be determined as as a mixture distribution of {Tij} and {Yjk}:

Tjk = (Tij, ϕ) ∗ (Yjk, 1− ϕ) + cjk, (3)

with cjk = ϕ(E(Yjk)− µij) and the marginal probability function given by:

P (Tjk + cjk = t) = ϕP (Tij = t) + (1− ϕ)P (Yjk = t), (4)

where {Yjk} are i.i.d with given probabilities, a mean E(Yjk), and a variance V ar(Yjk).

Yjk represents the travel time for arc (j, k) under no effects from the previous arc (i, j)

and cjk is a constant added in the model to ensure that the mean travel time µjk is not

affected by the mean travel time of arc (i, j) and the correlation between arcs (i, j) and

(j, k) is measured by the variance travel time. ϕ (0 ≤ ϕ < 1) is the coefficient in the

autoregressive model that measures the effects of the previous arc (i, j) on the travel time

Tjk. If ϕ is close to 0, then the travel time Tjk is not affected by the previous arc (i, j)

but as ϕ approaches 1, the travel time Tjk gets a larger contribution from the previous

arc (i, j).

Using (4), we have:

µjk =
∑
t

tP (Tjk = t) + cjk (5)

=
∑
t

t(ϕP (Tij = t) + (1− ϕ)P (Yjk = t)) + cjk

= ϕµij + (1− ϕ)E(Yjk) + ϕ(E(Yjk)− µij)

= E(Yjk).

Also, we can compute the variance and covariance terms (see Appendix A):

σ2
jk = ϕσ2

ij + (1− ϕ)V ar(Yjk) + ϕ(1− ϕ)
(
µij − E(Yjk)

)2
(6)

Cov(Tin(l)in+1(l), Tin+n′ (l)in+n′+1(l)
) = ϕn′

σ2
in(l)in+1(l)

, 1 ≤ n ≤ Nl − 2, 1 ≤ n′ ≤ Nl − 1− n.
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In the case we have overlapping lines from node j to k, the travel time Tjk depends on not

only the travel time of the previous arc (i, j) but also the travel times of all transit lines

serving arc (j, k). If Ljk denotes the set of all transit lines lm traversing arc (j, k) with Njk

its cardinality and T l
jk is the travel time associated with arc (j, k) and transit line l ∈ Ljk,

{T l
jk} can be determined as a mixture distribution of {T l

ij}, {Y
l1
jk}, {Y

l2
jk}, · · · {Y

lNjk

jk }:

T l
jk = (T l

ij, ϕ
l
0) ∗ (Y

l1
jk , ϕ

l
1)∗, (Y

l2
jk , ϕ

l
2) ∗ · · · ∗ (Y

lNjk

jk , ϕl
lNjk

) + cljk,

with cljk = E(Y l
jk)−ϕl

0E(T
l
ij)−

Njk∑
m=1

ϕl
mE(Y

lm
jk ) and the marginal probability function given

by

P (T l
jk + cljk = t) = ϕl

0P (T
l
ij = t) +

Njk∑
m=1

ϕl
mP (Y

lm
jk = t),

where {Y lm
jk } are i.i.d with given probabilities, a mean E(Y lm

jk ), and a variance V ar(Y lm
jk ).

For each 1 ≤ m ≤ Njk, Y
lm
jk represents the travel time for arc (j, k) and transit line lm

under no effects from the previous arc (i, j), and ϕl
m (0 ≤ m < Njk) are the coefficients

in the autoregressive model with
Njk∑
m=0

ϕl
m = 1. Following the proofs of (5) and (6), we can

show that

E(T l
jk) = E(Y l

jk),

V ar(T l
jk) = ϕl

0V ar(T
l
ij) +

Njk∑
m=1

ϕl
mV ar(Y

lm
jk ) +

Njk∑
m=1

ϕl
0ϕ

l
m

(
E(T l

ij)− E(Y lm
jk )

)2
+

Njk∑
m=1

Njk∑
m′=m+1

ϕl
mϕ

l
m′

(
E(T lm

jk )− E(Y
lm′
jk )

)2
, and

Cov(Tin(l)in+1(l), Tin+n′ (l)in+n′+1(l)
) = (ϕl

0)
n′
σ2
in(l)in+1(l)

, 1 ≤ n ≤ Nl − 2, 1 ≤ n′ ≤ Nl − 1− n.

To illustrate the discrete autoregressive model, Table 1 displays the input data of all

in-vehicle arcs in Figure 1. Using equations (5) and (6) and setting ϕ = 0.3, we can

compute all probability distributions and all mean and variance/covariance terms (see

Tables 2 and 3).

Using the probabilities Pjk(t), we can calculate the arrival probabilities Pm,jn(l)(τ)

associated with the mth transit vehicle at node jn(l). We first set all arrival probabilities

12
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Line 1 Line 2 Line 3

Tab Ybc Ycd Tac Tbd

Time Prob Time Prob Time Prob Time Prob Time Prob

4 0.25 3 0.25 3 0.1 9 0.25 8 0.1

5 0.5 5 0.5 4 0.15 10 0.5 9 0.15

6 0.25 7 0.25 5 0.4 11 0.25 10 0.4

6 0.35 11 0.35

Table 1: Input data for in-vehicle arcs in Figure 1

Line 1 Line 2 Line 3

Tab Tbc Tcd Tac Tbd

Time Prob Time Prob Time Prob Time Prob Time Prob

4 0.25 3 0.175 3 0.1225 9 0.25 8 0.1

5 0.5 4 0.075 4 0.1275 10 0.5 9 0.15

6 0.25 5 0.5 5 0.43 11 0.25 10 0.4

6 0.075 6 0.2675 11 0.35

7 0.175 7 0.0525

Table 2: Probability distributions for in-vehicle arcs in Figure 1

Pm,jn(l)(τ) to 0 and then update them recursively as follows:

Pm,jn(l)(τ) =


1 if n = 1 and τ is the starting time

of the mth run of line l;∑
τ ′<τ

Pm,jn−1(l)(τ
′)Pjn−1(l)jn(l)(τ − τ ′) otherwise.

(7)

Using equation (7), we can obtain the probability distributions of all transit lines in

Figure 1 (as shown in Table 4).

In our example, the time horizon is [7h00, 8h00], Ω = {0, 1, 2, · · · , 60}, δ = 1 min. We

assume line l1 has 4 runs (Ml1 = 4) and lines l2 and l3 have 3 runs (Ml2 = Ml3 = 3).

Associated with each line l, there are fixed departure times, DTm,j1(l), at which each mth

transit vehicle must leave its starting station j1(l). At node a, there are four departure

times (DT1,a(l1) = 5, DT2,a(l1) = 15, DT3,a(l1) = 25 and DT4,a(l1) = 35) corresponding to

transit line l1 and three departure times (DT1,a(l2) = 5, DT2,a(l2) = 20 and DT3,a(l2) = 35)

corresponding to transit line l2. At node b, there are three departure times (DT1,b(l3) = 10,

13
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Line 1 Line 2 Line 3

Tab Tbc Tcd Tac Tbd

Mean 5 5 5 10 10

Var/Cov

Tab 0.5 0.15 0.045

Tbc 0.15 1.55 0.465

Tcd 0.045 0.465 1.095

Tac 0.5

Tbd 0.9

Table 3: Mean and variance/covariance terms for in-vehicle arcs in Figure 1

DT2,b(l3) = 20 and DT3,b(l3) = 30) associated with transit line l3.

4 Travel strategies and effective strategy costs

In this section, we show how the concept of travel strategies is adopted in the TE networks

with supply uncertainties and illustrate how to compute the effective cost of a strategy.

4.1 Travel strategies

As in previous studies (Hamdouch and Lawphongpanich, 2008 and Hamdouch et al.,

2011), we assume that passengers use strategies when travelling. To specify a strategy

(denoted as s), passengers must provide, at each node jτ , a preference set Es,τ
j of sub-

sequent nodes at which they want to reach via a transit line, walking, or waiting at a

station. The order in which nodes are listed in Es,τ
j gives the passengers’ preference, i.e.,

the first node in the set is the most preferred and the last is the least. To each node k

in the preference set that can be reached via a walking or a wait arc, we associate a time

interval index representing the actual time interval to reach node k. To each node k that

can be reached via an in-vehicle arc, we associate an index representing the corresponding

transit line. It is important to note that this strategy definition is different from the one

used in previous studies with fixed timetables. Indeed, while we can identify the actual

time passengers reach node k via a walking or a wait arc, the time to reach node k via

an in-vehicle arc is random and passengers can only include transit line indices in their

preference set. For example, Table 5 displays one valid strategy s1 for OD pair (q, r).
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Line 1 Line 2 Line 3

a b c d a c b d

Time Pr Time Pr Time Pr Time Pr Time Pr Time Pr Time Pr Time Pr

Run 1 5 1 9 0.25 12 0.044 15 0.005 5 1 14 0.25 10 1 18 0.1

10 0.5 13 0.106 16 0.019 15 0.5 19 0.15

11 0.25 14 0.206 17 0.058 16 0.25 20 0.4

15 0.288 18 0.119 21 0.35

16 0.206 19 0.181

17 0.106 20 0.224

18 0.044 21 0.195

22 0.122

23 0.058

24 0.017

25 0.002

Run 2 15 1 19 0.25 22 0.044 25 0.005 20 1 29 0.25 20 1 28 0.1

20 0.5 23 0.106 26 0.019 30 0.5 29 0.15

21 0.25 24 0.206 27 0.058 31 0.25 30 0.4

25 0.288 28 0.119 31 0.35

26 0.206 29 0.181

27 0.106 30 0.224

28 0.044 31 0.195

32 0.122

33 0.058

34 0.017

35 0.002

Run 3 25 1 29 0.25 32 0.044 35 0.005 35 1 44 0.25 30 1 38 0.1

30 0.5 33 0.106 36 0.019 45 0.5 39 0.15

31 0.25 34 0.206 37 0.058 46 0.25 40 0.4

35 0.288 38 0.119 41 0.35

36 0.206 39 0.181

37 0.106 40 0.224

38 0.044 41 0.195

42 0.122

43 0.058

44 0.017

45 0.002

Run 4 35 1 39 0.25 42 0.044 45 0.005

40 0.5 43 0.106 46 0.019

41 0.25 44 0.206 47 0.058

45 0.288 48 0.119

46 0.206 49 0.181

47 0.106 50 0.224

48 0.044 51 0.195

52 0.122

53 0.058

54 0.017

55 0.002

Table 4: Probability distributions for transit lines in Figure 1

For a passenger using s1, the order of nodes in the user-preference set at node a5, i.e.,

[bl1 , cl2 , a6], indicates that the passenger prefers Line 1 over Line 2 and Line 2 over waiting.

Using this strategy, there are several directed paths emanating from q0 and reaching node

r at different times. The arrival time at the destination depends on the probabilities to

access various lines at nodes a, b, c, and d as well as the probabilities associated with the

random travel times Tab, Tac, Tbc, Tbd, and Tcd.

The effective cost of a strategy s depends directly on the arc probabilities πs,τ
jk and

πs,τ
j associated with in-vehicle and wait arcs at time τ . The procedure for computing

this strategy cost comprises two main steps. In the first step, a stochastic loading of

the TE network is performed according to a given strategy assignment vector X and
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Strategy: s1

Node Pref. Node Pref. Node Pref. Node Pref. Node Pref.

q0 [a5] a5 [bl1 , cl2 , a6] b9 [cl1 , b10] c12 [dl1 , c13] d15 [r20]

a15 [bl1 , a16] b10 [cl1 , dl3 , b11] c13 [dl1 , c14] d16 [r21]

a20 [cl2 , a21] b11 [cl1 , b12] c14 [dl1 , c15] d17 [r22]

a25 [bl1 , a26] b19 [cl1 , b20] c15 [dl1 , c16] d18 [r23]

a35 [bl1 , cl2 , a36] b20 [cl1 , dl3 , b21] c16 [dl1 , c17] d19 [r24]

b21 [cl1 , b22] c17 [dl1 , c18] d20 [r25]

b29 [cl1 , b30] c18 [dl1 , c19] d21 [r26]

b30 [cl1 , dl3 , b31] c22 [dl1 , c23] d22 [r27]

b31 [cl1 , b32] c23 [dl1 , c24] d23 [r28]

b39 [cl1 , b40] c24 [dl1 , c25] d24 [r29]

b40 [cl1 , b41] c25 [dl1 , c26] d25 [r30]

b41 [cl1 , b42] c26 [dl1 , c27] d26 [r31]

c27 [dl1 , c28] d27 [r32]

c28 [dl1 , c29] d28 [r33]

c32 [dl1 , c33] d29 [r34]

c33 [dl1 , c34] d30 [r35]

c34 [dl1 , c35] d31 [r36]

c35 [dl1 , c36] d32 [r37]

c36 [dl1 , c37] d33 [r38]

c37 [dl1 , c38] d34 [r39]

c38 [dl1 , c39] d35 [r40]

c42 [dl1 , c43] d36 [r41]

c43 [dl1 , c44] d37 [r42]

c44 [dl1 , c45] d38 [r43]

c45 [dl1 , c46] d39 [r44]

c46 [dl1 , c47] d40 [r45]

c47 [dl1 , c48] d41 [r46]

c48 [dl1 , c49] d42 [r47]

d43 [r48]

d44 [r49]

d45 [r50]

d46 [r51]

d47 [r52]

d48 [r53]

d49 [r54]

d50 [r55]

d51 [r56]

d52 [r57]

d53 [r58]

d54 [r59]

d55 [r60]

Table 5: One travel strategy for OD pair (q, r)
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is an extension to the one proposed by Hamdouch and Lawphongpanich (2008). The

stochastic loading process computes the arc flows, f s,τ
jk , and the arc probabilities, πs,τ

jk (X)

and πs,τ
j (X), by processing TE nodes one at a time and in topological and chronological

(T&C) order, i.e., a node with no predecessor and the smallest time interval index is

processed first. Given all the arc flows and probabilities, the second step computes the

effective strategy cost using a mean variance approach. This step involves scanning TE

nodes in reverse T&C order and applying Bellman’s generalized recursion. Note that

this procedure is different from the one adopted in previous studies with fixed timetables.

Using a mean variance approach, Bellman’s recursion is essential to account for both

expected and variance cost terms in calculating the effective cost of a strategy.

4.2 Stochastic loading process

In loading the TE network, we ensure that, at each node jτ , the summation of the prob-

abilities associated with outgoing arcs in the preference set Es,τ
j are equal to one:∑

k∈Es,τ
j −{jτ+1}

πs,τ
jk (X) + πs,τ

j (X) = 1, ∀jτ , ∀s. (8)

Consider processing node j at time τ . For each line l ∈ Lj, node j can be viewed

as j = jn(l), (1 ≤ n ≤ Nl). Let Mjτ ,l be the set of runs of line l that have positive

probabilities to reach node j at time τ (ordered from the highest probability to the

smallest):

Mjτ ,l = {m ∈Ml|Pm,jn(l)(τ) > 0}.

Note that due to the variability in travel time, more than one run of the same line l can

reach node j at time τ , resulting in bus bunching (Bartholdi and Eisenstein, 2012). This

bunching issue occurs when at least one of the transit vehicles of line l is unable to keep

to its schedule and therefore reaches node j as one or more other vehicles of the same

transit line l at the same time τ . For example, Table 4 shows a bunching issue at node

d25 with Md25,l1 = {2, 1}, P2,d(25) = 0.005, and P1,d(25) = 0.002.

For each line l such that 1 < n < Nl (i.e., jn(l) is neither the starting nor the ending

node of line l) and for each strategy s such that the first choice in the user-preference

set Es,τ
j (1) = {jn+1(l)}, the passengers using strategy s on arc (jn−1(l), j) have priority

to board line l on arc (j, jn+1(l)). In case we have more than one run of the same line l

that reach node j at time τ , it is intuitively to give priority to the passengers on the run

with the highest probability first. This assumption can be relaxed by loading together all
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the passengers on the runs belonging to Mjτ ,l. Therefore, the first priority class, W τ,0,1
j ,

consists of all the passengers who have continuance priority at node jτ and travelling on

run Mjτ ,l(1) with the highest probability:

W τ,0,1
j = ∪s ∪l∈Lj

{
zs,τ,0jml , E

s,τ
j (1) = {jn+1(l)},m =Mjτ ,l(1)

}
, (9)

where zs,τ,0jml denotes the number of passengers using strategy s, travelling on run m of line

l, and having continuance priority at node jτ :

zs,τ,0jml =
∑
τc<τ

πs,τc,τ
ij zs,τciml , i = jn−1(l). (10)

For each line l ∈ Lj and for each strategy s such that Es,τ
j (1) = {jn+1(l)}, the passen-

gers using strategy s on arc (jn−1(l), j) and travelling on run m of line l,
∑
τc<τ

f s,τc,τ
jn−1(l)jml,

have priority to board line l on arc (j, jn+1(l)) and the flows f s,τ,τ ′′

jjn+1(l)ml and f
s,τ
jjn+1(l)ml are

computed as follows:

f s,τ,τ ′′

jjn+1(l)ml = Pjjn+1(l)(τ
′′ − τ)

∑
τc<τ

f s,τc,τ
jn−1(l)jml

= Pjjn+1(l)(τ
′′ − τ)zs,τ,0jml , ∀τ ′′ > τ (11)

f s,τ
jjn+1(l)ml =

∑
τ ′′>τ

f s,τ,τ ′′

jjn+1(l)ml.

Then, the residual capacities of all arcs (j, jn+1(l)), u
τ
jjn+1(l)ml, are updated (uτjjn+1(l)ml =

uτjjn+1(l)ml−
∑
s

f s,τ
jjn+1(l)ml) and the process ends for classW τ,0,1

j . We repeat the same process

for the priority classes W τ,0,m′

j for m′ = 2, ...,maxl{|Mjτ ,l|}.
After loading all on-board passengers who want to continue their journey in the same

transit vehicle, the process loads passengers who arrive at node j at time τ on various

transit lines and want to transfer to other transit lines as well as those who have been

waiting at node jτ . To enforce the FCFS rule, we classify these passengers according

to their arrival times at node j. We denote zs,τ,τ
′

j as the number of passengers using

strategy s at node jτ and having reached node j at time τ ′ ≤ τ and group all flows into

a class W τ,τ ′

j restricted to passengers having reached node j at time τ ′:

W τ,τ ′

j = ∪s

{
zs,τ,τ

′

j , Es,τ
j ̸= ∅

}
,

where zs,τ,τ
′

j =
∑
l∈Lj

∑
m∈Mjτ ,l

zs,τ,τ
′

jml and zs,τ,τ
′

jml is computed according to the following recur-

sion:

zs,τ,τ
′

jml =


πs,τ−1
j zs,τ−1,τ ′

jml if τ ′ ≤ τ − 1∑
τc<τ

πs,τc,τ
ij zs,τciml if τ ′ = τ , i = jn−1(l) and

(j, Es,τ
j (1)) ∈ l′ ̸= l,

(12)
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In equation (12), the first term denotes the passengers who reach node j before time τ −1

and the second term denotes those who reach node j at time τ .

As for the priority classes, we load passengers on the runs with the highest probabilities

in the sets Mjτ ,l and then we repeat the process for the subsequent runs following the

descendent order of probabilities. In loading passengers belonging to the classesW τ,τ ′

j (τ ′ ≤
τ), the process loads, in the FCFS order, the passengers who, according to their strategy

s, prefer to access arcs (jτ , kτ ′′) for all τ
′′ > τ , i.e., the process loads those passengers who

arrive earlier at time τ1 ≤ τ (zs,τ,τ
1

j ) before those who arrive later at time τ2 > τ1, τ2 ≤ τ

(zs,τ,τ
2

j ) until the remaining capacity of the arc is exhausted (uτjk = 0). Those who cannot

be loaded must use wait arc (jτ , jτ+1).

Once all the arcs emanating from jτ are loaded, the arc probabilities are computed as

follows:

πs,τ,τ ′′

jk =

∑
l∈Lj

∑
m∈Mjτ ,l

f s,τ,τ ′′

jkml∑
l∈Lj

∑
m∈Mjτ ,l

zs,τjml

=
f s,τ,τ ′′

jk

zs,τj

, (13)

πs,τ
jk =

∑
τ ′′≥τ

πs,τ,τ ′′

jk =
f s,τ
jk

zs,τj

, and (14)

πs,τ
j =

zs,τj − f s,τ
jk

zs,τj

. (15)

The stochastic loading procedure will be explained in detail using the example in Figure 2

which is built based upon Figure 1. Not all nodes and links are shown for the sake of

clarity. We focus on the loading process at nodes q10, o15, a15, b20, and c25. The loading

process starts at node q10 where 10 passengers using strategy s1 and 5 passengers using

s3 are loaded onto access arc (q10, a15). Thus, f s1,10
qa = 10, f s3,10

qa = 5, πs1,10
qa = πs3,10

qa = 1,

and πs1,10
q = πs3,10

q = 0. At node o15, 30 passengers using strategy s2 are loaded onto

access arc (o15, b20) and we get f s2,15
ob = 30, πs1,15

ob = 1, and πs2,15
q = 0. At node a15, the 10

passengers using strategy s1 and the 5 passengers using s3 want to board the second run

of line 1 and access arc (a, b) at time 15 (P2,a(l1)(15) = 1, zs
1,15

a2l1
= 10, and zs

3,15
a2l1

= 5). The

time to reach node b depends on the probabilities associated with the random travel time

Tab. From Tables 2 and 4, we know that Pab(4) = 0.25, Pab(5) = 0.5, and Pab(6) = 0.25.

19



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

 
 

a15 b19 

b20 

b21 c25 

d30 

Line 1, capacity = 20  

Waiting, cap = ∞ 

Line 3, capacity = 10  

Strategies    node b20                                                       Origin      Destination 

 

   s
1

          ][ bll dc
2131

),(),(                    q                    r 

  s
2

           ][ bll cd
2113

),(),(                     o                    r 

  s
3

           ][ blc 211
),(                             q                    y 

 

o15 

10(s1)+5(s3) 

30(s2) 

r35 

 

y30 

c26 

d31 

r36 

 

y31 

q10 

Figure 2: An example of stochastic loading

Therefore, from equation (10), we obtain the following:

f s1,15,19
ab2l1

= Pab(4)z
s1,15
a2l1

= 0.25(10) = 2.5,

f s3,15,19
ab2l1

= Pab(4)z
s3,15
a2l1

= 0.25(5) = 1.25,

f s1,15,20
ab2l1

= Pab(5)z
s1,15
a2l1

= 0.5(10) = 5,

f s3,15,20
ab2l1

= Pab(5)z
s3,15
a2l1

= 0.5(5) = 2.5,

f s1,15,21
ab2l1

= Pab(6)z
s1,15
a2l1

= 0.25(10) = 2.5,

f s3,15,21
ab2l1

= Pab(6)z
s3,15
a2l1

= 0.25(5) = 1.25,

f s1,15
ab = f s1,15,19

ab2l1
+ f s1,15,20

ab2l1
+ f s1,15,21

ab2l1
= 10,

f s3,15
ab = f s3,15,19

ab2l1
+ f s3,15,20

ab2l1
+ f s3,15,21

ab2l1
= 5,

πs1,15
ab = πs3,15

ab = 1,

πs1,15
a = πs3,15

a = 0,

πs1,15,19
ab = πs3,15,19

ab = 0.25,

πs1,15,20
ab = πs3,15,20

ab = 0.5,

πs1,15,21
ab = πs3,15,21

ab = 0.25.
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When the process undergoes node b20, there are two classes of passengers: W 20,0,1
b =

{zs
1,20

b2l1
= 5, zs

3,20
b2l1

= 2.5} and W 20,20
b = {zs

2,20
b = 30}. The process starts by loading the

passengers belonging to W 20,0,1
b , where 5 passengers using strategy s1 and 2.5 passengers

using s3 board the second run of line 1 and travel on arcs (b20, c23), (b20, c24), (b20, c25),

(b20, c26), and (b20, c27) with probabilities 0.175, 0.075, 0.5, 0.075, and 0.175, respectively

(see Table 2). Thus, we get f s1,20,25
bc2l1

= Pbc(5)z
s1,20
b2l1

= 0.5(5) = 2.5, f s3,20,25
bc2l1

= Pbc(5)z
s3,20
b2l1

=

0.5(2.5) = 1.25, f s1,20
bc2l1

=
26∑

τ ′′=23

Pbc(τ
′′ − 20)f s1,20,τ ′′

bc2l1
= 5, and f s3,20

bc2l1
=

26∑
τ ′′=23

Pbc(τ
′′ −

20)f s3,20,τ ′′

bc2l1
= 2.5. Then, the residual capacity, u20bc2l1 , is updated (u20bc2l1 = 20−7.5 = 12.5).

The next step is to load passengers belonging to the class W 20,20
b . Among the 30 passen-

gers using strategy s2 and belonging to this class, 10 passengers travel on the second run

of line 3 and 12.5 passengers travel on the second run of line 1. The times to reach nodes

c and d depend on the probabilities associated with the variables Tbc and Tbd, respectively.

The remaining passengers 7.5 use wait arc (b20, b21).

Finally, at node c25, 1.25 passengers using s3 alight from line 1 to take egress arc

(c25, y30). Therefore, only passengers using strategies s1 and s2 continue on line 1 and

access arcs (c25, d28), (c25, d29), (c25, d30), (c25, d31), and (c25, d32) with probabilities 0.1225,

0.1275, 0.43, 0.2675, and 0.0525, respectively (see Table 2). Relevant arcs flows and

probabilities for this stochastic loading example are displayed in Table 6.

(q, a) (o, b) (a, b) (b, c) (b, d) (c, d)

fs,τ
jk fs1,10

qa = 10 fs2,15
ob = 30 fs1,15

ab = 10 fs1,20
bc = 5 fs2,20

bd = 10 fs1,25
cd = 2.5

fs3,10
qa = 5 fs3,15

ab = 5 fs3,20
bc = 2.5 fs2,25

cd = 6.25

fs2,20
bc = 12.5

fs,τ,τ ′′

jkml fs1,15,20
ab = 5 fs1,20,25

bc = 2.5 fs2,20,30
bd = 4

fs3,15,20
ab = 2.5 fs3,20,25

bc = 1.25

fs2,20,25
bc = 6.25

πs,τ
jk πs1,10

qa = 1 πs2,15
ob = 1 πs1,15

ab = 1 πs1,20
bc = 1 πs2,20

bd = 0.33 πs1,25
cd = 1

πs3,10
qa = 1 πs3,15

ab = 1 πs3,20
bc = 1 πs2,25

cd = 1

πs2,20
bc = 0.42

πs,τ,τ ′′

jk πs1,10,15
qa = 1 πs2,15,20

ob = 1 πs1,15,20
ab = 0.5 πs1,20,25

bc = 0.5 πs2,20,30
bd = 0.13

πs3,10,15
qa = 1 πs3,15,20

ab = 0.5 πs3,20,25
bc = 0.5

πs2,20,25
bc = 0.21

πs,τ
j πs1,10

q = 0 πs2,15
o = 0 πs1,15

a = 0 πs1,20
b = 0 πs1,20

b = 0 πs1,25
c = 0

πs3,10
q = 0 πs3,15

a = 0 πs3,20
b = 0 πs3,20

b = 0 πs2,25
c = 0

πs2,20
b = 0.25 πs2,20

b = 0.25

Table 6: Stochastic loading process at nodes q10, o15, a15, b20, and c25
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4.3 Effective strategy cost

In our model, passengers are dealing with two types of randomness when deciding on the

strategy to travel from their origins to their destinations. The first type of randomness

is due to the possibility to fail to board a vehicle as a result of limited transit capacities.

At each node jτ , the node selected from the preference set Es,τ
j is random and depends

on the residual capacities of the transit vehicles passing though j at time τ . The second

type of randomness comes from the in-vehicle arc travel times, Tjk, that follow a discrete

distribution with the probabilities Pjk(t), a mean µjk and a variance σ2
jk. To take into

account of these two types of uncertainties, a mean variance cost function is used to

model the passengers’ averseness to both failure to board a vehicle and link travel time

variability.

At each node jτ , let Y
s,τ
j be the random variable representing the node selected from

the preference set Es,τ
j and Cg

jY s,τ
j

the random cost associated with link (jτ , (Y
s,τ
j )τ+Tjk

)

and group g:

Cg
jY s,τ

j
=

{
γtravelTjk + vτjk + eτ,gjk + êτjk(f

τ
jk) if Y s,τ

j = k ∈ Es,τ
j − {jτ+1};

γwait if Y s,τ
j = jτ+1.

Using a mean variance approach, the effective cost of a strategy s (according to a

strategy assignment vector X) can be determined as

ECs,τs

(q,r,g)(X) = E(Cs,τs

(q,r,g)(X)) + ηg3V ar(C
s,τs

(q,r,g)(X)), (16)

where τ s is the starting time of strategy s.

For a given triplet (j, r, g), let

Cs,τ
(j,r,g)(X) be the cost for reaching node r from node jτ using strategy s.

ECs,τ
(j,r,g)(X) be the effective cost for reaching node r from node jτ using strategy s.

ECs,τ
(j,r,g)(X) = E(Cs,τ

(j,r,g)(X)) + ηg3V ar(C
s,τ
(j,r,g)(X)).

The effective costs ECs,τ
(j,r,g)(X) are computed by scanning TE nodes in reverse T&C order

starting from destination r and applying Bellman’s equation.

Ending Conditions at node r:

i) Set E(Cs,τ
(r,r,g)) = 0,∀τ ∈ Ω.

ii) Set V ar(Cs,τ
(r,r,g)) = 0,∀τ ∈ Ω.

22



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Recursions at node jτ (j = jn(l), j ̸= q):

Bellman’s equation for the random cost Cs,τ
(j,r,g)(X) at node jτ is given as follows:

Cs,τ
(j,r,g)(X) =


γtravelTjk + vτjk

+eτ,gjk + êτjk(f
τ
jk) + C

s,τ+Tjk

(k,r,g) (X) if Y s,τ
j = k ∈ Es,τ

j − {jτ+1};
γwait + Cs,τ+1

(j,r,g)(X) if Y s,τ
j = jτ+1.

In the above expression, the first case represents the cost associated with on-board

passengers that consists of the travel cost of link (jτ , kτ+Tjk
) plus the cost for reaching

node r from node kτ+Tjk
, C

s,τ+Tjk

(k,r,g) (X). The travel cost of link (jτ , kτ+Tjk
) includes the

travel time, transit fare, the penalty eτ,gjk as well as the penalty, êτjk(f
τ
jk), for being in

a crowded vehicle. The second case represents the cost associated with waiting that

comprises the travel cost of link (jτ , jτ+1), γwait, and the cost for reaching node r from

node jτ+1, C
s,τ+1
(j,r,g)(X).

From the above formulation, the expected cost E(Cs,τ
(j,r,g)(X)) can be calculated as

E(Cs,τ
(j,r,g)(X)) =

∑
k∈Es,τ

j −{jτ+1}

πs,τ
jk (X)

∑
τ ′′>τ

Pjk(τ
′′ − τ)

[
γtravel(τ

′′ − τ) + vτjk + eτ,gjk

+êτjk(f
τ
jk) + E(Cs,τ ′′

(k,r,g)(X))

]
+πs,τ+1

j (X)

[
γwait + E(Cs,τ+1

(j,r,g)(X))

]
.

Using µjk =
∑

τ ′′>τ

(τ ′′ − τ)Pjk(τ
′′ − τ) and setting

φs,τ,g
k = γtravelµjk + vτjk + eτ,gjk + êτjk(f

τ
jk) +

∑
τ ′′>τ

Pjk(τ
′′ − τ)E(Cs,τ ′′

(k,r,g)(X)),

φs,τ,g
j = γwait + E(Cs,τ+1

(j,r,g)(X)),

the expected cost E(Cs,τ
(j,r,g)(X)) can be expressed as

E(Cs,τ
(j,r,g)(X)) =

∑
k∈Es,τ

j −{jτ+1}

πs,τ
jk (X)φs,τ,g

k + πs,τ+1
j (X)φs,τ,g

j .

For the variance strategy cost, we use the formula for variance decomposition, V ar(X1) =

E(V ar(X1|X2)) + V ar(E(X1|X2)), where X1 = Cs,τ
(j,r,g)(X) and X2 = Y s,τ

j . Therefore, we
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obtain

V ar(Cs,τ
(j,r,g)(X)) =

∑
k∈Es,τ

j −{jτ+1}

πs,τ
jk (X)ψs,τ,g

k + πs,τ+1
j (X)ψs,τ,g

j

+
∑

k∈Es,τ
j −{jτ+1}

πs,τ
jk (X)(φs,τ,g

k )2 + πs,τ+1
j (X)(φs,τ,g

j )2

−
( ∑
k∈Es,τ

j −{jτ+1}

πs,τ
jk (X)φs,τ,g

k + πs,τ+1
j (X)φs,τ,g

j

)2
,

where ψs,τ,g
j = V ar(γwait + Cs,τ+1

(j,r,g)(X)) = V ar(Cs,τ+1
(j,r,g)(X)) and

ψs,τ,g
k = V ar(γtravelTjk + vτjk + eτ,gjk + êτjk(f

τ
jk) + Cs,τ+Tjk

(k,r,g) (X))

= γ2travelV ar(Tjk) + V ar(Cs,τ+Tjk
(k,r,g) (X)) + 2γtravelCov(Tjk, C

s,τ ′′

(k,r,g)(X))

= γ2travelσ
2
jk +

∑
τ ′′>τ

Pjk(τ
′′ − τ)

(
V ar(Cs,τ ′′

(k,r,g)(X)) + 2γtravelCov(Tjk, C
s,τ ′′

(k,r,g)(X))
)
.

Cov(Tjk, C
s,τ ′′

(k,r,g)(X)) =
∑

n′∈N ′
s

Cov(Tjn(l),jn+1(l), Tjn′ (l),jn′+1(l)
),

where N s is the set of nodes included in the user-preference sets of strategy s and

N ′
s = {n′ : n+ 1 ≤ n′ ≤ Nl − 1, jn′+1(l) ∈ N s}.

Determining the effective cost of strategy s:

ECs,τs

(q,r,g)(X) = E(Cs,τs

(q,r,g)(X)) + ηg3V ar(C
s,τs

(q,r,g)(X)),

= γtraveltqj + E(Cs,τ
(j,r,g)(X)) + ηg3V ar(C

s,τ
(j,r,g)(X)),

where Es,τs

q = {jτ}, tqj is the walking time of access arc (qτs , jτ ) and E(C
s,τ
(j,r,g)(X)) and

V ar(Cs,τ
(j,r,g)(X)) are available from previous recursions.

5 User equilibrium

A strategic assignment vector X∗ is in a user equilibrium if no passenger has any incentive

to change his or her strategy based on effective strategy costs. X∗ is in a user equilibrium

if and only if X∗ solves the following variational inequality (denoted as VI[EC(X),X ]):

EC(X∗)T (X −X∗) ≥ 0, ∀X ∈ X , (17)

where EC(X) is a vector of the effective strategy costs associated with X and X is the

set of all feasible SA vectors:

X = {X :
∑

s∈S(q,r)

xs,τ
s

(q,r,g) = dg(q,r),∀(q, r, g)}. (18)
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This is an extension of the strategy-based equilibrium conditions to stochastic networks,

where we replace an expected strategy cost function by an effective strategy cost function

obtained through a mean-variance approach.

5.1 Computation of an optimal strategy

In finding a strategic equilibrium solution, we need to compute, for each triplet (q, r, g),

an optimal strategy s∗(q,r,g) with the least effective cost given (or in response to) the current

strategy assignment X:

ECs∗,τs
∗

(q,r,g) (X) = min
s∈S(q,r),τ

s
ECs,τs

(q,r,g)(X)

= min
s∈S(q,r),τ

s
E(Cs,τs

(q,r,g)(X)) + ηg3V ar(C
s,τs

(q,r,g)(X)).

As in previous work with fixed timetables, the construction of the optimal strategy s∗

is based on dynamic programming and uses the information (strategic flows in the classes

W τ,0
j and W τ,τ ′

j (τ ′ ≤ τ)) generated by the stochastic loading process.

Since the computation of the effective cost ECs∗,τs
∗

(q,r,g) (X) involves the arc probabili-

ties associated with the optimal (unknown) strategy being constructed, these probabili-

ties have to be computed in reverse T&C order. The resulting procedure resembles the

stochastic loading process described in Section 4.2 with the small difference that the flow

corresponding to the optimal strategy being computed is set to zero. This micro-loading

phase (loading of zero or virtual flow) faces the same challenge occurred in the determin-

istic case. Indeed, since stochastic loading is performed in reverse T&C order, one might

be unaware of the priority status of the virtual flow at loading times. To make up for

this, we consider two situations:

i) The virtual (zero) flow arrives at node jτ with continuance priority and the micro-

loading is performed over the setW τ,0
j ∪{s∗} yielding the effective cost ECs∗,τ,0

(j,r,g)(X) =

E(Cs∗,τ,0
(j,r,g)(X)) + ηg3V ar(C

s∗,τ,0
(j,r,g)(X)), where Cs∗,τ,0

(j,r,g)(X) is the cost for reaching desti-

nation r from node jτ assuming that the passengers using the optimal strategy, s∗,

arrive at node jτ with continuance priority.

ii) The virtual (zero) flow arrives at node j at time τ ′ = 1, 2, . . . , τ and tries to

board transit line l ar node j = jn(l). The micro-loading is then performed

over the sets W τ,0
j , W τ,1

j , · · ·W τ,τ ′−1
j and W τ,τ ′

j ∪ {s∗} yielding the effective cost

ECs∗,τ,τ ′

(j,r,g) (X) = E(Cs∗,τ,τ ′

(j,r,g) (X))+ηg3V ar(C
s∗,τ,τ ′

(j,r,g) (X)), where Cs∗,τ,τ ′

(j,r,g) (X) is the cost for

reaching destination r from node j assuming that the passengers using the optimal

strategy, s∗, arrive at node j at time τ ′, where τ ′ = 1, 2, . . . , τ .
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The user-preference set Es∗,τ
j and the effective costs ECs∗,τ,τ ′

(j,r,g) (τ
′ = 0, 1, . . . , τ) are

computed by scanning TE nodes in reverse T&C order and applying Bellman’s generalized

recursion.

Ending Conditions:

For the current destination r associated with s∗,

i) Set Es∗,τ
r = ∅,∀τ ∈ Ω.

ii) Set E(Cs∗,τ,τ ′

(r,r,g) ) = 0, ∀τ ∈ Ω, and τ ′ = 0, . . . , τ .

iii) Set V ar(Cs∗,τ,τ ′

(r,r,g) ) = 0,∀τ ∈ Ω, and τ ′ = 0, . . . , τ .

For the destination r̂ ̸= r not covered by s∗,

i) Set Es∗,τ
r̂ = ∅,∀τ ∈ Ω.

ii) Set E(Cs∗,τ,τ ′

(r̂,r,g) ) = ∞,∀τ ∈ Ω, and τ ′ = 0, . . . , τ .

iii) Set V ar(Cs∗,τ,τ ′

(r̂,r,g) ) = ∞, ∀τ ∈ Ω, and τ ′ = 0, . . . , τ .

Recursions at node jτ (j = jn(l), j ̸= q):

To compute the user-preference set Es∗,τ
j and the effective costs at node jτ , we

first determine Bellman’s equations for the expected and variance costs at node jτ .

Following section 3.3, the equation for the expected cost is:

E(Cs∗,τ,τ ′

(j,r,g) (X)) =
∑

k∈Es∗,τ
j −{jτ+1}

πs∗,τ
jk (X)φs∗,τ,g

k + πs∗,τ+1
j (X)φs∗,τ,τ ′,g

j ,

where φs∗,τ,τ ′,g
j = γwait + E(Cs∗,τ+1,τ ′

(j,r,g) (X)) and

φs∗,τ,g
k = γtravelµjk + vτjk + eτ,gjk + êjk(f

τ
jk)

+
∑

τ ′′≥τ

Pjk(τ
′′ − τ)


E(Cs∗,τ ′′,0

(k,r,g) (X)), if (j, k) and (k, kτ
′′

1 ) belong

to same transit line,

E(Cs∗,τ ′′,τ ′′

(k,r,g) (X)), otherwise,

kτ
′′

1 is the first element in the preference set Es∗,τ ′′

k .

For the variance cost, Bellman’s equation can be expressed as:

V ar(Cs∗,τ
(j,r,g)(X)) =

∑
k∈Es∗,τ

j −{jτ+1}

πs∗,τ
jk (X)ψs∗,τ,g

k + πs∗,τ+1
j (X)ψs∗,τ,τ ′,g

j

+
∑

k∈Es∗,τ
j −{jτ+1}

πs∗,τ
jk (X)(φs∗,τ,g

k )2 + πs∗,τ+1
j (X)(φs∗,τ,τ ′,g

j )2

−
( ∑
k∈Es∗,τ

j −{jτ+1}

πs∗,τ
jk (X)φs∗,τ,g

k + πs∗,τ+1
j (X)φs∗,τ,τ ′,g

j

)2
,

26



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

where ψs∗,τ,τ ′,g
j = V ar(Cs∗,τ+1,τ ′

(j,r,g) (X)) and

ψs∗,τ,g
k = γ2travelσ

2
jk

+
∑

τ ′′≥τ

Pjk(τ
′′ − τ)


V ar(Cs∗,τ ′′,0

(k,r,g) (X))

+2γtravelC, if (j, k) and (k, kτ
′′

1 ) belong

to same transit line,

V ar(Cs∗,τ ′′,τ ′′

(k,r,g) (X)), otherwise,

where C =
∑

n′∈N ′
s

Cov(Tjn(l),jn+1(l), Tjn′ (l),jn′+1(l)
), N s∗ is the set of nodes included in

the user-preference sets of strategy s∗ and

N ′
s∗ = {n′ : n+ 1 ≤ n′ ≤ Nl − 1, jn′+1(l) ∈ N s∗}.

After determining Bellman’s equations for the expected and variance costs at node

jτ , we must calculate the arc probabilities πs∗,τ
jk (X) and πs∗,τ

j (X). As mentioned

before, to make up for the unawareness of the priority status at the current time τ ,

we consider two cases.

i) With continuance priority:

To consider this case, we should have at least one transit line l ∈ Lj such that

j = jn(l) and 1 < n < Nl. In this case, the virtual passenger using strategy

s∗ is added to the first class W τ,0,1
j and has continuance priority to access arc

(j, j1) where j1 is the first element of the set Es∗,τ
j . Node j1 = Es∗,τ

j (1) is

determined as follows:

j1 = argmin
l∈Lj :1<n<Nl

{φs∗,τ,g
jn+1(l)

+ ηg3ψ
s∗,τ,g
jn+1(l)

}.

After determining the first element of Es∗,τ
j , the effective cost, ECs∗,τ,0

(j,r,g)(X) is

calculated as follows:

ECs∗,τ,0
(j,r,g)(X) = πs∗,τ

jj1 (X)(φs∗,τ,g
j1 + ηg3ψ

s∗,τ,g
j1 ) = φs∗,τ,g

j1 + ηg3ψ
s∗,τ,g
j1 .

ii) Without continuance priority:

In this case, the virtual passenger using strategy s∗ can arrive at node j at

time τ ′, where τ ′ = 1, . . . , τ . For each τ ′ = 1, . . . , τ , we load passengers over

the sets W τ,0,1
j , W τ,1

j , · · ·W τ,τ ′−1
j and the virtual passenger, zs

∗,τ
j , is added to

the class W τ,τ ′

j . Then, the effective cost ECs∗,τ,τ ′

(j,r,g) (X) is computed using the
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recursion:

ECs∗,τ,τ ′

(j,r,g) (X) = E(Cs∗,τ,τ ′

(j,r,g) (X)) + ηg3V ar(C
s∗,τ,τ ′

(j,r,g) (X))

= πs∗,τ
j (X)

[
φs∗,τ,τ ′,g
j + ηg3

(
ψs∗,τ,τ ′,g
j + (φs∗,τ,τ ′,g

j )2
)]

+
∑

k∈Es∗,τ
j −{jτ+1}

πs∗,τ
jk

[
φs∗,τ,g
k + ηg3

(
ψs∗,τ,g
k + (φs∗,τ,g

k )2
)]

−ηg3
(
πs∗,τ
j φs∗,τ,τ ′,g

j +
∑

k∈Es∗,τ
j −{jτ+1}

πs∗,τ
jk φs∗,τ,g

k

)2
,

where the optimal preference set Es∗,τ
j is the solution of the following combi-

natorial problem:

Es∗,τ
j = argmin

Es,τ
j ⊆I+(jτ )

{
πs,τ
j (X)

[
φs,τ,τ ′,g
j + ηg3

(
ψs,τ,τ ′,g
j + (φs,τ,τ ′,g

j )2
)]

+
∑

k∈Es,τ
j −{jτ+1}

πs,τ
jk

[
φs,τ,g
k + ηg3

(
ψs,τ,g
k + (φs,τ,g

k )2
)]

−ηg3
(
πs,τ
j φs,τ,τ ′,g

j +
∑

k∈Es,τ
j −{jτ+1}

πs,τ
jk φ

s,τ,g
k

)2}
.

Determining the minimum effective strategy cost for (q, r, g):

i) The user-preference set Es∗,τ
q : For each τ ∈ Ω, compute

j∗τ∗c = argmin
jτc∈I+(qτ )

{γtraveltqj + ECs∗,τc,τc
(j,r,g) (X)},

where tqj is the walking time of access arc (qτ , jτc), τc = τ+tqj and EC
s∗,τc,τc
(j,r,g) (X)

is the effective cost for reaching destination r from node jτc assuming that the

passengers using the optimal strategy, s∗, arrive at node jτc at time τc.

Then, set Es∗,τ
q = {j∗τ∗c } for all τ ∈ Ω.

ii) The effective strategy cost ECs∗,τ,τ
(q,r,g)(X): For each τ ∈ Ω,

ECs∗,τ,τ
(q,r,g)(X) = γtravelTqj∗ + EC

s∗,τ∗c ,τ
∗
c

(j∗,r,g) (X).

iii) The optimal starting time τ s
∗
:

τ s
∗
= argmin

τ∈Ω
{ECs∗,τ,τ

(q,r,g)(X)}.

iv) The effective cost for the optimal s∗ is determined as follows:

ECs∗,τs
∗

(q,r,g) (X) = ECs∗,τs
∗
,τs

∗

(q,r,g) (X).
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5.2 Solution algorithm

As in Hamdouch and Lawphongpanich (2008) and Hamdouch et al. (2011), we use the

method of successive averages (MSA) that generates strategies one at time by solving a

dynamic program. The convergence condition of the MSA was stated in Theorem 3 in

Cantarella (1997). This theorem states that if the existence and uniqueness conditions

mentioned in theorems 1 and 2 (including continuity and strictly monotonicity of cost

function) hold and the link cost-flow functions have a symmetric continuous Jacobian

with respect to link flows over the feasible solution set, then the MSA converges to the

equilibrium link flow vector. Because the cost function EC may fail to meet the symmetric

continuous Jacobian condition or strictly monotone condition, the convergence of the

iterates towards an equilibrium solution is not guaranteed. In this context, the method

must be viewed as a heuristic procedure.

The proposed algorithm first assumes that the TE network is not loaded with passen-

gers (i.e., zs,τj = 0 for all nodes within the TE network). With the empty TE network,

the corresponding optimal strategy for each OD pair (s∗[0]) is computed by the optimal

strategy method described in Section 5.1 and is set to be the initial strategy set S[0] for

network loading. Also, the initial strategic flow X [0] is set to be the travel demand of the

corresponding OD pair and β is set to be zero. Then, the strategic flow X [0] is loaded

using the stochastic loading process described in Section 4.2 for getting the corresponding

flow of passengers within the TE network at iteration β, zs,τj (X [β]), and the effective cost

of the strategic flow, EC(X [β]) is computed using the procedure illustrated in Section

4.3. Based on the current flow of passengers, an updated optimal strategy s∗[β] can be

found and the strategic assignment vector for this step, Y [β] with y
s∗[β]
(q,r,g) = dg(q,r) and

ys(q,r,g) = 0,∀s ̸= s∗[β], can be determined. With the current strategic assignment vector,

the convergence of the algorithm is checked by the following relative gap function (see

e.g., Hamdouch and Lawphongpanich, 2008):

g(x) =
EC(X [β])T (X [β] − Y [β])

EC(X [β])TX [β]
(19)

If the value of the above gap function is less than some predetermined tolerance, the

algorithm stops with X [β] and S[β] as the optimal strategic flow vector and strategy set,

respectively. Otherwise, X [β] and S[β] are updated for the next MSA step by the following

equation:

S[β+1] = S[β] ∪ s∗[β] (20)

X [β+1] =
1

(β + 1)
(βX [β] + Y [β]), β = 0, 1, 2, · · · (21)
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The value of β is also increased by one. The updated strategy set and strategic flow are

then inputed to the dynamic loading process for getting the updated flow of passengers.

A flowchart of the proposed algorithm is shown in Figure 3.

Set for all

nodes in the TE network.

Update the strategic flow

(X
[ +1]

) by using equation

(21) and strategy set (S
[ +1]

)

by using equation (20). Set

= + 1.

X
[ ]
, S

[ ]

Converge?
No

Stop with X
[ ]
and

S
[ ]
as the solution

Yes

Finding an initial strategy

set and an initial

strategic flow X
[0]
. Set

.

Stochastic loading and

effective strategy costs

(Section 4)

X
[0]
, S

[0]

Finding the optimal

strategies, , and

strategic assignment

vector, Y
[ ]
.

Figure 3: Flowchart of the proposed solution algorithm

At each iteration of the MSA, the stochastic loading process and the optimal strategy

computation are performed within the TE network. For each of these two processes, the

loading step is performed at most |I+(jτ )| times for each TE node jτ , where I
+(jτ ) is

the set of successor nodes for jτ . It follows that the loading process is executed at most∑
τ∈Ω

∑
j∈N |I+(jτ )| = |Ω| × |A| times and that the total running time of the solution

algorithm (MSA) is polynomial.
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6 Numerical examples

To illustrate our approach, we consider passengers travelling in the morning peak within

time period between 7:00 and 8:00 am. The network setting is the same as before. There

are four OD pairs, namely (q-y), (q-r), (o-y), and (o-r). The desired arrival intervals

for the passengers departing at q and o are [25, 35] and [30, 40], respectively. The travel

demands for these four OD pairs are [40, 35, 10, 20]. The transit fares for arcs (a, b), (b, c),

(c, d), (a, c), and (b, d) are 0.25, 0.50, 0.75, 1.00, and 0.50, respectively. The capacities for

lines 1, 2, and 3 are 20, 30, and 10, respectively. In addition, the penalties for early and

late arrivals are both taken as 0.1 per minute for all OD pairs, while the parameter for

the discomfort penalty is 0.2. Based on this setting, five examples were conducted and

are depicted in the following subsections. All the results were obtained by a laptop with a

Core i7-3770 CPU @ 3.4GHz and a 32GB RAM. The memory required for each example

is 115MB RAM.

6.1 Effects of value of travel time variance on the number of

utilized strategies and convergence

To show the effect of the value of travel time variance, η3 is set to be the same for all OD

pairs and varied from 0.0 to 1.0. Table 7 displays the relative gap value of the method

of successive averages (MSA) as well as the number of utilized strategies in selected

iterations. It can be seen that the algorithm successfully achieved a relative gap of 0.1%

or 0.001 for all three values of η3. By comparing the three cases, it is noticed that a larger

value of η3 requires more iterations to converge. Moreover, the value of the relative gap

fluctuated more significantly when η3 = 1.0. Probably, this is because the effective cost

function is not necessarily monotonic.

From the column for the number of utilized strategies, it can be seen that the algorithm

generated new strategies in early few iterations, and the number of utilized strategies

increased. Later, the algorithm updated the strategy set by removing unused strategies

at later iterations and hence the number of utilized strategies dropped to the minimum

and the number remained unchanged finally.
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Iteration number Number of utilized strategies Relative gap (%)

η3 = 0.0 η3= 0.5 η3 = 1.0 η3 = 0.0 η3 = 0.5 η3 = 1.0

1 8 8 8 7.81 5.05 7.24

2 9 9 8 8.38 8.94 13.53

3 10 11 10 4.35 3.59 2.92

4 10 11 10 5.21 3.81 6.91

5 10 11 12 2.97 2.94 2.34

10 9 10 11 1.83 1.81 1.98

20 8 10 12 0.81 1.34 1.24

35 7 10 10 0.48 0.45 8.26

41 6 9 9 0.08 1.36 1.00

200 7 9 0.34 0.28

292 7 9 0.10 0.18

323 9 0.10

Table 7: Iterates of MSA: utilized strategies and relative gap

6.2 Effects of the value of travel time variance on flow distribu-

tions

Tables 8, 9, and 10 show how strategies are utilized by passengers with various OD pairs

and under different values of η3, where all utilized strategies are depicted in Appendix B.

Take Table 10 as an example, when η3 = 1.0. Only two strategies, namely s2(1.0) and

s7(1.0) are adopted, where s2(1.0) and s7(1.0), respectively, denote the second and the

seventh strategies when η3 = 1.0. There are 40 passengers for OD pair (q-y). 30.08 pas-

sengers use strategy s2(1.0) and 9.92 passengers use strategy s7(1.0). The other strategies

are not used by these passengers.

For the same OD, the algorithm can generate different strategies that have the same

preference set at some TE nodes but have different preference sets for at least one TE node.

Take for example strategies s8(1.0) and s9(1.0) in Table 15, Appendix B. At nodes q0, c14-

c16 and d17-d23, the two strategies have the same preference sets. However, the preference

set at node a5 is [bl1 , cl2 , a6] for strategy s8(1.0) while it is [cl2 , bl1 , a6] for strategy s9(1.0).

Although the total number of utilized strategies (after considering all OD pairs) is

increasing with the increase of η3 when passengers are more risk aversive, it is not the

case for some OD pairs. For example, the number of utilized strategies of OD pairs (o-y)

and (q-y) remain unchanged despite the change in η3, while the number increases for the
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OD Strategies

s1(0.0) s2(0.0) s3(0.0) s4(0.0) s5(0.0) s6(0.0)

q-y 19.52 20.48

q-r 35.00

o-y 10.00

o-r 10.16 9.84

Table 8: Strategy utilization: η3 = 0.0

OD Strategies

s1(0.5) s2(0.5) s3(0.5) s4(0.5) s5(0.5) s6(0.5) s7(0.5)

q-y 12.85 27.15

q-r 14.73 20.27

o-y 10.00

o-r 14.50 5.50

Table 9: Strategy utilization: η3 = 0.5

OD Strategies

s1(1.0) s2(1.0) s3(1.0) s4(1.0) s5(1.0) s6(1.0) s7(1.0) s8(1.0) s9(1.0)

q-y 30.08 9.92

q-r 20.20 13.45 1.35

o-y 10.00

o-r 3.83 13.21 2.96

Table 10: Strategy utilization: η3 = 1.0
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q-y q-r o-y o-r

η3 = 0.0 6.05 8.55 3.20 6.19

η3 = 0.5 6.23 9.93 3.42 6.53

η3 = 1.0 6.47 10.42 3.56 6.65

Table 11: Effective costs under different values of η3

other OD pairs. This indicates that the effect of varying η3 on the number of utilized

strategies is different for various OD pairs. Moreover, the number of possible strategies

is different for various OD pairs. For example, for OD pair (o-y), there is only one line

connecting origin o and destination y. Comparing with OD pair (q-r), where there are

two lines at the first boarding node, the total number of possible strategies for OD pair

(o-y) is comparably smaller. Such issue is related to the design of transit networks and

implies that the risk aversive passengers can experience higher travel cost because of

limited choices of strategies (see Section 6.3).

6.3 Effects of the value of travel time variance on effective costs

Table 11 presents the optimal effective costs for all OD pairs when adjusting η3. As

expected, the effective cost increases with the increase of η3, since the value of variance

increases. However, the increment varies significantly for different OD pairs. For example,

for OD pair (q-r), the effective cost grows by 1.38 when η3 increases from 0.0 to 0.5, while

it only increases by 0.49 when η3 increases from 0.5 to 1.0. This is because passengers

utilize more strategies (which can be verified from the previous tables) to minimize the

effective cost when η3 is larger. In contrast, for OD pair (q-y), the increment of effective

cost is 0.18 when η3 increases from 0.0 to 0.5 while it is 0.24 when η3 increases from 0.5

to 1.0, since the number of utilized strategies remains unchanged when η3 increases.

6.4 Effects of the value of travel time variance and capacity on

departure and arrival times

Figures 4-9 demonstrate that the departure (and arrival) patterns are completely different

under various values of η3. Except for passengers of OD pair (o-y) constantly using one

strategy, other passengers either advance or postpone their departure times to switch to

a line with a lower variance when the value of travel time variance increases. For OD

pair (q-y), some depart at 7:10 to take the second run of line 1, when η3 = 0.0. When
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Figure 4: Departure time of passengers (η3 = 0)
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Figure 5: Arrival time of passengers (η3 = 0)

considering variance, those passengers switch to a late departure strategy, for which they

depart at 7:15 but board another transit line (the second run of line 2). This is because

line 2 has a lower variance comparing with line 1. In contrast, some passengers of OD

pair (o-r) tend to depart earlier when η3 increases to 1.0, although such strategy induces

more early arrival penalty, implying that passengers are more willing to have a higher

arrival penalty to counteract the effect of the variance of travel time when they are more

risk aversive.

With the adjustment of departure time, the arrival time changes accordingly. More

importantly, when the level of risk aversion increases, more passengers arrive on time by

adjusting their departure times or selecting a different strategy to reach their individual

destination.
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Figure 6: Departure time of passengers (η3 = 0.5)
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Figure 7: Arrival time of passengers (η3 = 0.5)

To investigate the effects of early/late arrival penalties on the departure time choices,

we set η3 = 0.5 and both penalties for early and late arrivals are reduced by half. The

departure and arrival patterns are plotted in Figures 10 and 11.

Figures 6-7 (base case) and Figures 10-11 (case with reduced early/late arrival penal-

ties) illustrate that the penalties have different effects on different OD pairs. For example,

the departure and arrival times of the passengers of OD pair (o, y) are not affected, imply-

ing that their choices are irrespective of the arrival penalty values. This is because these

passengers can arrive at their destination within the desired arrival interval in the base

case, where the arrival penalties are high. Therefore, they can use their original strate-

gies, despite the reduction in the arrival penalties. For the other OD pairs, especially OD

pairs (q, r) and (q, y), it is interesting to notice that these passengers choose to depart
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Figure 8: Departure time of passengers (η3 = 1)
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Figure 9: Arrival time of passengers (η3 = 1)

earlier when the value of early/late arrival penalty is reduced by half. By investigat-

ing the arrival patterns, such departure time choice can be explained by the passengers’

trade-off between the penalties and congestion effect. In the base case, more than 50

passengers arrive within 7:33-7:37, while in the case with reduced penalties, only around

30 passengers arrive within that time interval, implying that passengers incur a higher

congestion cost in the base case. Therefore, when the values of early/arrival penalty is

reduced, passengers select the departure time that allow them to board a less congested

line. The trade-off between the congestion cost and arrival penalties can also be used to

explain why the passengers of OD pair (q, r) select the early run instead of postponing

their departure. The reason is that in the early run, they are the only passengers on the

transit line who arrive within the time window 7:20-7:26. If they postpone their departure
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Figure 10: Departure time of passengers: η3 = 0.5 and reduced early/late arrival penalties
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Figure 11: Arrival time of passengers: η3 = 0.5 and reduced early/late arrival penalties

times, they must bear a higher congestion cost due to the boarding of the passengers of

other OD pairs.

To illustrate the effect of capacity on departure and arrival times, the capacities of all

the lines are doubled. The departure and arrival patterns are plotted in Figures 12 and

13. For OD pair (q, r), all the passengers depart at 7:10 when the capacity is doubled. By

doing so, the total early arrival penalty of these passengers is reduced, because all these

passengers arrive within the desired time interval as shown in Figure 13 . For OD pair

(o, r), the passengers that depart at 7:15 switch from the second run to the first run of

line 3, because such choice reduces their congestion cost. More importantly, it is worth

mentioning the reason that these passengers do not depart at 7:05 before the capacity

improvement. This is because some of the passengers of OD pair (q, r) that take line 1

38



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

7:00 7:05 7:10 7:15 7:20 7:25 7:30
0

5

10

15

20

25

30

35

40

45

50

Departure time of passengers

N
um

be
r 

of
 p

as
se

ng
er

s

 

 

OD(q,y)
OD(q,r)
OD(o,y)
OD(o,r)

Figure 12: Departure time of passengers: η3 = 0.5 and double capacity
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Figure 13: Arrival time of passengers: η3 = 0.5 and double capacity

arrive at node b at an earlier time interval than the passengers between OD pair (o, r) and

wait for line 3. Hence, these passengers have the priority to board line 3. Consequently,

there is no residual capacity for the passengers of OD pair (o, r).

For the other two OD pairs, the increment in the capacity does not affect their depar-

ture choices. On one hand, this is because the demand (i.e., OD pair (o, y)) is low and can

be accommodated before the capacity improvement. On the other hand, the stop that

they board is the first stop of the transit line; thus boarding priority can be guaranteed.

Moreover, it is observed that when the capacities are doubled, the first run of line 1 is

not used. This implies that the operator can cancel certain runs of transit services by

increasing vehicle capacity, resulting in a lower operational cost.
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6.5 Effects of the value of travel time variance on equilibrium

arc flows

To further illustrate the properties of the proposed model, three strategies adopted by

the passengers of OD pair (q-r) are plotted in Figures 14, 15, and 16. Only the arcs with

positive passenger flows are displayed and the number inside square blankets beside a

selected arc denotes the passenger flow of OD pair (q-r) using a certain strategy. Due to

the space limitation, node r (which can be easily reached from node d) is not shown in

those figures.
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Figure 14: Equilibrium strategic flow of strategy s1(0.0)

Figure 14 displays strategy s1(0.0) when η3 = 0.0. All travellers depart from q at

time interval 0 (i.e., 7:00 am) and arrive at stop a at time interval 5 via the walking arc.

Afterwards, 20 passengers board the first run of line 1 and 15 passengers board line 2,

respectively. It is worth to mention that, at node a15, all 35 passengers have an identical
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optimal preference set, which is [bl1 , cl2 , a6]. However, due to the capacity constraint of

line 1, only 20 passengers can board line 1 (i.e., their first choice) while 15 passengers use

their second choice. In addition, it is found that the uncertainty of travel time affects the

passengers’ travel choice. Take node b as an example, where the arrival time depends on

the in-vehicle travel time distribution of arc (a-b) of line 1. From Table 1, the probability

of arriving at node b10 is 0.5. In such case, passengers alight from line 1 and transfer to

the first run of line 3. In contrast, if passengers arrive at b9 or b11 with a probability of

0.25, they select to use line 1 continuously. This is because passengers arrive at b11 after

the departure time of line 3, while the expected travel time from b9 using line 3 is longer

after considering the additional waiting time.
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Figure 15: Equilibrium strategic flow of strategy s8(1.0)

Figures 15 and 16 display strategies s8(1.0) and s9(1.0) utilized by OD pair (q-r)

when η3 = 1.0. When the passengers consider the effect of variance, only 14.8 passengers

depart at node q0, and others postpone their departure time. Those 14.8 passengers are
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divided into two groups. 13.45 passengers use strategy s8(1.0), while 1.35 passengers

use strategy s9(1.0). At node a5, the passengers utilizing strategy s8(1.0) select line 1

as their first choice, and the passengers utilizing strategy s9(1.0) select line 2 as their

first choice. Comparing with the case of η3 = 0.0, where all passengers have the same

preference set [bl1 , cl2 , a6], the passengers have two different preference sets in the case of

η3 = 1.0, namely strategy s8(1.0) ([bl1 , cl2 , a6]) and strategy s9(1.0) ([cl2 , bl1 , a6]). These

two strategies are different in terms of the order of arriving nodes (and the lines used) in

their user-preference sets. Strategy s8(1.0) involves no transfer throughout the journey.

Strategy s9(1.0) involves one transfer at node c and two transit lines. The implication is

that there is a tradeoff between the variance of in-vehicle travel time and the variance of

waiting time.  
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Figure 16: Equilibrium strategic flow of strategy s9(1.0)

The first run of line 1 is fully occupied when the variance effect is ignored by the

passengers. (The number of passengers in the first run is equal to the vehicle capacity of

20.) However, when the passengers consider the effect of variance, the first run of line 1 is

not fully occupied. Only 13.45 passengers board line 1. This implies that the route choice

behavior affects the level of service inside transit vehicles. In addition, it is observed that

at node b10, the choice of using line 3 is removed from the optimal strategy set unlike to

the case when η3 = 0.0. Passengers prefer to continuously stay on line 1, implying that

passengers may avoid transfer when they are more risk aversive. This may occur because

the waiting time uncertainty can be high at the next stop or the in-vehicle travel time of
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Nb. of utilized strategies

q-y q-r o-y o-r

η3 = 0.5, ϕ = 0.3 2 2 1 2

η3 = 0.5, ϕ = 0.6 2 2 1 3

η3 = 1.0, ϕ = 0.3 2 3 1 3

η3 = 1.0, ϕ = 0.6 2 2 1 3

Table 12: Effects of ϕ on the number of utilized strategies

the next service is high, and hence it is better to stay in transit vehicles so as to arrive on

time. Hence, it can be concluded that passengers can adjust their choices of next transit

stations, in addition to just their adjusting departure times, to counteract the effect of

travel time variance. Consequently, the resultant flow pattern is significantly different.

6.6 Effects of coefficient ϕ on the number of utilized strategies

Table 12 illustrates the effects of coefficient ϕ on the number of utilized strategies for each

OD pair. In general, a larger value of ϕ indicates that the mean and variance of a link

cost are affected more by its previous arc. Consequently, by increasing the value of ϕ , the

strategy cost as well as the number of utilized strategies can be changed. For OD pairs q-y

and o-y, the numbers of utilized strategies are unaffected by the value of ϕ, because the

transit lines used in these strategies only traverse one arc. For the other two OD pairs, the

effects of ϕ also depend on the value of ηg3 . Surprisingly, all possible trends for the number

of utilized strategies are observed including increasing (i.e., OD pair o-r, when ηg3 = 0.5

), remaining stable (i.e., OD pair o-r, when ηg3 = 1.0 ) or decreasing (i.e., OD pair q-r,

when ηg3 = 1.0). These observations imply that the value of ϕ can induce various effects

on the number of utilized strategies; thus it is important to have an accurate estimation

of the value of ϕ, which is left for future study.

7 Considerations in real life applications

To apply the proposed methodology to real-life applications, three issues are required

to consider: computational resource requirement, convergence conditions, and computa-

tional time. Because some variables in the proposed model are indexed by at least transit

station, time period, strategy, and transit line, the size of the matrices (computer stor-

age) grows exponentially when the TE network becomes larger or more transit lines are
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modelled. In such cases, additional effort should be made on the effective allocation of

computer storage as most of the matrices are sparse matrices. A good data structure (for

example, using vectors and pointers) can be developed to reduce the computation storage.

Moreover, when solving for optimal solutions, it is not necessary to explicitly construct

and maintain the whole TE network in computer memory. Time-expanded nodes and

arcs can be generated as needed when solving the problem, e.g., to find a strategy with

the least effective cost.

The convergence condition of the solution algorithm is another important issue for

the applicability of our proposed methodology. The proposed MSA requires that the cost

function EC satisfies the symmetric continuous Jacobian condition or strictly monotone

condition for convergence. However, this condition may not be satisfied, especially for

realistic, large transit networks. Canteralla (1997) proposed the cost averaging algorithm.

Compared with the MSA, the cost averaging algorithm is a method of successive cost av-

erages instead of successive flow averages. To ensure convergence, this algorithm does not

rely on that the cost function EC satisfies the symmetric continuous Jacobian condition

or strictly monotone condition for convergence. Instead, the algorithm only requires some

milder assumptions for convergence (see Theorem 4 in his paper). Some assumptions are

used to ensure that a link flow solution exists to the problem and is unique (see Theorem

2 in his paper).

Computational time is also a crucial issue for the applicability of our methodology

in real transit network applications. Compared to the other transit assignment models,

the proposed model is more suitable to adopt parallel computing for reducing computa-

tional times. It is because the loading process and the computation of optimal strategy

are performed on a node basis. Thus, for each of these processes, they can be started

simultaneously from different nodes given that the specific criteria (reverse T&C order

for stochastic loading and optimal strategy computation) are satisfied. Moreover, the

convergence speed of the MSA may be slow even for solving medium-size network transit

assignment problems, because of the step size used. The self-regulated averaging method

proposed by Liu et al. (2009) was shown to converge to the equilibrium solution faster

than the MSA. The self-regulated averaging method adjusts the step size to speed up the

convergence and has been applied to solve other traffic assignment problems (e.g., Szeto

et al., 2011a; Long et al., 2014). The convergence requirements are basically the same as

those for the MSA. This algorithm can be one of the candidate solution methods for real-

life applications. Furthermore, the cost averaging version of the self-regulated averaging

method proposed by Long et al. (2014) can be another choice. It has the advantages of

both the cost averaging method and the self-regulated averaging method.
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8 Conclusion

In this paper, we propose a new schedule-based transit assignment model in which pas-

sengers adopt strategies to travel from their origins to their destinations. While this

strategy concept has been successfully used in previous transit assignment studies with

fixed timetables, the new proposed model captures explicitly the stochastic nature of the

transit schedules and in-vehicle travel times due to road conditions, incidents, or adverse

weather. No such analytical schedule-based model has been developed in the literature to

consider both travel strategies and supply uncertainties. When loading passengers on a

first-come-first-serve basis, the model takes into account the transit capacities explicitly.

Using a mean-variance approach, the equilibrium conditions for this schedule-based tran-

sit assignment problem are stated as a variational inequality involving a vector-valued

function of effective strategy costs. To find an equilibrium solution, we adopt the method

of successive averages in which the optimal strategy of each iteration is generated by

solving a dynamic program.

Numerical studies are included to illustrate the effect of supply uncertainties, vehicle

capacity and early/late arrival penalty parameters on travel strategies and/or departure

times of passengers. In particular, we show that

i) When the value of travel time variance increases, people may decide to leave later.

ii) Increasing/reducing vehicle capacity may have no effect on departure time choice.

iii) Early/late arrival penalties may have no effect on departure time choice.

iv) Passengers may make a tradeoff between the variance of in-vehicle travel time and

the variance of waiting time.

v) Passengers can adjust their choices of next transit stations, in addition to just

adjusting their departure times, to counteract the effect of travel time variance.

vi) For the same OD, the algorithm can generate different strategies that have the same

preference set at some TE nodes but have different preference sets for at least one

TE node.

vii) The number of utilized strategies for an OD pair does not necessary increase with

the value of travel time variance.

This study opens up many future research directions. One direction is to extend our

model to consider stochastic user equilibrium (SUE) and different nonlinear and non-

additive fare structures. Given that a fixed point formulation can easily cope with these
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types of fare structures and SUE (see Cantarella, 1997) simultaneously, a resultant fixed

point formulation may be developed in the future. Moreover, the resultant formulation can

be solved by the cost averaging algorithm proposed by Cantarella (1997) or its extension

such as the cost averaging version of self-regulated averaging method proposed by Long

et al. (2014). Other future research of this study include the consideration of demand

uncertainties (Ng et al., 2011), the extra considerations of other dynamics such as the

year-to-year dynamic (e.g., Szeto and Lo, 2008; Lo and Szeto, 2009) and the day-to-

day dynamic (Watling and Cantarella, 2013), and the development of efficient solution

algorithms (e.g., Long et al., 2010; Szeto and Wu, 2011) for the large scale implementation

of the proposed model for transit assignment and vehicle scheduling.
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Appendix A

i) We first show that σ2
jk = ϕσ2

ij + (1− ϕ)V ar(Yjk) + ϕ(1− ϕ)
(
µij − E(Yjk)

)2
σ2
jk =

∑
t

t2P (Tjk = t)−
(∑

t

tP (Tjk = t)
)2

=
∑
t

t2
(
ϕP (Tjk = t) + (1− ϕ)P (Yjk = t)

)
−
(∑

t

t
(
ϕP (Tjk = t) + (1− ϕ)P (Yjk = t)

))2
= ϕ

∑
t

t2P (Tij = t) + (1− ϕ)
∑
t

t2P (Yjk = t)− ϕ2
(∑

t

tP (Tij = t)
)2

−(1− ϕ)2
(∑

t

tP (Yjk = t)
)2 − 2ϕ(1− ϕ)

∑
t

tP (Tij = t)
∑
t

tP (Yjk = t)

= ϕE(T 2
ij)− ϕ2(E(Tij))

2 + (1− ϕ)E(Y 2
jk)− (1− ϕ)2(E(Tjk))

2

−2ϕ(1− ϕ)E(Tij)E(Yjk)

= ϕ
(
E(T 2

ij)− (E(Tij))
2
)
+ (1− ϕ)

(
E(Y 2

jk)− (E(Yjk))
2
)

+ϕ(1− ϕ)(E(Tij))
2 + ϕ(1− ϕ)(E(Yjk))

2 − 2ϕ(1− ϕ)E(Tij)E(Yjk)

= ϕσ2
ij + (1− ϕ)V ar(Yjk) + ϕ(1− ϕ)

(
(E(Tij))

2 + (E(Yjk))
2 − 2E(Tij)E(Yjk)

)
= ϕσ2

ij + (1− ϕ)V ar(Yjk) + ϕ(1− ϕ)
(
E(Tij)− E(Yjk)

)2
= ϕσ2

ij + (1− ϕ)V ar(Yjk) + ϕ(1− ϕ)
(
µij − E(Yjk)

)2
.

ii) For each 1 ≤ n ≤ Nl− 2, we will show by induction on n′, 1 ≤ n′ ≤ Nl− 1−n that:

Cov(Tin(l)in+1(l), Tin+n′ (l)in+n′+1(l)
) = ϕn′

σ2
in(l)in+1(l)

.

– n′ = 1

Cov(Tin(l)in+1(l), Tin+1(l)in+2(l))

= Cov(Tin(l)in+1(l), ϕTin(l)in+1(l) + (1− ϕ)Yin+1(l)in+2(l))

= Cov(Tin(l)in+1(l), ϕTin(l)in+1(l)) (since Tjk and Yjk are independent)

= E(ϕT 2
in(l)in+1(l)

)− E(Tin(l)in+1(l))E(ϕTin(l)in+1(l))

= ϕ
(
E(T 2

in(l)in+1(l)
)− (E(Tin(l)in+1(l)))

2
)

= ϕσ2
in(l)in+1(l)

.

– Assume Cov(Tin(l)in+1(l), Tin+n′ (l)in+n′+1(l)
) = ϕn′

σ2
in(l)in+1(l)
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– n′ + 1

Cov(Tin(l)in+1(l), Tin+n′+1(l)in+n′+2(l)
)

= Cov(Tin(l)in+1(l), ϕTin+n′ (l)in+n′+1(l)
+ (1− ϕ)Yin+n′+1(l)in+n′+2(l)

)

= Cov(Tin(l)in+1(l), ϕTin+n′ (l)in+n′+1(l)
)

= ϕCov(Tin(l)in+1(l), Tin+n′ (l)in+n′+1(l)
)

= ϕϕn′
σ2
in(l)in+1(l)

= ϕn′+1σ2
in(l)in+1(l)

.
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Appendix B

Strategy: s1(0.0)

Node Pref. Node Pref. Node Pref. Node Pref. Node Pref.

q0 [a5] a5 [bl1 , cl2 , a6] b9 [cl1 , b10] c12 [dl1 , c13] d15 [r20]

b10 [dl3 , cl1 , b11] c13 [dl1 , c14] d16 [r21]

b11 [cl1 , b12] c14 [dl1 , c15] d17 [r22]

c15 [dl1 , c16] d18 [r23]

c16 [dl1 , c17] d19 [r24]

c17 [dl1 , c18] d20 [r25]

c18 [dl1 , c19] d21 [r26]

d22 [r27]

d23 [r28]

d24 [r29]

d25 [r30]

Strategy: s2(0.0)

q20 [a25] a25 [bl1 , a26] b29 [cl1 , b30] c32 [y37]

b30 [cl1 , b31] c33 [y38]

b31 [cl1 , b32] c34 [y39]

c35 [y40]

c36 [y41]

c37 [y42]

c38 [y43]

Strategy: s3(0.0)

o25 [b30] b30 [cl1 , b31] c33 [y38]

c34 [y39]

c35 [y40]

c36 [y41]

c37 [y42]

Strategy: s4(0.0)

o25 [b30] b30 [dl3 , cl1 , b31] c33 [dl1 , c34] d36 [r41]

c34 [dl1 , c35] d37 [r42]

c35 [dl1 , c36] d38 [r43]

c36 [dl1 , c37] d39 [r44]

c37 [dl1 , c38] d40 [r45]

d41 [r46]

d42 [r47]

d43 [r48]

d44 [r49]

Strategy: s5(0.0)

q10 [a15] a15 [bl1 , a16] b19 [cl1 , b20] c22 [y27]

a16 [a17] b20 [cl1 , b21] c23 [y28]

a17 [a18] b21 [cl1 , b22] c24 [y29]

a18 [a19] c25 [y30]

a19 [a20] c26 [y31]

a20 [cl2 , a21] c27 [y32]

c28 [y33]

c29 [y34]

c30 [y35]

c31 [y36]

Strategy: s6(0.0)

o15 [b20] b20 [dl3 , cl1 , b21] d28 [r33]

d29 [r34]

d30 [r35]

d31 [r36]

Table 13: Utilized strategies (η3 = 0.0)
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Strategy: s1(0.5)

Node Pref. Node Pref. Node Pref. Node Pref. Node Pref.

q0 [a5] a5 [bl1 , cl2 , a6] b9 [cl1 , b10] c12 [dl1 , c13] d15 [r20]

b10 [dl3 , cl1 , b11] c13 [dl1 , c14] d16 [r21]

b11 [cl1 , b12] c14 [dl1 , c15] d17 [r22]

c15 [dl1 , c16] d18 [r23]

c16 [dl1 , c17] d19 [r24]

c17 [dl1 , c18] d20 [r25]

c18 [dl1 , c19] d21 [r26]

d22 [r27]

d23 [r28]

d24 [r29]

d25 [r30]

Strategy: s2(0.5)

q20 [a25] a25 [bl1 , a26] b29 [cl1 , b30] c32 [y37]

b30 [cl1 , b31] c33 [y38]

b31 [cl1 , b32] c34 [y39]

c35 [y40]

c36 [y41]

c37 [y42]

c38 [y43]

Strategy: s3(0.5)

q10 [a15] a15 [bl1 , a16] b19 [cl1 , b20] c22 [dl1 , c23] d25 [r30]

a16 [a17] b20 [dl3 , cl1 , b21] c23 [dl1 , c24] d26 [r31]

a17 [a18] b21 [cl1 , b22] c24 [dl1 , c25] d27 [r32]

a18 [a19] c25 [dl1 , c26] d28 [r33]

a19 [a20] c26 [dl1 , c27] d29 [r34]

a20 [cl2 , a21] c27 [dl1 , c28] d30 [r35]

c28 [dl1 , c29] d31 [r36]

c29 [c30] d32 [r37]

c30 [c31] d33 [r38]

c31 [c32] d34 [r39]

c32 [dl1 , c33] d35 [r40]

d36 [r41]

d37 [r42]

d38 [r43]

d39 [r44]

Strategy: s4(0.5)

o25 [b30] b30 [cl1 , b31] c33 [y38]

b31 [cl1 , b32] c34 [y39]

c35 [y40]

c36 [y41]

c37 [y42]

c38 [y43]

Strategy: s5(0.5)

o25 [b30] b30 [dl3 , cl1 , b31] c33 [dl1 , c34] d36 [r41]

b31 [cl1 , b32] c34 [dl1 , c35] d37 [r42]

c35 [dl1 , c36] d38 [r43]

c36 [dl1 , c37] d39 [r44]

c37 [dl1 , c38] d40 [r45]

c38 [dl1 , c39] d41 [r46]

d42 [r47]

d43 [r48]

d44 [r49]

d45 [r50]

Strategy: s6(0.5)

q15 [a20] a20 [cl2 , a21] c29 [y34]

c30 [y35]

c31 [y36]

Strategy: s7(0.5)

o15 [b20] b20 [dl3 , cl1 , b21] c23 [dl1 , c24] d26 [r31]

c24 [dl1 , c25] d27 [r32]

c25 [dl1 , c26] d28 [r33]

c26 [dl1 , c27] d29 [r34]

c27 [dl1 , c28] d30 [r35]

d31 [r36]

d32 [r37]

d33 [r38]

d34 [r39]

Table 14: Utilized strategies (η3 = 0.5)
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Strategy: s1(1.0)

Node Pref. Node Pref. Node Pref. Node Pref. Node Pref.

o5 [b10] b10 [dl3 , cl1 , b11] c13 [dl1 , c14] d16 [r21]

c14 [dl1 , c15] d17 [r22]

c15 [dl1 , c16] d18 [r23]

c16 [dl1 , c17] d19 [r24]

c17 [dl1 , c18] d20 [r25]

d21 [r26]

d22 [r27]

d23 [r28]

d24 [r29]

Strategy: s2(1.0)

q15 [a20] a20 [cl2 , a21] b29 [cl1 , b30] c33 [y38]

a21 [a22] b30 [cl1 , b31] c34 [y39]

a22 [a23] b31 [cl1 , b32] c35 [y40]

a23 [a24] c36 [y41]

a24 [a25] c37 [y42]

a25 [bl1 , a26] c38 [y43]

Strategy: s3(1.0)

q10 [a15] a15 [bl1 , a16] b19 [cl1 , b20] c22 [dl1 , c23] d25 [r30]

a16 [a17] b20 [dl3 , cl1 , b21] c23 [dl1 , c24] d26 [r31]

a17 [a18] b21 [cl1 , b22] c24 [dl1 , c25] d27 [r32]

a18 [a19] c25 [dl1 , c26] d28 [r33]

a19 [a20] c26 [dl1 , c27] d29 [r34]

a20 [cl2 , a21] c27 [dl1 , c28] d30 [r35]

c28 [dl1 , c29] d31 [r36]

c29 [c30] d32 [r37]

c30 [c31] d33 [r38]

c31 [c32] d34 [r39]

c32 [dl1 , c33] d35 [r40]

d36 [r41]

d37 [r42]

d38 [r43]

d39 [r44]

Strategy: s4(1.0)

o25 [b30] b30 [cl1 , b31] c33 [y38]

c34 [y39]

c35 [y40]

c36 [y41]

c37 [y42]

Strategy: s5(1.0)

o25 [b30] b30 [dl3 , cl1 , b31] c33 [dl1 , c34] d36 [r41]

c34 [dl1 , c35] d37 [r42]

c35 [dl1 , c36] d38 [r43]

c36 [dl1 , c37] d39 [r44]

c37 [dl1 , c38] d40 [r45]

d41 [r46]

d42 [r47]

d43 [r48]

d44 [r49]

Table 15: Utilized strategies (η3 = 1.0, first five strategies)

51



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Strategy: s6(1.0)

Node Pref. Node Pref. Node Pref. Node Pref. Node Pref.

o15 [b20] b20 [dl3 , cl1 , b21] c23 [dl1 , c24] d26 [r31]

c24 [dl1 , c25] d27 [r32]

c25 [dl1 , c26] d28 [r33]

c26 [dl1 , c27] d29 [r34]

c27 [dl1 , c28] d30 [r35]

d31 [r36]

d32 [r37]

d33 [r38]

d34 [r39]

Strategy: s7(1.0)

q20 [a25] a25 [bl1 , a26] b29 [cl1 , b30] c32 [y37]

b30 [cl1 , b31] c33 [y38]

b31 [cl1 , b32] c34 [y39]

c35 [y40]

c36 [y41]

c37 [y42]

c38 [y43]

Strategy: s8(1.0)

q0 [a5] a5 [bl1 , cl2 , a6] b9 [cl1 , b10] c12 [dl1 , c13] d15 [r20]

b10 [dl3 , cl1 , b11] c13 [dl1 , c14] d16 [r21]

b11 [cl1 , b12] c14 [dl1 , c15] d17 [r22]

c15 [dl1 , c16] d18 [r23]

c16 [dl1 , c17] d19 [r24]

c17 [dl1 , c18] d20 [r25]

c18 [dl1 , c19] d21 [r26]

d22 [r27]

d23 [r28]

d24 [r29]

d25 [r30]

Strategy: s9(1.0)

q0 [a5] a5 [cl2 , bl1 , a6] c14 [dl1 , c15] d17 [r22]

c15 [dl1 , c16] d18 [r23]

c16 [dl1 , c17] d19 [r24]

d20 [r24]

d21 [r26]

d22 [r27]

d23 [r28]

Table 16: Utilized strategies (η3 = 1.0, last four strategies)
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