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Abstract 

The hydrodynamic dispersion of a neutral non-reacting solute due to steady electro-

osmotic flow (EOF) in a circular channel with longitudinal step changes of zeta potential 

and hydrodynamic slippage is analyzed in this study. The channel wall is periodically 

micro-patterned along the axial position with alternating slip-stick stripes of distinct zeta 

potentials. Existing studies on electrically driven hydrodynamic dispersion are based on 

flow subject to either the no-slip boundary condition on the capillary surface or the 

simplification of lubrication approximation. Taking wall slippage into account, a 

homogenization analysis is performed in this study to derive the hydrodynamic 

dispersion coefficient without subject to the long-wave constraint of the lubrication 

approximation, but for a general case where the length of one periodic unit of wall pattern 

is comparable with the channel radius. The flow and the hydrodynamic dispersion 

coefficient are calculated numerically, using the packages MATLAB and COMSOL, as 

functions of controlling parameters including the period length of the wall pattern, the 

area fraction of the slipping region (EOF-suppressing) in a periodic unit, the ratio of the 

two zeta potentials, the intrinsic hydrodynamic slip length, the Debye parameter, and the 

Péclet number. The dispersion is found to show notable, non-monotonic in certain 

situations, dependence on these controlling parameters. It is noteworthy that the 

introduction of hydrodynamic slippage will generate much richer behaviors of the 

hydrodynamic dispersion than the situation with no-slip boundary condition, as slippage 

interacts with zeta potentials in the EOF-suppressing and EOF-supporting regions. 
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1. Introduction 

In contrast with pressure-driven flow, which is characterized with a parabolic velocity profile and usually 

leads to significant dispersion, typical electro-osmotic flow (EOF) has a plug-like velocity profile in the 

thin electric double layer (EDL) limit and generates much weaker dispersion. Dispersion is known to be 

conducive for mixing but detrimental for separation in microfluidic applications. Therefore, EOF is more 

desirable for separation processes and widely employed in capillary zone electrophoresis (CZE) and 

capillary electrochromatography (CEC), for both of which the resolution is limited by band-broadening of 

the analytes due to dispersion (Ghosal 2006). In terms of theoretical research, one of the earliest studies on 

dispersion in EOF was pioneered by Martin and Guiochon (1984), who analyzed the zone broadening 

resulting from EOF and the retention in open-tubular capillary liquid chromatography based on an 

approximated EO velocity. Subsequently, many other authors (Datta and Kotamarthi 1990, Griffiths and 

Nilson 1999, 2000, Zholkovskij et al 2003, Zholkovskij and Masliyah 2004, Paul and Ng 2012a, b, etc.) 

studied the hydrodynamic dispersion arising from either pure EOF or EOF incorporated with pressure-

driven flow. A comprehensive review on this topic was given by Datta and Ghosal (2009).   

 Surface heterogeneity (e.g. surface topography, charge distribution, slippage modulation, etc.), which 

may occur naturally or be engineered artificially, can lead to opposite effects on the dispersion depending 

on whether the flow is driven by pressure or electric field. Generally speaking, with the introduction of 

surface heterogeneities on the channel wall, dispersion is inhibited for pressure-driven flow, but enhanced 

for EOF. For pressure-driven flow, the dominant effect caused by these surface non-uniformities on the 

dispersion is attributed to the transverse or secondary flows generated in the vicinity of the discontinuities 

(Ajdari 1996), which will contribute to cross-sectional mixing and therefore reduce the axial dispersion 

(Stroock and Whitesides 2003, Zhao and Bau 2007). For EOF, the dominant effect is by the pressure 

gradients locally induced to maintain flow continuity (otherwise violated due to the discontinuities on the 

heterogeneous surface). The plug-like velocity profile of the EOF will be distorted by the superimposed 

parabolic velocity of the induced pressure-driven flow and altered into a velocity profile of larger gradient, 

leading to enhanced dispersion.  

 On employing numerical simulations, Potoćek et al (1995) showed that the plug-like EOF would fail 

to materialize and significant dispersion of sample peaks would happen when the zeta potential is 

longitudinally inhomogeneous. Previously, Anderson and Idol (1985) had developed an infinite-series 

solution for electro-osmotic flow through a charged capillary with an arbitrary axial distribution of zeta 

potential. Effects of flow perturbations due to charge non-uniformities (denoted as surface defects in their 

paper) on the dispersion in capillary electrophoresis were then analytically examined by Long et al (1999). 

In their problem, pressure jumps were induced by the presence of surface defects, resulting in possible 

occurrence of recirculating flows. They showed that a localized defect, from which the velocity 

perturbation decays only algebraically, could cause hydrodynamic dispersion over a long distance. The 

same problem was investigated both analytically and experimentally by Herr et al (2000), who considered 

discrete step changes in zeta potential (EOF-suppressing region and EOF-supporting region) distributed at 
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various distances along a cylindrical capillary. They provided empirical evidence to demonstrate that 

dispersion in the EOF-supporting region increases as the area fraction of the EOF-suppressing region 

increases. More recent studies on the non-uniformity of wall potential causing increased dispersion involve 

Ghosal (2002a, 2002b, 2003), Zholkovskij et al (2010) and so on.  

 All studies mentioned above on the dispersion due to EOF, however, are based on flows subject to the 

assumption of no-slip boundary condition, which may not be valid for microfluidic flows. In microfluidics, 

the channel wall is an essential issue and has crucial influence on the flow morphology and mass transport. 

It can either be naturally micro-/nanostructured or deliberately treated to become hydrophobic or even 

superhydrophobic, resulting in a low-viscosity or depletion layer that lubricates the flow over the surface 

and thus amounting to boundary slip. It has been well accepted that even a small amount of boundary slip 

can substantially enhance EOF since the first relevant analysis by Muller et al (1986). Squires (2008) 

developed some general rules of electrokinetic flows over slipping surfaces exhibiting heterogeneous 

distributions of zeta potential and slip length in the thin EDL limit. EOF over an anisotropic 

superhydrophobic surface that is inhomogeneously charged and slipping was further studied by Belyaev 

and Vinogradova (2011), who revealed relations between the EO mobility and hydrodynamic slip under the 

conditions of a very thick channel and a very thin EDL. The relations were then generalized by Ng and Chu 

(2011), who derived the Onsager relations applicable to arbitrary channel and EDL thickness for electro-

hydrodynamic flows through a planar channel made up of stripe-patterned superhydrophobic surfaces. 

Some other studies on EOF addressing surface heterogeneities were conducted by Bahga et al (2010), Zhao 

(2010, 2011), Ng and Zhou (2012a), Zhao and Yang (2012), Chu and Ng (2012) and Datta and Choudhary 

(2013). Refer to Rothstein (2010) for a recent review of slip on superhydrophobic surfaces. 

 Given that EOF can be sensitively affected by boundary slip, it is of interest to look into how 

dispersion in EOF can be affected by the slip. Previously, we (Ng and Zhou 2012b) have performed an 

analytical study on dispersion arising from EOF in a circular microchannel with longitudinal non-

uniformities of wall potential and hydrodynamic slippage, in which we demonstrated how the presence of 

slip can dramatically change the effect of the non-uniform wall potential on the dispersion. It was shown 

that the non-uniform wall potential, interacting with non-uniform slip, leads to effects more intensive than 

the situation when the wall potential and slip are both uniform with a value equivalent to the system 

average of the non-uniform distribution. The study could be straightforwardly generalized to typical slip-

stick patterns as step changes of zeta potential and hydrodynamic slippage (see Appendix). However, since 

the analysis was based on lubrication approximation assuming slowly varying wall pattern and 

unidirectional flow, the transverse flow as well as its associated mixing effect near the discontinuity was 

ignored. Therefore, it could at best provide qualitative features of the long-range perturbation due to surface 

heterogeneities on the dispersion. Its quantitative accuracy, which could be low given the validation of 

lubrication theory for a geometry involving step changes, is subject to scrutiny. This has motivated the 

present study, which abandons the lubrication approximation and considers a general case where the length 

scale for variations in the axial direction is comparable with the cross-sectional dimension of the channel.  
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 Specifically, the present problem is concerned about the hydrodynamic dispersion of a non-reacting 

neutral solute due to steady electro-osmotic flow in a circular capillary with axial step changes of zeta 

potential and hydrodynamic slippage without subject to lubrication approximation. The flow we consider is 

one of those studied by Chu and Ng (2012), an electrohydrodynamic flow through a circular tube 

periodically micro-patterned along the axial position with alternating slip-stick stripes of distinct zeta 

potentials. The reason why we consider EOF in such geometry is that the stepwise wall pattern may be 

more realistic and practical to design and fabricate than those slowly and mildly varying patterns for 

application in microfluidic devices. In the present study, formulation of the EOF is based on Chu and Ng 

(2012). Expression for the effective dispersion coefficient is derived through a multi-scale asymptotic 

analysis. Numerical results of the dispersion coefficient are then obtained using the packages MATLAB 

and COMSOL. Our primary objective is to investigate in a general case how the hydrodynamic dispersion 

arising from EOF will be affected by the combined effects of non-uniform wall potential and slippage, 

which in turn can provide us with strategies to suppress or enhance dispersion as needed in lab conditions. 

We also look into accuracy of the commonly adopted lubrication approximation in estimating the 

dispersion by comparing our numerical results of the general case with theoretical limits obtained by the 

lubrication theory. 

 The experimental setup for detection of solute dispersion in EOF subject to surface heterogeneity was 

introduced by Herr et al (2000). To realize the step change of zeta potential, an EOF-suppressing polymer 

was adsorbed onto a certain fraction of the transparent fused-silica capillary (forming an opaque polyimide 

coating), by which they produced a coupled capillary consisting of a coated region with a suppressed zeta 

potential and a bare region with a normal zeta potential (referred to as EOF-supporting region). Imaging 

was conducted directly on the transparent EOF-supporting region and through pre-manufactured 

“windows” on the opaque EOF-suppressing region. The information of sample dispersion was optically 

extracted using the caged-fluorescence technique. Refer to the book chapter by Devasenathipathy and 

Santiago (2005) for a more detailed introduction of micro-/nanoscale electrokinetic flow diagnostic 

techniques. For our problem, similar procedures used by Herr et al (2000) can be taken to implement 

experiments, except that step changes of zeta potential and slip length need to be synthesized on the 

capillary, which may be challenging. Up to now, techniques for the design and fabrication of patterned 

superhydrophobic surfaces are rather mature (Celia et al 2013). Also, with the addition of embedded 

nanoelectrodes (Dawson and O’Riordan 2014) within the channel wall, the contradiction between a 

practical slip length and a net charge density at the slip interface (Huang et al 2008) can be overcome. The 

scenario addressing surface characteristics and other practical issues for potential experiment conduction 

was presented by Steffes et al (2011) and Schönecker and Hardt (2014). Promisingly, given all mentioned 

above, the proposed strategies in the present study for mass transport in electro-osmotic flow may be 

verified experimentally.  
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2. Problem formulation 

2.1 Electric potential in the EDL 

The problem considers dispersion in steady electro-osmotic flow of an incompressible Newtonian fluid 

through a circular tube, the wall ( r R ) of which is patterned with a periodic array of alternating slipping 

and non-slipping stripes of different wall potentials (figure 1(a)). One unit of the wall pattern is of a period 

length 2l , consisting of a slipping stripe of 2al  with slip length   and zeta potential 
S , and a non-

slipping strip of 2(1 )a l  with zeta potential .NS  The area fraction a  ranges from 0 to 1, denoting 

proportion of the slipping region. The intrinsic/microscopic slip length   (Navier’s slip length, figure 2) is 

in the range 0  , with 0   corresponding to no-slip and     corresponding to perfect-slip.   

 The flow is driven by an external electric field 
zE  applied in the axial direction. On assuming low 

potentials (e.g. <25 mV) within a non-overlapped EDL, the Debye-Hückel approximation applies and the 

electric potential  ,r z of the EDL is expressible by the linearized P-B equation: 

                                                           2 2                                                                                (1) 

where 
2

0 02 Bn e z k T  is the Debye-Hückel parameter, or the inverse of the Debye length 
1 

(a 

measure of the EDL thickness). Herein, 
0n  is the bulk concentration of the ions at the neutral state, e  the 

elementary charge, 
0z  the valence of the (

0 0:z z ) symmetrical electrolyte,   the dielectric constant of the 

fluid, 
Bk  the Boltzmann constant, and T  the absolute temperature. The Debye-Hückel approximation is 

valid for 
0 1Bz e k T  , which physically means that the electric potential is small compared to the thermal 

potential. 

 The solution to equation (1) is expressed by: 

               0 0

0

10 0

( ) ( )
, cos( )

( ) ( )

n

n n

n n

I r I r
r z D D z

I R I R

 
 

 





     (2) 

where /n n L  , 2 2 2

n n    , and 
nI  is the modified Bessel function of the first kind of order n . 

0,1,2... nD  are Fourier series coefficients determined by applying the mixed electric boundary conditions: 

   0

1

0
, cos( )

S

n n

n NS

z al
R z D D z

al z l


 







 
   

 
   (3) 

which are readily found to be: 

 
0

sin( )
(1 ) , 2( )S NS n S NS

na
D a a D

n


   


       (4) 

 On introducing the following normalization: 

        0 0
ˆˆ ˆ ˆ ˆˆ ˆˆ ˆ, , , , , , , , , , , , , ,S n n NSr z l r z l R R D D D D             (5) 

equations (3) and (4) are cast in the dimensionless forms: 



  

6 

 

 
0

1

ˆˆ 0ˆ ˆ ˆ ˆcos( )
ˆ ˆ1

S

n n

n

z al
D D z

al z l








  
  

 
   (6) 

 
0

sin( )ˆ ˆˆ ˆ1 , 2( 1)S n S

na
D a a D

n


 


       (7)  

 

2.2 Electro-osmotic flow 

Given the small dimensions consider in our problem, the flow falls into the low Reynolds number regime, 

where the Stokes equation is applicable. The governing equation is solved semi-analytically by employing 

the method of eigenfunction expansion, wherein the coefficients are determined by point collocation. To be 

specific, the mixed electro-hydrodynamic boundary conditions are implemented by respective point-

matching using adequate data points on the two distinct regions within a period length, and the transition of 

the step change is retained by setting an infinitesimal region to avoid numerical singularity. 

 The momentum equation is given by: 

 2 0eu p E       (8) 

where  ,u u w  is the electro-osmotic velocity and  ,p r z  is the locally induced pressure. The charge 

density  ,e r z  and the total electric field strength  ,E r z  are expressed by: 

   2,e r z          (9) 

    , 0, zE r z E     (10) 

 We adopt the radial and axial velocity components solved by Chu and Ng (2012) as below, where 

normalizations as in equation (5) have been used: 

                       

1 1 0

2 2
1 00 0

*1 1 0

1 0 0 0

ˆ ˆˆ ˆˆ ˆ( ) ( ) ( )ˆ ˆˆ ˆˆ ˆ( , ) sin( )
ˆ ˆ ˆ ˆ ˆ( )ˆ(1 / ) ( ) ( )

ˆ ˆ ˆˆ ˆ( ) ( ) ( )ˆ ˆ ˆˆsin( )
ˆ ˆ ˆ( ) ( ) ( )

M
n n n n

n n
n nn n n n n

M
n n n

n n z
n n n n

I r I I r
u r z D z r

II I

I r I I r
G z r E

I I I

   


    

  


  





 
    

   

 
   

 





                (11)  

                   

 

 0

0 0 2 2
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0 1 0 1

0 00 0
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1 0

ˆ ˆ( ) 1ˆˆ ˆ ˆˆ ˆ ˆ( , ) cos( )
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 





   
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   

 
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 




*1 1

0 0 0
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ˆ

ˆ ˆ ˆ( ) ( ) ( )

n n n

z

n n n

r I I r
r E

I I I

  

  

 
 

  

  (12) 

where 
* ˆ( / )z NS zE E    denotes the Helmholtz-Smoluchowski velocity characteristic of EOF through a 

homogeneous channel with a very thin EDL. Herein, ˆ( / )NS   is the EO mobility and can be 
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interpreted as another form of “slip” on the interface of the EDL and bulk solution. In later derivations, *

zE  

will be used as the normalizing velocity for velocity components. 0,1,2...
ˆ

nD  are given earlier in equation (7), 

and 0,1,2...
ˆ

nG  are Fourier series coefficients to be determined by applying the slip-stick boundary conditions: 

  
ˆˆ ˆ ˆ0

ˆ,
ˆ ˆˆ0

w z z al
w R z

al z l

    
 

 

  (13) 

 The mean velocity of the flow is given as: 

 
*0 1

0

0

ˆ ˆ( ) ˆ2
ˆ ˆ( )

z

D I
w G E

I



 

 
   

  

      (14) 

 

2.3 Hydrodynamic dispersion 

A homogenization analysis is performed to derive the dispersion coefficient due to the electro-osmotic 

flow. The idea of the homogenization technique (Mei 1992; Mei et al, 1996) is to deduce cell boundary-

value problems at successive orders through introducing multiple-scale variables and expansions. In the 

present problem, two distinct length scales exist: the micro length scale represented by the channel radius 

or periodic length ~R l (denoted by the microscale coordinate r  and z ), and the macro length scale L

beyond which the solute cloud distributes axially (denoted by the macroscale coordinate Z ). The ratio of 

the two length scales is a small order parameter for the problem, i.e. / 1l L   . Three time scales arise 

from the two length scales: a short time scale for diffusion over the micro length scale 2 2

0 / ~ /t R D l D  (

D  is the molecular diffusivity), an intermediate time scale for advection over the macro length scale 

1 /t L w  ( w  is the axial mean velocity), and a long time scale for diffusion over the macro length scale 

2

2 /t L D . Estimation of the three time scales relies on the magnitude of the Péclet number

Pe= (2 ) / D 2Re ( / )w R D  , a dimensionless number denoting ratio of the convection rate and diffusion 

rate. For low-Reynolds number flows in microfluidic devices, many species of interest are large and slowly 

diffusing, and / D  is usually high, but of finite value (e.g. 
9 210 /D m s  for salt in water at room 

temperature, whereas 
6 210 /m s  ,  herby 

3/ 10D  ). In this regard, we assume Pe  to be on the order 

of unity (1)  for generality. Estimation of the time scales can thus be obtained: 2

2 1 0/ /T T T   . If 

1Pe ( )  or Pe ( )  for special species, these estimates can be much different, and the subsequent 

asymptotic analysis needs to be modified accordingly. 

  Based on the aforementioned length and time scales, a multiple-scale asymptotic analysis can be 

performed on the transport equation: 

   2C
uC D C

t


  


 (15) 
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where  , , ,C C r z Z t  is the concentration, which is a time-dependent function of the fast spatial variables

 ,r z  and slow spatial variable ( )Z .  ,u u w  is the velocity vector.  

 Due to the periodic pattern on the microscale, the effective transport equation, which is purely with 

respect to the macroscale coordinate Z , can be obtained by means of spatial averaging over the microscale 

coordinates. Following the procedures presented by Mei et al (1996), the concentration, time derivative and 

spatial derivative are first expanded as power series of  : 

 2

0 1 2 ,C C C C      (16) 

 
2

1 2

,
t t t z z Z

  
     
     

     
  (17)                   

where 
0C  denotes the leading-order concentration, and is independent of the microscale coordinates. At 

( ) , the first-order concentration is related to the leading-order concentration by:  

 0

1 ,
C

C N
Z


 


  (18) 

where  ,N r z  is a periodic function determined by the canonical boundary-value problem of Oseen type: 

 
  2 ,

(0 2 ,0 )

uN D N w w

z l r R

    

   
 (19) 

 
0

( )

N

r

r R








 (20)           

The effective transport equation can be attained at the second order of perturbation 2( ) :  

  
2

0 0 0

2T

C C C
w D D

t Z Z

  
  

  
 (21)             

where 
TD  is the Taylor dispersion coefficient we aim to reach:            

 TD Nw Nw Nw N w     (22) 

the over bar and angle brackets above indicate cross-section averaging and axial averaging, respectively: 

 
1

2 0 0

2
ˆ ˆ2

R

f frdr frdr
R

    (23) 

 
ˆ2 2

0 0

1 1
ˆ

ˆ2 2

l l

f fdz fdz
l l

    (24)           

On introducing the following normalization: 

     *

* 2 *2 2
ˆ ˆ ˆˆ ˆ, , , , , ,z T T

z z

D D
u w w u w w E N N D D

E R E R

   
     

   
 (25)        

equations (19) and (20) can be written in the dimensionless forms as below: 
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2

2

ˆ ˆ ˆ ˆ1 ˆˆ ˆ ˆ ˆPe ,
ˆ ˆ ˆ ˆˆ ˆ

ˆ ˆˆ(0 2 ,0 1)

N N N N
w u r w w

z r r r rz

z l r

       
                

   

 (26) 

 

ˆ
0

ˆ

( 1)

N

r

r








 (27) 

and the dimensionless Taylor dispersion coefficient ˆ
TD , is readily to be found as: 

 
ˆ ˆˆ ˆ ˆ

TD Nw N w    (28) 

     Since the Oseen type equation (26) cannot be solved analytically, we next employ packages 

MATLAB and COMSOL to compute ˆ
TD  numerically (figure 1(b)). Specifically, the dispersion coefficient 

is obtained through numerical simulation using the Convection and Diffusion model in COMSOL. The 

governing equation (26) and its boundary condition equation (27) are applied via settings in the physics 

module of the model. The velocity components for different sets of controlling parameters are first 

calculated using MATLAB, then output and exported into the model as constants and scalar expressions. 

Next, the model is initiated to solve the problem. After solution, the dispersion coefficient expressible by a 

global expression in the model via subdomain projection and boundary integration can be read from the 

result. Accuracy of the model built on COMSOL is verified through comparing results with theoretical 

limits obtained from lubrication approximation, known as the long-wave limits (see Appendix). 

 

3. Numerical results 

In the present problem, controlling parameters of the dispersion coefficient ˆ
TD  include: (i) the normalized 

period length l̂ , (ii) the area fraction of the slipping region a  (EOF-suppressing), (iii) the normalized zeta 

potential of the slipping region ˆ
S , (iv) the normalized intrinsic slip length of the slipping region ̂ , (v) 

the normalized Debye parameter ̂ , and (vi) the Péclet number Pe . For the limiting case ˆ 1l  or l̂   , 

ˆ
TD  becomes independent of l̂  as well as Pe , and is computed from equation (32) in the Appendix as the 

long-wave limit. To address the question how the slipping region affects the overall hydrodynamic 

dispersion in EOF, we examine the dispersion coefficient ˆ
TD  against the area fraction of the slipping 

region a , where it can be of different slip lengths and zeta potentials. An increasing a  has two central 

effects that are decisive for behaviors of the dispersion, which we will clarify next. 

 First, the flow mean velocity behaves in different manners with the varying area fraction of the EOF-

suppressing region a  depending on the zeta potential and period length (see ŵ  in figures 5 and 6), which 

causes the dispersion to change accordingly. In the two cases we are going to analyze, the original profile of 
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ŵ  when slippage is absent presents a monotonically decreasing trend, plus, is independent of the period 

length. On introducing slippage, the trend is essentially still a monotonically decreasing one but no longer 

independent of l̂  if the slipping region is uncharged (i.e. ˆ 0S  ). Moreover, an abrupt drop near  1a   is 

found for a relatively large l̂  (e.g. ˆ 5l  ). When the slipping region is positively charged (e.g. ˆ 0.5S  ), 

however, the trend is reversed into a monotonically increasing one dependent of l̂ . An abrupt change near

1a   is also found, but an upsurge this time, and it is for a relatively small l̂  (e.g. ˆ 1l  ). These behaviors 

of the mean velocity are consistent with the findings of Chu and Ng (2012). 

 Second, the effect imposed on the dispersion by the induced pressure-driven flow presents a non-

monotonic trend against a  (see the pressure-related components 
2G  and ˆG  in figures 5 and 6), which is 

characterized by an up-down curve with a local extremum at an intermediate a . If the channel wall is non-

slipping, the profiles of 
2G  and ˆG are exactly symmetric about 0.5a  , where the extremum appears. 

This symmetry can be easily understood through equations (37) and (38) in the Appendix obtained using 

the lubrication theory, both of which include the factor (1 )a a . Literally, 0.5a   means that the channel 

has an equal fraction of EOF-suppressing and EOF-supporting regions. In other words, with only non-

uniformity of zeta potential, the enhancing effect on the dispersion due to the induced pressure gradients is 

most significant when the channel wall is most heterogeneous (i.e. 0.5a  ) , but vanishes when the 

channel wall tends to be homogeneous (i.e. 0a   or 1a  ). The introduction of slippage further alters this 

non-monotonic effect in multiple fashions, which are illustrated in figures 5 and 6.  

 These two effects mentioned above, whose strength of influence on the dispersion is subject to 

controlling parameters l̂ , ˆ
S , ̂ , ̂ , give rise to rich behaviors of ˆ

TD  against a  via interacting with each 

other in various configurations. To better evaluate the dispersion in different configurations for achieving 

efficient separation in microfluidic applications, appeal is also made to the plate height:  

 2 ( )P c cH d x dx   (29) 

which describes the changes in the squared variance of the solute band due to mass transport for a unit 

distance. Herein, ( )t  is the time-dependent band variance characterizing the solute band width, and ( )cx t  

is the time-dependent coordinate of the mass center (figure 3). In the context of dispersion, the plate height 

indicates the spreading rate of the solute cloud per unit distance it moves and serves a useful measure of the 

band broadening. For an inert solute considered in the present problem, PH  is related to the dispersion 

coefficient TD  as given by (Zholkovskij et al 2010): 

 
2 T

P

D
H

w
   (30) 

where cw dx dt  is the mean velocity of the mass center (equal to the mean velocity of the flow). The 

advantage of PH  over TD  in evaluating and comparing dispersion lies in that it provides a more intuitive 
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measure of the separation efficiency by addressing the mean velocity w , while 
TD  simply indicates the 

dispersion strength. The mean velocity, known to impact the dispersion coefficient, also determines the 

mean residence time of the solute cloud, which can be interpreted as the convection time for an inert 

species spreading through a sufficiently long channel. 

 The Debye parameter ̂  is a pivotal factor for EOF, which directly decides thickness of the EDL 

forming near the charged wall (no EDL will form if the wall is uncharged). Given its importance, before 

proceeding to behaviors of the dispersion, we first elucidate the manner that ̂  influences the dispersion 

due to pure EOF, where no induced pressure-driven flow is considered. In the long-wave limit, the 

dispersion has exact analytical solutions to be presented with a straightforward diagram of interrelationship. 

For simplicity, we consider ˆ 1S   so that the channel wall is uniformly charged. Under these conditions, 

the dispersion coefficient ˆ
TD  reduces to 

eX , given by equation (35). As demonstrated in figure 4, ˆ( )eX   

increases at first and reaches a maximum value of 0.00382775 at ˆ 4.67968  , then it decreases and 

eventually becomes infinitesimally small as 2ˆ (10 )  . Physically, it means that for EOF with a very 

thin EDL, the hydrodynamic dispersion is negligible and the dispersion coefficient is vanishingly small. 

 

3.1 Slipping region uncharged 

When ˆ 0s  , the slipping regions are uncharged. Analytical proof was previously given by Squires (2008) 

and Chu and Ng (2012) that EOF experiences no enhancement from such regions, and if the surfaces are 

only partial-slipping, EOF will even be inhibited, whether in the thin EDL limit (practically achieved when 

3ˆ (10 )  ) or not. The effect imposed by the uncharged slipping regions on the dispersion due to the 

EOF, however, can be either inhibitive or conducive depending on the Debye parameter ̂  (figures 7 and 

8). When ̂  is small (e.g. ˆ 10  ), corresponding to a relatively thick EDL, the slipping region does 

inhibit the dispersion, namely, ˆ
TD  decreases as the area fraction a  increases. The physical reasoning can 

be given as below:  for a small ̂ , the EDL has a finite thickness, and the typical plug-like velocity profile 

of pure EOF fails to materialize, thus leading to considerate dispersion. ˆ
TD  in this situation appears more 

susceptible to the EOF mean velocity ŵ , which is monotonically decreasing against a  here (figure 5). 

Alternatively speaking, the decreasing effect of ŵ outweighs the monotonic effect of the induced pressure-

driven flow. When ̂ is moderately large (e.g. ˆ 100  ), the EDL is vanishingly thin and approximates to 

the thin EDL limit, the effect of the slipping region in this situation presents a non-monotonic trend, 

characterized by an up-down manner of ˆ
TD  with a , and the inhibitive effect prevails only when the slip is 

large enough. This is because the contribution of pure EOF to the dispersion vanishes due to a virtually 

uniform velocity profile in this case, and the non-monotonic effect by the induced pressure-driven flow on 

the dispersion becomes dominant. For behaviors of the plate height, the non-monotonic trend manifests 



  

12 

 

itself more prominently. Even for a small Debye parameter ˆ 10  , an evident non-monotonic curve of 

ˆ
PH  can already be gained provided that ̂  is relatively small (e.g. ˆ=0.1 ) and l̂  is moderately large (e.g. 

ˆ 5l  ). A general relation can be revealed via comparison of ˆ
TD  and ˆ

PH : a configuration that has the 

maximum dispersion coefficient does not necessarily yield the largest plate height, or the widest solute 

band due to dispersion. This disagreement is caused by the flow mean velocity ŵ , which is related to the 

convection time of the solute band. 

 The role that slip plays is by and large a negative contribution to the dispersion, though several 

exceptions exist (i.e. when ˆ 10  , as ˆ=1  increases to ˆ=100 , ˆ
TD  increases rather than decreases as 

expected in ˆ 1,5,l   ). Consequently, the inhibitive effect of the slipping region is mostly strengthened as 

the slip length increases, whereas the non-monotonic effect is, on the contrary, weakened (with a smaller 

peak value). To understand the exceptions mentioned above, we further examine ˆ
TD  against a continuous 

range of ̂  ( ˆ0.001 1000  ) for ˆ 10   in the long-wave limit. For simplicity, the slipping and non-

slipping regions are considered to be evenly distributed, i.e. 0.5a  . The result of this examination is given 

in the inset of figure 7(a). Interestingly, we observe a down-up-steady curve of ˆ
TD  against ̂ : when a 

small amount of slippage (e.g. ˆ=0.001 ) is introduced, ˆ
TD  is inhibited and the extent of inhibition 

increases as ̂  increases until ̂  approaches 1, when the inhibitive effect of ̂  becomes less strong and 

ˆ
TD  starts to increase instead; as ̂  continues to increase and grows large enough (e.g. 

2ˆ (10 )  ), ˆ
TD  

is saturated and becomes  independent of ̂ . This examination well explains the exceptions mentioned 

above, which also happen to the behaviors of the plate height ˆ
PH  when ˆ 10  .  

 Concerning the influence of the period length, one can see that increasing l̂  considerably amplifies 

the dispersion, especially when ̂  is relatively large (e.g. ˆ 100  ). Meanwhile, for both ˆ 10  and 

ˆ 100  , the non-monotonic effect due to the induced pressure-driven flow gains a larger influence as l̂  

increases, either altering a monotonically decreasing profile of ˆ
TD  into a non-monotonic manner or 

prompting an original non-monotonic profile into a shaper curve. Despite an increased l̂ , however, the 

maximum of ˆ
TD  appears at nearly the same a  if other conditions are identical. In addition, ˆ

TD  ends in 

zero at 1a  , which corresponds to zero EOF simply because the channel wall is completely uncharged 

and no EDL exists. We pay particular attention to ˆ
PH  in the limiting case l̂   ,  where it behaves in a 

distinctive manner from ˆ
TD . To be specific, we state the difference in two aspects. First, ˆ

PH  does not end 

in zero at 1a  , but rather varies as different finite values depending on ̂ . Second, the manner ˆ
PH

changes with a  is abnormal. When slippage is absent (i.e. ˆ=0 ), ˆ
PH  increases linearly and monotonically 
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as a  increases, with a theoretical maximum plate height found at 1a   (though it actually corresponds to 

zero flow). On introducing slippage, this linearity becomes atypical, and ˆ
PH  grows to be more non-

monotonic as ̂  increases, except for ˆ 10  , ˆ=100 , when ˆ
PH  decreases linearly and monotonically. 

 

3.2 Slipping region charged 

When ˆ 0.5S  , the slipping regions are positively charged. Similar to last case where the slipping regions 

are uncharged, the effect imposed by these charged slipping regions on the dispersion also depends much 

on the Debye parameter ̂ , small or large. Perceptually, a palpable alteration happens to the behavior of 

ˆ
TD  in the current case: the non-monotonic effect gains a more predominant influence (compare figures 7 

and 9). Even at a small ̂  (e.g. ˆ 10  ), an evident non-monotonic curve can already be observed provided 

that the slip is appreciable (e.g. ˆ=1,100 ). This enhanced non-monotonic effect can be attributed to two 

reasons. First, the EOF mean velocity ŵ  in this case presents a monotonically increasing trend against a  

(figure 6), in contrast to the monotonically decreasing trend presented by the uncharged slipping region. 

Second, the monotonic effect by the induced pressure-driven flow itself grows stronger as the slipping 

region becomes charged, which is self-evident by comparing magnitudes of the pressure-related 

components 
2G , ˆG  in the two cases (see figures 7 and 9). The trend of ˆ

PH  against a  basically 

resembles that of ˆ
TD , and we leave it to be discussed later. 

 The role that slip plays in this case, opposing to that when the slipping regions are uncharged, mostly 

manifest itself as a positive contribution to the dispersion. The inhibitive effect of the slipping regions, if 

any, will thus be weakened by an increasing slip, while the non-monotonic effect will be strengthened (with 

a larger peak value). Still, several exceptions can be found for the inhibitive effect (i.e. when ˆ 10  , as 

ˆ=0  increases to ˆ=0.1 , ˆ
TD  decreases rather than increases as expected in ˆ 5,l   ). Again, to explain 

these exceptions, we further examine ˆ
TD  against a continuous range of ̂  ( ˆ0.001 1000  ) for ˆ 10   

in the long-wave limit assuming that the slipping regions and non-slipping regions are evenly distributed, 

i.e. 0.5a  . The result of this examination is given in the inset of figure 9(c). Surprisingly, we find that 

when a small amount of slippage is initially introduced, e.g. ˆ=0.001 , ˆ
TD  is actually reduced, not 

increased as expected. Furthermore, the degree of reduction increases as ̂  increases, until ̂  approaches

ˆ 0.1  , when the negative effect of ̂  on ˆ
TD  is weakened and  ˆ

TD  starts to increase ( ˆ
TD  is still smaller 

than the value when slippage is absent, i.e. ˆ=0 ). As ̂  continues to increase, the negative effect reverses 

and turns to be positive effect on the dispersion. Eventually, ˆ
TD  is saturated and becomes independent of 

̂  when 
2ˆ (10 )  . Hereby, the exceptions mentioned above for ˆ

TD  are well-explained, so are those for 
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ˆ
PH  when ˆ 10  . It is noteworthy that for ˆ 10  , when the period length is short (e.g. ˆ 1l  ), the slip 

exerts a negative contribution on the plate height ˆ
PH  (increasing ̂  causes ˆ

PH  to decrease), despite its 

positive effect on the dispersion coefficient ˆ
TD . 

 Concerning the amplifying effect of the increasing period length l̂ on the dispersion, we observe a 

manifest amplification, which can be several orders with the presence of  an appreciable slip. For the non-

monotonic effect due to the induced pressure-driven flow, it also gains a larger influence as l̂  increases. In 

the limiting case l̂   , an abrupt drop of ˆ
TD  occurs near 1a  , which literally means that a slight 

deviation of a  from this position can significantly decrease the dispersion. Different from the last case 

when the slipping regions are uncharged, an increased l̂  in the current case will notably alter the critical 

value of a  where the maximum of ˆ
TD  occurs in the current case. Specifically at 1a  , ˆ

TD  is no longer 

zero, but of a finite value. This value is independent of l̂  as well as ̂ , and remains unchanged as long as 

̂  is the same. Note that the value for ˆ 100   is much smaller than that for ˆ 10  , for which the physical 

reasoning can be lent from our earlier elucidation of the influence of ̂ on the dispersion due to pure EOF. 

For ˆ
PH , the finite value at 1a   is dependent of both ̂  and ̂ . In particular for ˆ 10  , discrepancies of 

this value caused by an increasing ̂  are appreciable. When  ̂  or ̂  is large enough, ˆ
PH  vanishes and 

this finite value is essentially negligible. 

 

4. Discussion 

The asymptotic solution of the effective dispersion coefficient (long-time limit) of an inert solute in a 

homogeneous channel was given by the Taylor-Aris dispersion coefficient effD  (Taylor 1953, Aris 1956): 

  
2 2

21 PeC

eff

U L
D D D

D
      (31) 

which is the sum of the molecular diffusion and the Taylor dispersion. Herein,   represents dispersivity, 

which equals to the well-known factor of 1/48 for pressure-driven flow in a homogeneous circular capillary. 

Pe  represents the Péclet number defined as Pe CUL D , where U  stands for the flow mean velocity, 
CL  

the characteristic length, and D  the molecular diffusivity. Physically, Pe  indicates the importance of 

convection relative to diffusion in the transport process. One should bear in mind that the Taylor dispersion 

term arises from the non-uniformity of flow velocity, and vanishes for a uniform velocity. From equation 

(31), insight into how and flow mean velocity w  and the Péclet number Pe  in the present problem exert 

influence on ˆ
TD  (corresponding to the Taylor dispersion item) can be gained.  

 Two phenomena that have opposing effects on hydrodynamic dispersion brought about by the non-

uniformity of wall potential and hydrodynamic slip are essential and should be addressed. First, the flow 
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becomes two-dimensional in the vicinity of a step change in zeta potential or slip length. Because of the 

sudden change in boundary condition, transverse flow is induced near the discontinuity, thus enhancing 

mixing in the cross section. Transverse mixing is known to reduce dispersion in the axial direction. Though 

this mixing due is relatively local (confined to a small region with a dimension comparable to the channel 

radius near the discontinuity), its assembling effect on the system-average dispersion is not necessarily 

negligible. Second, pressure gradients are induced so as to maintain continuity of the flow through distinct 

regions of the channel because of the surface heterogeneities. The flow is a superposition of the original 

EOF and the induced pressure-driven flow. EOF has a nearly flat velocity profile for sufficiently large ̂ , 

while pressure-driven flow presents a parabolic one. Consequently, the otherwise small dispersion in pure 

EOF can be substantially amplified by the induced pressure-driven flow. Different from the local 

decreasing effect on dispersion due to transverse flow, this increasing effect of pressure-driven flow is 

global, since the induced pressure gradients, once induced, will be effective throughout the whole channel. 

These two opposing effects will have different degrees of influence on the dispersion coefficient depending 

on controlling parameters l̂ , a , ˆ
s , ̂ , ̂  and Pe , leading to rich behaviors of ˆ

TD . 

 

4.1 Numerical accuracy 

To verify the accuracy of the numerical model built on COMSOL, we compare numerical results with 

corresponding long-wave limits and check whether they approximate to the latter for a period length that is 

large enough. To this end, we examine the dispersion coefficient ˆ
TD  against the period length l̂  for a 

Debye parameter of ˆ 10   subject to ˆ
S , a  and Pe . As a preliminary examination, the channel wall is 

considered to be non-slipping and only step change of zeta potential is present. The model is proved to 

yield reasonable results, and multiple dependence of ˆ
TD  on l̂ , ˆ

S , a  and Pe  are found (figure 11). Some 

rules Ng and Chen (2013) revealed earlier for electro-osmotic dispersion in a non-slipping slit channel with 

axial step change of zeta potential are applicable here as well:  

  (I) ˆ
TD  increases as the period length l̂ gets larger, gradually approaching the long-wave limit. This is 

the compromised result of the two opposing effects mentioned earlier. For a small l̂ , discontinuities in the 

wall pattern are closely spaced, and the overall suppressing effect on the dispersion by transverse flows 

near these discontinuities is dominant. For a large l̂ , the discontinuities are distributed sparsely, and the 

enhancing effect on the dispersion by the induced pressure-driven flow outweighs the suppressing effect by 

the transverse flows. The gap between the numerical result and the long-wave limit gradually narrows 

down as l̂  increases. Nevertheless, the discrepancy is still notable even when the period length increases to 

10~20, especially for a small Debye parameter (figure 11(a)).  

   (II) ˆ
TD  is more sensitive to the period length l̂  when the contrast of zeta potentials in the EOF-

suppressing region and the EOF-supporting region is larger, which is indicated by the value of ˆ
S . A larger 
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contrast of the zeta potentials has two-sided effects. On one hand, a stronger transverse flow will be 

generated near the discontinuity of the step change; on the other, the pressure-driven flow also grows 

stronger due to larger pressure gradients induced to maintain flow continuity. To put it differently, both of 

the two opposing effects are strengthened. Therefore, the interaction between them is intensified, resulting 

in a more drastic change of ˆ
TD  as l̂  varies. 

    (III) ˆ
TD  is more sensitive to the period length l̂  when the slipping area fraction a  has an either 

small or large value. For a short or moderate period length, the absolute difference between the numerical 

result and the long-wave limit is small when 0.1a   or 0.9a  , but can be very large when a  has an 

intermediate value (e.g. 0.3,0.5,0.7a  ). This implies that, the more homogeneous the channel wall is, the 

better the long-wave limit estimates the actual dispersion coefficient.  

  (IV) ˆ
TD  decreases as the Péclet number Pe  increases. When Pe increases, the convection gradually 

outweighs molecular diffusion in controlling mass transport over the micro length scale, thus contributing 

to cross-sectional mixing due to the transverse flow near the discontinuity. This enhanced transverse mixing 

effect amounts to further decreased dispersion, which is manifest for a short or moderate period length. 

 

4.2 Validity of the lubrication approximation 

We next investigate the validity of the lubrication approximation approach in estimating electro-osmotic 

dispersion in the slip-stick patterned channel by adding ̂  as a controlling parameter. For a specific 

configuration shown in figure 12 (note that we have deliberately chosen a configuration where the long-

wave limit relatively gives a better estimation for the situation with no-slip), with the presence of slippage, 

the dispersion coefficient can be substantially overestimated if the long-wave limit is adopted even for a 

period 10~20 times as long as the channel radius. Furthermore, the error of estimation is enlarged if a larger 

slip is introduced. Table 1 gives exact numbers of the error. When slippage is absent, the error caused is 

only 1.4% for a relatively large period length ˆ 20l  , and the lubrication approximation can be reasonably 

justified. However, with an appreciable slip ˆ 1  , the error drastically increases to 17.4%, and 22.5% for 

ˆ 100   (used to approximate perfect-slip here). It is clear that the lubrication approximation can no longer 

be justified with such large errors. 

 

5. Concluding remarks 

We have reaffirmed some earlier remarks on the accuracy of the lubrication approximation approach in 

estimating the dispersion due to electro-osmotic flow in a non-slipping channel with step-wise pattered zeta 

potential. When the period length of the wall pattern is short or only moderately large, the transverse 

mixing near the discontinuities ignored by the lubrication approximation is significant, especially for a 

configuration with a large zeta potential contrast but a small fraction difference of the two distinct regions 
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and a high Péclet number. Under these conditions, the dispersion can be substantially overestimated if the 

long-wave limit is used. The error will be further enlarged if slip is present on the wall. 

 It is remarkable that the introduction of wall slip brings about more intensive behaviors of the 

hydrodynamic dispersion than the situation with no-slip boundary condition, as the slip interacts with zeta 

potentials in the EOF-suppressing and EOF-supporting regions. To be brief, slip in an unchanged EOF-

suppressing region is shown to suppress the effect of the induced pressure-driven flow on the dispersion, 

and diminish the dispersion on the whole. In contrast, slip in a charged EOF-suppressing region will mostly 

enhance the effect of the induced pressure-driven flow, and amplify the overall dispersion. 

 The non-uniformities of the wall potential and hydrodynamic slip yield multiple dispersion 

coefficients and plate heights subject to various controlling parameters. One can tailor the flow for 

particular microfluidic applications by adjusting these controlling parameters. If separation is wanted, the 

configuration with a smaller plate height as well as dispersion coefficient should be adopted (the plate 

height is a priority if conflicts exist); if mixing is wanted, the opposite is desired.  
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Appendix: long-wave limit ( ˆ 1l ) 

 In a study on dispersion due to EOF in a circular microchannel with slowly varying wall potential and 

hydrodynamic slippage, the long-wave limit of the dispersion is given by Ng and Zhou (2012b):  

 2 2ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )T p pe eD z X G z X G z z X z     (32) 

wherein, 
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In equation (32), 
2G  and 

2̂  are components associated with the pressure-driven flow caused by the 

induced pressure gradients and the electrically driven flow intrigued by the externally applied electric field, 

respectively. The other component ˆG  can be interpreted as a term due to the interaction between these 

two flows; in this regard, it is associated with both flows. pX , eX  and peX  are the corresponding pre-
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factors, which are all independent of the slip and physically serve as magnitude estimates of the 

contributions from the three components to the total dispersion. The expression of ˆ
TD  given by equation 

(32) can be used to calculate the long-wave limits in different configurations as references for the numerical 

results. When examining the effect imposed by the induced pressure-driven flow on the dispersion 

coefficient, the behaviors of 
2G and ˆG  can be reasonable indicators to look at. Though relations 

developed in the constraint of long-wave limit may not be identical with those for the dispersion in a 

general case where the period length is comparable to the channel dimension, they suffice to reflect the 

inclination, if not quantitatively, qualitatively. 

 In the particular case where no slippage exists on the wall and the periodic pattern involves only step 

change in the zeta potential:  
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The following can be readily found: 
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 (39)                  

From above, we can get a glimpse of how the area fraction of the EOF-suppressing region will affect the 

dispersion coefficient through electric and pressure components, especially the latter, which apparently 

present a non-monotonic effect with the maxima/minima appearing at 0.5a  . On introducing slippage, 

this non-monotonic effect can be altered in various ways, as seen in figures 5 and 6. 
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Figure 1. (a) Schematic of the electro-osmotic flow (EOF) through a circular tube with channel wall 

patterned with a periodic array of transverse stripes. The flow is two-dimensional in the ( , )r z  plane. The 

radial and axial coordinates are ( , )r z , and their corresponding velocity components are denoted by ( , )u w . 

One unit of wall pattern is 2l, consisting of a non-slipping stripe of zeta potential NS , and a slipping stripe 

of slip length   and zeta potential 
S . The area fraction of the slipping region is denoted by a . (b) Mass 

concentration (see online color version. herein, a lower color temperature (e.g. red) indicates a higher mass 

concentration, and vice versa) of the EOF within the tube where ˆ 0.5S   , the slipping area fraction 

0.5a  , period length ˆ 1l   ( ˆ /l l R ), Debye parameter ˆ 100   ( ˆ R  ), and Péclet number Pe =10. 

(I) ˆ 0.001  ; (II) ˆ 100  . Arrows indicate the local flow direction and velocity magnitude. In this 

configuration, flow reversal can happen due to the increase of ̂ as (II) shows.  
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Figure 2. Navier’s slip length 

 

Figure 3. Schematic of solute band broadening (
2 /t L D )  

 

Figure 4. Dispersion coefficient ˆ
TD  ( = eX  in this case) as a function of the Debye Parameter ̂  for pure 

EOF in a uniformly charged non-slipping channel ( ˆ 1S  , ˆ=0 ).  
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Figure 5. ŵ , 
2G and ˆG  as functions of the slipping area fraction 0 1a  , for 10, 00ˆ  1   (from left to 

right), ˆ
S =0, ̂ =0, 100, Pe =10, and l̂ =1, 5. The solid lines are for ̂ =100, while the dashed lines are for 

̂ =0.  

 



  

24 

 

 

Figure 6. ŵ , 
2G and ˆG  as functions of the slipping area fraction 0 1a  , for 10, 00ˆ  1   (from left to 

right), ˆ
S = 0.5, ̂ =0, 1, Pe =10, and l̂ =1, 5. The solid lines are for ̂ =1, while the dashed lines are for 

̂ =0.  
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Figure 7. Dispersion coefficient ˆ
TD  as a function of the slipping area fraction 0 1a  , for ˆ 0S  , 

0,  0.1,  1ˆ ,  100  , Pe =10. From left to right, 10, 00ˆ  1  ; from top to bottom, 1,  ,  ˆ 5l   . Inset 7(a): 

dispersion coefficient ˆ
TD  as a function of the intrinsic slip length ˆ0.001 1000  , for ˆ 0S  , 0.5a  , 

ˆ 10  , l̂   , Pe =10. 
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Figure 8. Plate height ˆ
PH  as a function of the slipping area fraction 0 1a  , for ˆ 0S  , 

0,  0.1,  1ˆ ,  100  , Pe =10. From left to right, 10, 00ˆ  1  ; from top to bottom, 1,  ,  ˆ 5l   . 
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Figure 9. Dispersion coefficient ˆ
TD  as a function of the slipping area fraction 0 1a  , for ˆ 0.5S  , 

0,  0.1,  1ˆ ,  100  , Pe =10. From left to right, 10, 00ˆ  1  ; from top to bottom, 1,  ,  ˆ 5l   . Inset 9(c): 

dispersion coefficient ˆ
TD  as a function of the intrinsic slip length ˆ0.001 1000  , for ˆ 0.5S  , 0.5a  , 

ˆ 10  , l̂   , Pe =10. 
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Figure 10. Plate height ˆ
PH  as a function of the slipping area fraction 0 1a  , for ˆ 0.5S  , 

0,  0.1,  1ˆ ,  100  , Pe =10. From left to right, 10, 00ˆ  1  ; from top to bottom, 1,  ,  ˆ 5l   . 
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Figure 11. Dispersion coefficient ˆ
TD  as a function of the period length l̂ , for ˆ 0  , ˆ 10  , 

0,  0.1,  0.5,  0.9a  , and (a) ˆ 0S  , (b) ˆ 0.5S  . The solid lines are for Pe  10, while the dashed lines, 

in (b) only, are for Pe  20. The solid lines are numerical results calculated from COMSOL, while the 

dotted lines are the long-wave limits calculated using equation (32).  

 

 

 

Table 1. Error by the lubrication approximation  

ˆˆ ( 20)TD l 

 

Long-Wave 

Limit 

Numerical 

Result 

Error 

(100%) 

 No-slip 0.0022113 0.002180 1.4 

 Par-slip 0.0043786 0.003729 17.4 

 Per-slip  0.0061638 0.005031 22.5 

 eq. (32) comsol |lw-nr|/nr 

*No-slip: ˆ 0    Par-slip: ˆ 1    Per-slip: ˆ 100   

                                 

 

Figure 12. Dispersion coefficient ˆ
TD  as a function of the period length l̂ , for 0.1a  , ˆ 0.5S  , ˆ 10  , 

Pe =10, and 0,  1 00ˆ ,  1  . The solid lines are numerical results calculated from COMSOL, while the 

dotted lines are the long-wave limits calculated using equation (32).  

 


