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Abstract

Purpose: The aim of this study was to develop a robust post-processing workflow for motion-corrupted datasets in diffusion
kurtosis imaging (DKI).

Materials and methods: The proposed workflow consisted of brain extraction, rigid registration, distortion correction,
artifacts rejection, spatial smoothing and tensor estimation. Rigid registration was utilized to correct misalignments. Motion
artifacts were rejected by using local Pearson correlation coefficient (LPCC). The performance of LPCC in characterizing
relative differences between artifacts and artifact-free images was compared with that of the conventional correlation
coefficient in 10 randomly selected DKI datasets. The influence of rejected artifacts with information of gradient directions
and b values for the parameter estimation was investigated by using mean square error (MSE). The variance of noise was
used as the criterion for MSEs. The clinical practicality of the proposed workflow was evaluated by the image quality and
measurements in regions of interest on 36 DKI datasets, including 18 artifact-free (18 pediatric subjects) and 18 motion-
corrupted datasets (15 pediatric subjects and 3 essential tremor patients).

Results: The relative difference between artifacts and artifact-free images calculated by LPCC was larger than that of the
conventional correlation coefficient (p,0.05). It indicated that LPCC was more sensitive in detecting motion artifacts. MSEs
of all derived parameters from the reserved data after the artifacts rejection were smaller than the variance of the noise. It
suggested that influence of rejected artifacts was less than influence of noise on the precision of derived parameters. The
proposed workflow improved the image quality and reduced the measurement biases significantly on motion-corrupted
datasets (p,0.05).

Conclusion: The proposed post-processing workflow was reliable to improve the image quality and the measurement
precision of the derived parameters on motion-corrupted DKI datasets. The workflow provided an effective post-processing
method for clinical applications of DKI in subjects with involuntary movements.
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Introduction

Motion artifacts not only increase the variability of measures but

also introduce biases which may lead to false-positive findings [1].

The head motion must be concerned during the post-processing in

the diffusion magnetic resonance imaging (MRI) techniques. As an

extension of diffusion tensor imaging (DTI), diffusion kurtosis

imaging (DKI) provides more specific information than DTI [2,3].

Compared with the conventional DTI, multiple b values and more

diffusion gradient directions per nonzero b value in DKI

necessitate a longer scan time. During the acquisition of DKI

datasets, the head motion is common, especially in the pediatric

subjects and patients with involuntary movements. The inter-

volume misalignment caused by the slight head motion may be

adjusted by using registration methods [4,5]. However, the severe

signal loss caused by the sudden tissue displacement with a large

amplitude during the diffusion MRI scanning cannot be recovered

[1,4]. Therefore, a post-processing workflow to correct motion-

corrupted datasets is of great importance for the clinical

application of DKI, also the same for DTI and high angular

resolution diffusion imaging (HARDI), etc.

In the DTI post-processing procedure, three kinds of approach-

es for motion artifacts detection and rejection were used: voxel-

wise, slice-wise and volume-wise strategies. The Geman-Mclure

M-estimator (GMM) [6] and robust estimation of tensor by outlier

rejection (RESTORE) [7] are typical voxel-wise methods. These

methods estimate the tensor by using conventional techniques

before the outlier rejection. Outlier voxels are determined based

on the residuals of the fitted data to the raw data. The outlier is

PLOS ONE | www.plosone.org 1 April 2014 | Volume 9 | Issue 4 | e94592

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0094592&domain=pdf


rejected by using a designed weighting function. For the corrupted

datasets with large-scale motion, the registration between diffusion

weighted images (DWIs) is difficult. Mismatching between slices is

an unsolved problem in voxel-wise methods [8]. Slice-wise

methods for artifacts detection and rejection are proposed based

on signal intensity information [9], texture information [5], or the

consistency of derived parameters [10]. Slice-wise techniques

detect artifacts in certain gradient directions with slice by slice

mode. In the artifacts detection method based on the consistency

of derived parameters, iterative estimations of diffusion tensors are

required, which limits its applications. The corrected inter-slice

intensity discontinuity (cISID) [11] is a powerful method to

characterize the intensity discontinuity of DWIs. However, the

cISID may fail to detect consecutive artifacts. The cISID method

must be combined with other robust fitting techniques to increase

the detection stability [11]. The combination of local binary

patterns (LBP) and two-dimension (2D) partial least squares (PLS)

has been demonstrated for detecting artifacts reliably [5].

However, the extraction of texture information from thousands

of DWIs in DKI is time-consuming. Normalized correlation

coefficient (NCC) is an efficient method. The global image

information in NCC may weaken its reliability in detecting local

artifacts. The volume-wise method based on correlation coefficient

may discard the entire volume when several slices were corrupted

by motion [12]. However, the valid slices without motion artifacts

may also be rejected because of the neighboring artifacts slices in

the same volume. It is necessary to develop an effective artifacts

rejection method for the post-processing of DKI datasets. Pearson

correlation coefficient is used frequently for characterizing the

agreement between images [13]. A modified Pearson correlation

coefficient based on the local image information may be suitable

for the artifacts detection on DKI datasets with motion artifacts.

In this study, we focused on the slice-wise method for the

motion artifacts rejection and proposed a robust post-processing

workflow for motion-corrupted DKI datasets. Local Pearson

correlation coefficient (LPCC) was compared with the conven-

tional correlation coefficient in detecting motion artifacts. The

feasibility of the artifacts rejection for DKI was investigated by

using the mean square error (MSE). Finally, the applicability of the

proposed workflow was evaluated by the image quality and

measurements in the region of interest (ROI) on 36 DKI datasets,

including 18 artifact-free (18 pediatric subjects) and 18 motion-

corrupted datasets (15 pediatric subjects and 3 patients with

essential tremor).

Materials and Methods

The study complied with institutional guidelines and regulations

and was approved by the Ethics Committee of the First Affiliated

Hospital, Xi’an Jiaotong University. Written informed consents

were obtained from the adult subjects and the parents of the

pediatric subjects.

2.1 Theory
In the conventional post-processing workflow for DKI datasets,

DWIs are smoothed by using a Gaussian kernel before the tensor

estimation [14]. We proposed a robust post-processing workflow

for the motion-corrupted datasets. As shown in Figure 1, the

proposed workflow consisted of brain extraction, rigid registration,

distortion correction, artifacts rejection, spatial smoothing and

tensor estimation. Motion-related problems were concerned.

2.1.1 Misalignment correction. The slight head motion

during the MRI scan caused the inter-volume misalignment which

could be solved by using registration methods [4,5]. Rigid

registration was used in the proposed post-processing workflow

to correct the inter-volume misalignment.

2.1.2 Motion artifacts rejection based on LPCC. The

correlation between two images based on the signal intensity or

brightness is a simple method to characterize the agreement

between images [13]. As a conventional correlation coefficient,

NCC was used for the artifacts rejection in the DTI quality control

[9]. Local artifacts in DWIs may be drowned by the neighboring

valid signals during the artifacts detection by using NCC. To

obtain the local correlation information, one slice is divided into

several sub-regions. The Pearson correlation coefficient (PCC)

between the reference (b0) and the object slice is calculated region

by region. Then PCCs are weighted to construct a combined

coefficient, LPCC.

For the human brain DKI data, there are two parts in the DWIs

after brain extraction: the tissue part and the background part.

Therefore there are three kinds of sub-regions: regions containing

the background (Sb), regions containing tissues (St), and regions

containing both the background and tissues (Sbt). Let Nb denote the

number of regions containing only the background. Weighting

coefficients are defined as follows:

w(s)~
1=(L{Nb) s [ St|Sbt

0 s [ Sb

�
, ð1Þ

where L is the number of sub-regions.

The LPCC is calculated as follows:

LPCC~
XL

i~1

wiPCCi: ð2Þ

Figure 1. Programming flowchart of the robust post-process-
ing workflow for DKI datasets with motion artifacts. DWIs:
diffusion weighted images; LPCC: local Pearson correlation coefficient.
doi:10.1371/journal.pone.0094592.g001
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The motion artifacts could be detected and rejected by setting a

defined threshold on the LPCCs.

2.2 Subjects and data acquisition
In this study, we scanned 36 subjects, including pediatric

subjects (22 males and 11 females; age range: 4 days ,6 years old;

mean age = 205 days old) and adult patients with the essential

tremor from the neurology department (2 males and 1 female; age

range: 30,34 years old; mean age = 32 years old). The parents of

the kids were informed about the goals and risks involved in the

MR scan. The kids were all sedated (oral chloral hydrate, 50 mg/

kg) before the MRI scan. The neonates were laid in a supine

position and snugly swaddled in blankets. A pediatrician,

experienced in the resuscitation, was present during the MRI

scan. Micro earplugs were prepared and placed in the bilateral

external acoustic meatuses of the subjects for the hearing

protection. The heads of the subjects were immobilized by the

molded foam. The temperature was maintained and the heart rate

and the oxygen saturation were monitored throughout the

procedure.

A single short echo planar imaging sequence was performed for

acquisition of DKI datasets by using an 8-channel phase array

radio-frequency head coil in a 3 T scanner (Signa HDxt, General

Electric Medical System, Milwaukee, WI, USA). DKI was carried

out with the following variables: b values = 0, 500, 1000, 1500,

2000 and 2500 s/mm2; 25 gradient directions per nonzero b

value; NEX = 1; TR = 4000 ms; TE range: 106.6,108.5 ms; 10

slices with slice thickness = 5 mm; field of view = 1806180 mm2

for neonates and infants, 1806180 mm2 or 2406240 mm2 for

children according to their brain sizes, 2406240 mm2 for adults;

matrix = 1286128. The acquisition time was 8 minutes 44

seconds.

2.3 Data post-processing
2.3.1 Brain extraction. Extracted brain images were

acquired by using the Brain Extraction Tool (BET), the package

in the FMRIB’s Software Library (FSL) [15].

2.3.2 Rigid registration, distortion correction, and

artifacts rejection. Five b0 images per DKI dataset were

acquired in this study. The b0 image was selected as the reference

one by one. Motion-corrupted b0 images were excluded if the

normalized LPCCs were smaller than the threshold. The

remaining b0 images were averaged serving as the reference

image for rigid registration and distortion correction. Rigid

registration was performed on FSL [15]. Distortion was corrected

by using Automated Image Registration (AIR5.2.5) [16]. If the

normalized LPCC between a DWI and the reference was smaller

than the threshold, the DWI would be rejected. In the automated

rejection method based on LPCC, size of the sub-window was 868

pixels. LPCCs were normalized by the maximum of coefficients.

The threshold was set to be the standard deviation by a factor of 3

from the average value of the normalized LPCCs in 25 gradient

directions per nonzero b value.

Table 1. Different numbers and combinations of nonzero b
values for the DKI tensor estimation.

No. Nonzero b values (s/mm2)

5 500, 1000, 1500, 2000, 2500

4#1 500, 1000, 1500, 2500

4#2 500, 1000, 2000, 2500

4#3 500, 1500,2000, 2500

4#4 1000, 1500,2000, 2500

4#5 500, 1000, 1500, 2000

3#1 500, 1000, 2500

3#2 500, 1500, 2500

3#3 500, 2000, 2500

3#4 1000, 1500, 2500

3#5 1000, 2000, 2500

3#6 1500,2000, 2500

3#7 500, 1000, 2000

3#8 500, 1500, 2000

3#9 1000, 1500, 2000

3#10 500, 1000, 1500

2#1 500, 2500

2#2 1000, 2500

2#3 1500, 2500

2#4 2000, 2500

2#5 500, 2000

2#6 1000, 2000

2#7 1500, 2000

2#8 500, 1500

2#9 1000, 1500

2#10 500, 1000

doi:10.1371/journal.pone.0094592.t001

Figure 2. Illustrations of motion artifacts, artifact-free DWIs,
and b0 images. Motion artifacts included (a) complete signal loss, (b)
local signal loss, and (c) mismatching.
doi:10.1371/journal.pone.0094592.g002
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2.3.3 Spatial smoothing and tensor estimation. The

DWIs after the artifacts rejection were smoothed by using a

Gaussian kernel [14]. Diffusion and kurtosis tensors were

estimated by using constrained linear least squares (CLLS) [14].

Mean kurtosis (MK), mean diffusivity (MD), and fractional

anisotropy (FA) were derived from diffusion and kurtosis tensors

[3,17,18].

Artifacts rejection and tensor estimation programs were

implemented in MATLAB version 7.11.0 (Math Works, Natick,

MA, USA).

2.4 Development and debugging of the proposed
workflow

The datasets of 10 subjects were randomly selected as the

experimental data for the development and debugging of the

proposed post-processing workflow.

2.4.1 Comparison between NCC and LPCC. In order to

evaluate the performance of LPCC and NCC in detecting

artifacts, the relative difference between artifacts and artifact-free

DWIs was calculated with (Coefficientartifact-free2Coefficientartifact)/

Coefficientartifact-free. The DWIs from randomly selected DKI

datasets were separated into the artifacts and artifact-free groups

according to the normalized LPCCs between the DWIs and the

reference b0 images. DWIs whose normalized LPCCs were smaller

than the threshold were selected as artifacts. To calculate the

differences between artifacts and artifact-free images, the DWIs

with higher normalized LPCCs and at the same b values were

selected as the paired artifact-free images.

2.4.2 Feasibility of artifacts rejection for DKI. The

artifacts rejection may lead to the tensor estimation on partial

gradient directions or/and the fewer nonzero b values instead of

the original data. It may influence the precision of derived

parameters. Therefore, the precision of the derived parameter

from the datasets of 15,25 out of 25 gradient directions and 26

combinations of 2,5 nonzero b values (listed in Table 1) were

evaluated by MSE in this study. During the data acquisition, the

worst situation was that the head motion occurred consecutively,

especially at the late stage of the MRI scan. To simulate this

condition, we removed the consecutive gradient directions from

the gradient table manually prior to the tensor estimation. It is

difficult to determine which b value would be corrupted by

motion, 26 stochastic combinations of 2,5 nonzero b values were

investigated (see Table 1).

MSE was used to assess the precision of the derived parameters

estimated on the datasets of different protocols. MSE was

calculated by the following equation:

MSE~

Pn
i~1

(ĥhi�hi)
2

n
, ð3Þ

where ĥh, h represented the estimated and true values of a

parameter respectively, n was the number of voxels.

By using the LPCC method, artifact-free experimental datasets

of 5 subjects were selected to assess the feasibility of the data

rejection for DKI. The parameters estimated on artifact-free

datasets with 25 gradient directions and 5 nonzero b values were

considered as the reference values. The MSEs were calculated

between the reference values and the derived parameters which

estimated by the proposed workflow using a different protocol. For

a parameter with the additive zero-mean Gaussian noise,

minimum of MSE caused by the noise equals the variance of

the noise (s2) [19]. The minimum MSE may be larger than s2

when the noise is not additive zero-mean Gaussian noise [19]. s2
L

may be a strict criterion for MSE to assess different protocols. In

this study, s2 was calculated in the image background. The lower

bound of s2 (s2
L) was calculated with mean (s2) 2 standard

deviation (s2). We hypothesized that MSEs of some protocols were

smaller than s2
L. It indicated that influence of the rejected data

was less than influence of the noise on the precision of the derived

parameters. The smaller MSEs suggested the feasibility for the

rejection of motion-corrupted DWIs.

2.5 Performance of the proposed workflow in
applications

The applicability of the proposed workflow was evaluated by the

image quality and the regional quantitative analysis on 36 DKI

datasets. The DKI datasets were divided into two groups by using

the LPCC method: the control group (n = 18) and the artifacts

group (n = 18). The performance of the proposed workflow was

compared with that of the conventional post-processing workflow

in both the control and the artifacts groups. In the control group,

there were no obvious motion artifacts in the DKI datasets. In the

artifacts group, the artifacts rejection was performed by using the

automated method in the proposed workflow. To verify the

feasibility of the artifacts rejection before the DKI tensor

estimation, the data of the same gradient directions and/or b

values rejected in the artifacts datasets were also excluded

manually in the control datasets during our proposed post-

processing workflow. For the regional measurement of the derived

parameter maps, main parts of white matter were selected as

regions of interest (ROIs) by defining the threshold (0.15,0.3) in

an axial FA map.

2.6 Statistical analysis
In current study, the Wilcoxon Signed Rank Test was used for

comparing the performance in detecting artifacts between NCC

and LPCC, and the regional DKI parameter values between the

conventional workflow and our proposed workflow. P values less

than 0.05 were considered significant. The statistical analysis was

performed in SPSS version 13.0 (SPSS Inc., Chicago, IL, USA).

Results

3.1 Development and debugging of the proposed
workflow

In this study, 10 DKI datasets were randomly selected for

debugging the proposed workflow. Thirty motion-corrupted DWIs

were found by the visual inspection, while 33 DWIs were rejected

Table 2. Comparison between the normalized NCC and
normalized LPCC.

Nomalized
NCC

Normalized
LPCC p value

Artifact-free
images (n = 33)

0.9860.01 0.9460.04 1.3361025

Artifacts images
(n = 33)

0.8460.12 0.6860.14 5.3061027

Relative difference
(n = 33)

0.1560.12 0.2760.14 5.3261027

Note: NCC: normalized correlation coefficient; LPCC: local Pearson correlation
coefficient with sub-window of 868 pixels; relative difference =
(Coefficientartifact-free 2 Coefficientartifact)/Coefficientartifact-free.
doi:10.1371/journal.pone.0094592.t002
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according to the normalized LPCC less than the threshold. In

Figure 2, the typical motion artifacts, artifact-free DWIs, and b0

images from raw DKI datasets were shown. In the motion-artifact

images, Figure 2a demonstrated the complete signal loss caused by

sudden head motion with large amplitude. Figure 2b revealed the

local signal loss and Figure 2c exhibited the mismatching between

slices due to the involuntary motion, which were the frequent

artifacts in the DKI datasets.

3.1.1 Comparison between NCC and LPCC. According to

the above 33 artifacts images extracted by LPCC method, 33

paired artifact-free images were selected from above 10 DKI

datasets. In order to compare the performance of NCC and LPCC

in detecting motion artifacts, correlation coefficients between the

DWIs and the reference b0 images were obtained. LPCCs and

NCCs were normalized by the maximum of coefficients in 25

directions per nonzero b value. As listed in Table 2, normalized

LPCCs were lower than normalized NCCs for both artifacts and

artifact-free images (p,0.05). With regard to the differences

between artifacts and artifact-free images, the relative difference of

normalized LPCC was larger than that of normalized NCC

(p,0.05). The results indicated that LPCC was more sensitive to

detect artifacts than the conventional correlation coefficients.

3.1.2 Feasibility of DKI artifacts rejection. The removal

of artifacts may cause that the DKI parameters were derived from

the partial gradient directions or/and the fewer nonzero b values

instead of the original data. It may influence the precision of

derived parameters. We evaluated the precision by using the MSE

in the artifact-free experimental datasets of 5 subjects. According

to the reference values from the original data of 25 gradient

directions and 5 nonzero b values, the MSEs of MK, MD, and FA

increased when the data in some gradient directions were excluded

(Figure 3a,3c). However, all of the MSEs were smaller than s2
L

by using our proposed workflow in this study. It indicated that the

rejected data in some gradient directions had little influence on the

estimation precision of the derived parameter. Moreover,

Figure 3d,3f showed the MSEs of the estimated parameters on

the datasets from the 26 combinations of nonzero b values (listed

in Table 1). The MSEs of 11 combinations for MK, 17

combinations for MD, and 14 combinations for FA were smaller

than s2
L of them. The minimal set of nonzero b values for DKI

tensor estimation was the combination of 1000 s/mm2 and

2500 s/mm2. The set of 500, 1500, and 2500 s/mm2 may be

also an alternative combination for the tensor estimation.

Figure 3. MSEs of MK, MD, and FA estimated on the datasets of the different protocols. The derived parameters were estimated by using
the proposed workflow. The protocols included (a,c) 15,25 out of 25 gradient directions, and (d,f) 2,5 nonzero b values (the combinations of
nonzero b values were listed in Table 1). Scatter plots and error bars were the inter-subject averages and standard deviations of MSEs for artifact-free
datasets (n = 5), respectively. The cross (+) represented that MSE was less than the low bound of s2 (s2

L), where s2
L = mean (s2) – standard deviation

(s2).
doi:10.1371/journal.pone.0094592.g003
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3.2 Performance of the proposed workflow in
applications

To examine the performance of our proposed workflow,

36 DKI datasets including 18 motion-corrupted and 18 artifacts-

free datasets were processed by using the conventional and the

proposed workflows in this study.
3.2.1 Automated artifacts rejection. The performance of

the automated artifacts rejection method was shown in Figure 4.

The fluctuation of the normalized LPCCs in different gradient

directions was small in the artifact-free data (the blue triangles in

Figure 4). The artifacts (the pink diamonds marked by the black

arrowheads in Figure 4) could be detected and rejected easily by

our proposed method.
3.2.2 Comparison between the conventional and the

proposed workflows. In the Figure 5, the representative

parameter maps were derived by using both the conventional

and the proposed workflows. In Figure 5a, compared with our

proposed workflow, the scattered signal loss exhibited more

obviously in the maps of MK and FA derived by using the

conventional workflow. In Figure 5b, the artifacts caused by the

inter-volume misalignment were visible in all the derived

parameter maps by using the conventional workflow (Figure 5b

arrowheads). But our proposed workflow removed all artifacts

from the DKI parameter maps and demonstrated its robust

performance. Maps of the absolute errors in Figure 5 showed that

motion artifacts caused evident biases on the derived parameters.

Therefore, the rejection of motion artifacts is necessary for the

tensor estimation. Our proposed workflow can improve the image

quality of DKI derived parameters.

In Figure 6, the regional averaged values of DKI parameters

were estimated by using both the conventional and the proposed

workflows. As shown in Figure 6b, the differences of MK, MD,

and FA in ROIs of the main white matter between two workflows

were significant (p,0.05) in the artifacts group (n = 18). However,

as shown in Figure 6c, no significant differences were found in the

artifact-free control group (n = 18), though the data of the same

gradient directions or/and nonzero b values were rejected as well.

The results clearly demonstrated the robustness of the proposed

post-processing workflow in eliminating the motion artifacts

influence on the derived parameters and without the effect on

artifact-free datasets.

Discussion

4.1 Automatically detecting artifacts: NCC versus LPCC
Motion artifacts limited the application of DKI. This study

proposed a robust post-processing workflow to solve this problem.

As an efficient artifacts rejection method for DTI quality control,

NCC was calculated based on the global information of images

[9]. Local artifacts in DWIs may be drowned by the neighboring

valid signals during the artifacts detection by using NCC. In

human brain DWIs, the background and tissue regions contained

different information for the artifacts detection. Therefore an

image was divided into several sub-regions in this study. LPCC

was used to detect artifacts instead of the conventional correlation

coefficient. To detect artifacts from DWIs, LPCC was more

sensitive than NCC (Table 2). Different from the combination of

LBP and 2D PLS [5], LPCC was obtained directly from the local

image intensity. The correlation between two images based on the

signal intensity or brightness is a simple method to characterize the

agreement between images [13]. To extract local textures, like

LBP, in thousands of DWIs in DKI datasets was time consuming.

The LPCC rejection method required 0.0575 seconds per slice on

a personal computer, which was a fraction of the computational

time required by the rejection method of the combination of LBP

and 2D PLS. LPCC may be an alternative method for the

detection and rejection of artifacts in DKI datasets.

Figure 4. The normalized LPCCs for artifact-free and motion-corrupted datasets. LPCCs were normalized by the maximum of the
coefficients. The images whose normalized LPCCs were smaller than the threshold were rejected (the pink diamonds marked by the black
arrowheads).
doi:10.1371/journal.pone.0094592.g004
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4.2 Feasibility of artifacts rejection from DKI datasets
The precision of the DKI derived parameters may be influenced

by the removal of artifacts in a number of gradient directions. In

current study, MSE was used to evaluate the precision. In theory,

2 nonzero b values and 15 gradient directions per nonzero b value

can be used to estimate the 21 independent elements in diffusion

and kurtosis tensors [2,14,20]. The proposed gradients direction

number was 20 for the clinical use [21]. Considering the data in

some gradient directions that may be corrupted by head motion,

25 gradient directions were acquired in this study. This study

Figure 5. DKI parameter maps estimated by using the conventional and the proposed workflows. Parameter maps included MK, MD,
and FA of (a) a neonatal dataset with the signal loss and (b) an adult dataset from the patient of essential tremor with both the signal loss and
mismatching. Absolute errors were mapped by the differences of the derived parameters between the conventional workflow and the proposed
workflow.
doi:10.1371/journal.pone.0094592.g005
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investigated the precision of the derived parameters from the

datasets of 15,25 out of 25 gradient directions. Our results

demonstrated that MSEs of the derived parameters in 15 gradient

directions were higher than those in 20 gradient directions and

more, which is consistent with a previous study [21]. But all the

MSEs were smaller than s2
L (Figure 3). This result in our study

ensured that tensors of DKI could still be estimated if a remaining

dataset would be provided with at least 15 gradient directions. In

the same way, if the gradient direction number of DWIs in one

nonzero b value was less than 15, all the DWIs in this nonzero b

value should be rejected.

Compared with the conventional DTI model, the diffusivities in

DKI are less dependent on the b values [22]. However, the

kurtosis tensor is estimated based on both the first-order and the

second-order terms in the DKI model. Both low and high b values

were necessary for the DKI tensor estimation. In current study,

MSEs of 2 nonzero b values (1000 and 2500 s/mm2) were smaller

than s2
L (Figure 3), which confirmed the feasibility of artifacts

rejection for DKI.

In sum, the precision of the tensor estimation in DKI depended

on the distribution of the reserved nonzero b values. The reserved

data after the artifacts rejection should contain the minimum

effective set of the gradient directions and b values for the tensor

estimation.

4.3 Limitations and potential applications
Despite that the proposed workflow performed well to improve

the image quality and the accuracy of quantitative analysis on

motion-corrupted DKI datasets, there were some limitations. The

main weakness was that LPCC based on correlation of image

intensity could not detect the images of good tissue contrast with

hyper-intensity or hypo-intensity. Another aspect of LPCC

remained to be improved was the weighting coefficients of sub-

regions. In this study, sub-regions contained tissues were weighted

equally. An optimized framework for the weighting coefficients

may be more reasonable for calculating LPCC. The rejection

criterion for the normalized LPCCs was set to be the standard

deviation by a factor of 3 from the average value. The factor for

the threshold remained to be calibrated on large scale datasets.

Moreover, the problem of cerebrospinal fluid (CSF) partial volume

effect in DKI [3] was not solved in our workflow.

Motion artifacts were common in diffusion MRI techniques.

Compared with DTI, both the HARDI and DKI required a

longer scan time and held DWIs of relatively high b values. The

proposed workflow may be also suitable for the detection and

rejection of the motion artifacts for other diffusion MRI

techniques, like the HARDI. Since the signal to noise ratio

(SNR) of the image in the high b value was low, the unreliable

registration for the data of the very high b value in the HARDI

datasets [1] was a challenge for the application of our workflow.

The future work will focus on the improvement of the proposed

post-processing workflow.

In conclusion, the proposed post-processing workflow was

reliable to improve the image quality and the measurement

precision of the derived parameters on the motion-corrupted DKI

datasets. The workflow provided an effective post-processing

method for the clinical applications of DKI in the subjects with

involuntary movements.
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