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Abstract

Familial spastic paraplegia (FSP) is a heterogeneous group of disorders characterized primarily by progressive lower limb
spasticity and weakness. More than 50 disease loci have been described with different modes of inheritance. In this study,
we identified a novel missense mutation (c.803G.A, p.R268Q) in the plasma membrane calcium ATPase (PMCA4, or ATP2B4)
gene in a Chinese family with autosomal dominant FSP using whole-exome sequencing and confirmed with Sanger
sequencing. This mutation co-segregated with the phenotype in the six family members studied and is predicted to be
pathogenic when multiple deleteriousness predictions were combined. This novel R268Q mutation was not present in over
7,000 subjects in public databases, and over 1,000 Han Chinese in our database. Prediction of potential functional
consequence of R268Q mutation on PMCA4 by computational modeling revealed that this mutation is located in protein
aggregation-prone segment susceptible to protein misfolding. Analysis for thermodynamic protein stability indicated that
this mutation destabilizes the PMCA4 protein structure with higher folding free energy. As PMCA4 functions to maintain
neuronal calcium homeostasis, our result showed that calcium dysregulation may be associated with the pathogenesis of
FSP.
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Introduction

Familial spastic paraplegia (FSP) is a clinically and genetically

heterogeneous group of diseases characterized by progressive

lower limb spasticity and weakness, and is classified according to

phenotype, mode of inheritance and the mutated gene [1]. Pure

FSP is characterized by progressive lower limb weakness and

spasticity and may be associated with urinary urgency, mild

impairment of vibration sense and proprioception. The upper

limbs are spared and there is no bulbar dysfunction. Complex FSP

is characterized by additional manifestations such as cognitive

impairment, epilepsy, cerebellar ataxia, extrapyramidal distur-

bances, optic atrophy and peripheral neuropathy. Neuroimaging

may show white matter lesions, thin corpus callosum, and spinal

cord atrophy. FSP can be inherited in an autosomal dominant,

autosomal recessive or X-linked fashion [2]. Different mutations in

the same gene can cause either pure or complex FSP, and intra-

familial phenotypic variability is high, greatly complicating the

genetic diagnosis of FSP. Seventy-one forms of FSP (SPG1 to

SPG48) have been described involving many gene loci [3], with 20

or more loci associated with autosomal dominant FSP [2]. The

associated genes have been reported to be involved in organelle

and microtubule dynamics, endoplasmic reticulum homoeostasis,

transport, and signal transduction.

In this study, we describe a Chinese family with autosomal

dominant FSP. Whole exome sequencing was performed on six

family members (4 symptomatic, 2 asymptomatic), and we

identified a novel causative mutation, c.803G.A, p.R268Q in

the PMCA4 gene.

Materials and Methods

Subjects
Six members of a two-generation Chinese family with FSP were

examined (II-2, III-1, III-2, III-3, III-4, III-5) (Fig. 1a). Four were

symptomatic and two were asymptomatic. Blood was collected

from all six of them and whole exome sequencing was performed.

Human ethics
This study were reviewed and approved by the Hong Kong

Hospital Authority/Hong Kong West Cluster Institutional Review

Board Ethics Committee (UW 06-227 T/1252). All subjects gave

written informed consent to participate in this study.
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Genomic DNA extraction and exome capture
For gene mutation screening, genomic DNA was purified from

peripheral blood leucocytes. Exome capture was conducted by a

NimbleGen 2.1 M HD array to enrich for protein-coding regions

of human genome DNA (Roche NimbleGen, Inc., Madison, WI,

USA). The exon-enriched DNA was sequenced by the Illumina

HiSeq 2000 Sequencing platform (Illumina, San Diego, USA) at

Axeq Technologies (http://www.axeq.com/).

Reads mapping and variants calling
The paired-end 101 base-pair (bp) short reads were mapped

onto the UCSC human reference genome, version hg19 (corre-

sponding to NCBI Build37), by Burrowa-Wheeler Alignment

(BWA) [4]. Duplicated reads were removed by Picard (http://

picard.sourceforge.net/). The Genome analysis toolkit (GATK

v2.3.9) [5] was used to recalibrate the alignments and to call single

nucleotide variants (SNVs) and short insertion-deletion variants

(indels). All genotype calls with sequencing read coverage #8x, a

Phred-scaled mapping calling quality of #20, a Phred-scaled base

calling quality of #50, a Phred-scaled genotype calling quality of

#20, $5% alternative allele supporting reference homozygous

genotypes, #25% and 70% alternative allele supporting hetero-

zygous and alternative homozygous genotypes, or a Phred-scaled

probability of the second possible genotypes #50 were excluded.

Variant filtration and prioritization analysis by KGGSeq
We prioritized the SNVs and Indels by KGGSeq—Knowledge-

based mining platform for Genomic and Genetic studies using

Sequence data (http://statgenpro.psychiatry.hku.hk/kggseq) [6]

(Table 1). First, KGGSeq was used to exclude the following

variants sequentially: those with homozygous genotypes in all

affected family members and heterozygous in unaffected ones

(incompatible with the rare autosomal dominant inheritance of

non-consanguineous mating), those with a frequency of over 0.01

in the 1000 Genome Project or dbSNP database or the NHLBI

GO Exome Sequencing Project (5600) or our in-house exome

sequencing dataset (from over 1,000 Han Chinese), those that do

not alter proteins, and those that were predicted to be non-

pathogenic based on the deleteriousness scores [7]. We then

further prioritized the variants whose gene products have protein-

protein interaction (PPI) with the protein of 53 genes causing

various types of familial spastic paraplegia and spinocerebellar

ataxia: AFG3L2, ATL1, ATN1, ATX1, ATXN1, ATXN10,

ATXN2, ATXN3, ATXN7, ATXN8, ATXN8OS, BSCL2,

CACNA1A, CYP7B1, FA2H, FGF14, HSPD1, ITPR1, KCNC3,

KIAA0196, KIF5A, L1CAM, MJD, NIPA1, PLEKHG4, PLP1,

PPP2R2B, PRKCG, REEP1, SLC33A1, SPAST, SPG11, SPG12,

SPG14, SPG16, SPG19, SPG20, SPG21, SPG23, SPG25, SPG26,

SPG27, SPG29, SPG32, SPG34, SPG37, SPG5B, SPG7, SPG9,

SPTBN2, TBP, TTBK2, and ZFYVE26. Similarly, the variants

with genes sharing the same biological pathways with some of the

68 genes were highly prioritized as well. Lastly, in a prioritized

short list of sequence variants, KGGSeq automatically searches

the titles and abstracts of any relevant publications in which the

variants’ genes and the disease name (familial spastic paraplegia)

and two other aliases (hereditary spastic paraplegia and Strumpell-

Lorrain disease) were co-mentioned.

We also carefully screened our patients for non-synonymous

mutations among 61 FSP candidate genes [including 47 genes

causing various types of Familial Spastic Paraplegias (AFG3L2,

ALS2, AP4B1, AP4E1, AP4M1, AP4S1, AP5Z1, ATL1, BSCL2,

C12orf65, CCT5, CYP2U1, CYP7B1, DDHD1, ELOVL4,

ERLIN2, FA2H, GAD1, GJA1, GJC2, HSPD1, KANK1,

KIAA0196, KIF1A, KIF5A, L1CAM, NIPA1, PLP1, PNPLA6,

REEP1, RTN2, SLC16A2, SLC33A1, SPAST, SPG11, SPG20,

SPG21, SPG7, TECPR2, VCP, VPS37A, ZFYVE26,

B4GALNT1, C19orf12, GBA2, NT5C2 and ZFYVE27) [3,8]

and 14 newly proposed genes (ARL6IP1, ERLIN1, KIF1C, USP8,

WDR48, AMPD2, ENTPD1, ARSI, DDHD2, PGAP1, FLRT1,

RAB3GAP2, MARS and ZFR) by Novarino et al. [3]. Finally, we

replicated the short list of sequence variants by conventional

Sanger sequencing in all available family members to exclude false

positives of the high-throughput sequencing.

Computational modeling
AGGRESCAN (http://bioinf.uab.es/aggrescan) was used to

evaluate the contribution of the mutation to protein folding

properties. The protein tertiary (or 3D) structures was built by

SWISS-MODEL (http://swissmodel.expasy.org/) based on the

data from PDB website (http://www.rcsb.org/pdb/home/home.

do). PyMOL (http://www.pymol.org/) was used to render tertiary

structure of proteins and to predict the potential functional

consequence of a missense mutation on a protein. The iPBA

(http://www.dsimb.inserm.fr/dsimb_tools/ipba/) [9] was used to

Figure 1. Identification of a Chinese family with autosomal dominant spastic paraplegia. (a) Pedigree. Filled and unfilled symbols indicate
affected and unaffected individuals, respectively. Squares and circles represent males and females, respectively. Slashed symbols indicate deceased
subjects. (b) DNA sequencing showing PMCA4 (or ATP2B4) R268Q mutation.
doi:10.1371/journal.pone.0104790.g001
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compare the structure differences between the wild type and

mutant proteins. PopMuSic-2.0 (http://babylone.ulb.ac.be/

PoPV2) was used to predict thermodynamic protein stability

changes based on the built protein tertiary structure [10].

Results

Clinical examination of the FSP family
Six members of a two-generation Chinese family with FSP were

clinically examined (II-2, III-1, III-2, III-3, III-4, III-5) (Fig. 1a).

Four were symptomatic and two were asymptomatic. Proband

(III-1) presented at 44 years with progressive spastic paraplegia

since mid-30’s (Fig. 1a). He had brisk lower limb tendon reflexes

and bilateral ankle clonus but downgoing plantar responses. There

was bilateral lower limb spasticity but no dystonia or other

parkinsonian features. Reassessment ten years later revealed

increased spasticity with mild deterioration in muscle strength

(4/5) and sparing of muscle bulk. He remained ambulatory with

spastic gait. His upper limbs remained unaffected, without

cognitive, cerebellar or bulbar involvement. His late paternal

grandfather and father had similar features. III-2 developed

progressive spastic paraplegia from teenage. Examination at age

41 years showed mild weakness in hip and knee flexion, with brisk

knee and ankle reflexes and downgoing plantar responses

bilaterally. He has slow progression over the next 9 years but

remained ambulatory despite occasional falls. He has no upper

limb, cerebellar, bulbar, cognitive or extrapyramidal involvement.

III-4 has abnormal gait since teenage, and has difficulty running.

Examination showed weakness in hip flexion with mild hyperto-

nia, brisk lower limb tendon reflexes and ankle clonus bilaterally.

III-5 had a similar presentation as III-4 when she was assessed at

age 34 years. III-3 remained non-symptomatic with normal

neurological examination when assessed at age 39 years and at

reassessment 10 years later. In the affected subjects, neuroimaging

including MRI brain and spine did not reveal any clinically

relevant lesions. Whereas all the symptomatic family members

developed definite physical signs of FSP by their 30’s, II-2, the

mother of the affected patients, was asymptomatic with normal

neurological examination at age of 70 years. III-3 did not

complain of any symptoms and had normal neurological

examination findings at age 49 years.

Exome sequencing and identification of candidate genes
Exome sequencing was performed on four affected family

members (III-1, III-2, III-4 and III-5) and two unaffected members

(II-2 and III-3). We first screened for non-synonymous mutations

in the 61 candidate genes of FSP. About 99.53% of the coding

regions of these 61 candidate genes were covered by the

NimbleGen 2.1M HD capture we used. According to RefGene

the total length of these unique coding regions is 141,752 bp and

around 94–95% of these sequences had the minimum coverage

4X in each of the 6 sequenced subjects. We observed 24 non-

Table 1. Number of sequence variants after the step-by-step filtration and prioritization in KGGSeq.

Steps # SNVs (Genes) #Indels (Genes)

Initial 91,469 34,308

Inheritance pattern1 855 87

Rare in dbSNP+1000 Genome+ESP and an in-house dataset2 64 31

Protein altering variants3 9 1

Predicted to be pathogenic 6(6) –

Knowledge-related4

PPI 1 (1) –

Pathway 3(3) –

PubMed 0 –

Notes: 1: Dominant mode only considered with variants in heterozygous genotypes and with shared alleles between the two patients; 2: The rare variants referred to
variants with MAF#1% in the datasets; 3: This category includes missense, stopgain, stoploss and splicing single nucleotide variants and insertions/deletions causing
frameshift, nonframeshift, stoploss, stopgain and splicing differences; 4: Knowledge-related variants/genes refer to those variants’ genes having PPI(s) or sharing
pathway(s) with at least one known causal gene of FSP and those variants fell into gene(s) which were co-mentioned in the titles or abstracts of papers in the PubMed
database.
doi:10.1371/journal.pone.0104790.t001

Figure 2. Computational modeling of R268Q ATP2B4 mutant
protein. (a) Local tertiary molecular structure of, (b–i) wild-type and (b–
ii) mutant PMCA4 (or ATP2B4) protein. The red dashed line denotes
hydrogen bond.
doi:10.1371/journal.pone.0104790.g002
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synonymous SNVs in 19 of these genes. However, none of them

co-segregated with the phenotype in the family members. No

frame-shift or non-frame-shift indel mutations were found in any

of these genes. These results suggested that the disorder our

patients suffer from may be caused by a mutation in a gene that

had not been described in FSP before.

Initially, there were 982,710 SNVs and 34,308 indels called

from the aligned short reads by GATK. After stringent quality

control on KGGSeq (see criteria in Materials and Methods

section), 61,542 SNVs and 4,715 indels were retained (Table 1).

Around 99% of SNVs and Indels were inconsistent with the

dominant inheritance mode and eliminated. After exclusion of

variants that do not alter protein, were non-rare (MAF.0.01) and

predicted to be non-pathogenic, only 6 SNVs of different genes

remained (Table 1).

Among the 6 probable pathogenic SNVs (Table 2), the missense

mutation, c. 803G.A, of PMCA4 gene had the highest

pathogenic prediction probability [7]. All four symptomatic

patients have the mutant allele A. The two asymptomatic family

members, and over 1,000 Chinese subjects in our internal

database, and other over 7,000 subjects in the public reference

databases do not have this mutant allele. This missense mutation

resulted in an amino acid substitution at the same site, p.R268Q,

of both protein isoforms, NP_001001396.1 and NP_001675.3

(Fig. 1b). In our patients, we observed that this mutation was

surrounded by 4,753 consecutive sequence variants (covering

,61million base-pair) with identity-by-state allele over 1, suggest-

ing a long region shared by our patients. Furthermore, the protein

product of PMCA4 gene had indirect protein-protein interaction

(PPI) and shared the same biological pathways with some of the 68

known FSP and spinocerebellar ataxias causal genes. In the

PubMed database, no publication simultaneously mentioning the

short listed genes and the disease name or aliases in the title or

abstract was found.

The co-segregation of the missense mutation at PMCA4 with

disease status in all 6 family members was confirmed by Sanger

sequencing.

Computational modeling of the mutant PMCA4 protein
We evaluated the impact of the mutation, c. 803G.A

(p.R268Q), on PMCA4 protein structure (Fig. 2a,b). AGGRES-

CAN was used to evaluate the potential effects of the mutation on

protein folding properties. PyMOL was used to render protein

tertiary structure and to predict the potential functional conse-

quence of a missense mutation on the protein. According to

AGGRESCAN, p.R268Q is located in protein aggregation-prone

segment suggesting that it may cause protein misfolding [11]. As

there is no experimental tertiary structure information on PMCA4
proteins, we used the SWISS-MODEL based on the data from

PDB website to predict the 3D structures of wild-type and mutant

PMCA4 proteins [12]. Analysis with PopMuSic indicated that this

mutation would cause higher folding free energy (DG = 0.02 kcal/

mol) that may destabilize the PMCA4 protein structure [10]. The

uncharged residue (Glutamine, Q) in mutant protein has a

different configuration from the positively charged residue

(Arginine, R) in wild-type protein (Fig. 2a). Structure alignment

analysis by iPBA found 3 local differences in the 3D structure

between wild-type and mutant proteins [Fig. 2b (i–ii)], which may

affect protein function [13].

Discussion

PMCA4 belongs to the family of plasma membrane Ca2+-

ATPases consisting of 4 isoforms with dozens of variants generated

T
a

b
le

2
.

T
h

e
6

p
re

d
ic

te
d

p
at

h
o

g
e

n
ic

in
th

e
p

ri
o

ri
ti

ze
d

sh
o

rt
lis

t.

C
h

r.
P

o
s.

R
e

f.
/A

lt
.1

S
y

m
b

o
l

M
a

x
A

lt
.

A
F

2
P

P
I

S
h

a
re

d
P

a
th

w
a

y
3

IB
S

R
e

g
io

n
L

e
n

g
th

(b
p

)
P

a
th

o
g

e
n

ic
P

ro
b

.4

1
2

0
3

6
6

9
9

5
3

G
/A

A
T

P
2

B
4

N
A

A
T

P
2

B
4

,
-.

D
LG

1
,

-.
SP

G
2

1
,

A
T

P
2

B
4

,
-.

D
N

A
H

8
,

-.
H

SP
D

1
,

D
N

A
H

8
,

-.
SP

A
ST

,
D

N
A

H
8

,
-.

A
FG

3
L2

K
EG

G
_

C
A

LC
IU

M
_

SI
G

N
A

LI
N

G
_

P
A

T
H

W
A

Y
#

1
7

8
:

(A
T

P
2

B
4

,
P

R
K

C
G

,
IT

P
R

1
,

C
A

C
N

A
1

A
);

D
A

V
IC

IO
N

I_
T

A
R

G
ET

S_
O

F_
P

A
X

_
FO

X
O

1
_

FU
SI

O
N

S_
D

N
#

6
8

:
(A

T
P

2
B

4
,

R
EE

P
1

,
IT

P
R

1
);

6
1

,6
3

4
,2

6
0

0
.1

4
5

1
2

3
2

6
2

6
7

0
9

C
/T

SI
P

A
1

L2
0

.0
0

0
1

1
9

H
O

R
IU

C
H

I_
W

T
A

P
_

T
A

R
G

ET
S_

U
P
#

3
0

6
:

(S
IP

A
1

L2
,

A
T

L1
,

IT
P

R
1

);
W

A
N

G
_

SM
A

R
C

E1
_

T
A

R
G

ET
S_

U
P

#
2

8
0

:
(S

IP
A

1
L2

,
P

LP
1

,
A

T
X

N
1

)
6

1
,6

3
4

,2
6

0
0

.1
0

7

1
2

8
2

0
2

0
6

8
G

/A
FO

X
J2

0
.0

0
0

9
4

2
6

,5
0

0
0

.0
4

3

1
2

9
3

5
3

9
3

3
A

/G
P

Z
P

0
.0

0
0

5
2

,6
6

0
,2

2
3

0
.0

3
9

1
4

4
7

4
2

6
6

8
6

C
/G

M
D

G
A

2
0

.0
0

3
7

1
1

,7
0

8
,1

2
2

0
.0

3
9

2
1

4
3

2
4

2
3

5
1

C
/T

P
R

D
M

1
5

N
A

4
,3

4
3

,7
7

1
0

.0
3

9

N
o

te
s:

1
:R

e
fe

re
n

ce
al

le
le

an
d

al
te

rn
at

iv
e

al
le

le
;2

:T
h

e
m

ax
im

al
fr

e
q

u
e

n
cy

o
f

th
e

al
te

rn
at

iv
e

al
le

le
in

o
n

e
o

f
re

fe
re

n
ce

d
at

as
e

ts
;3

:T
h

e
4

8
5

0
cu

ra
te

d
g

e
n

e
se

ts
fr

o
m

C
u

ra
te

d
g

e
n

e
se

ts
fr

o
m

M
Si

g
D

B
3

.1
(h

tt
p

:/
/w

w
w

.b
ro

ad
in

st
it

u
te

.
o

rg
/g

se
a/

m
si

g
d

b
/g

e
n

e
se

ts
.js

p
?c

o
lle

ct
io

n
=

C
2

)
w

e
re

u
se

d
;

4
:

It
is

a
p

o
st

e
ri

o
r

p
ro

b
ab

ili
ty

g
iv

e
n

th
e

ir
d

e
le

te
ri

o
u

sn
e

ss
an

d
fu

n
ct

io
n

al
sc

o
re

s
an

d
th

e
p

ri
o

r
p

ro
b

ab
ili

ty
0

.0
5

.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
1

0
4

7
9

0
.t

0
0

2

PMCA4 R268Q Mutation in Familial Spastic Paraplegia

PLOS ONE | www.plosone.org 4 August 2014 | Volume 9 | Issue 8 | e104790

http://www.broadinstitute.org/gsea/msigdb/genesets.jsp?collection=C2
http://www.broadinstitute.org/gsea/msigdb/genesets.jsp?collection=C2


by alternative RNA splicing [14]. Although mutations in PMCA2
and PMCA3 have been reported in congenital hearing loss and X-

linked cerebellar ataxia respectively [15], mutations in PMCA4
have not hitherto been associated with other human disease. The

PMCA4 gene is known to have variable sequence. There are 102

non-synonymous SNVs observed in the 1,000 Genomes Project

[16] and ESP [Exome Variant Server, NHLBI GO Exome

Sequencing Project (ESP), Seattle, WA (URL: http://evs.gs.

washington.edu/EVS/)]. However, only 8 variants had alternative

allele frequencies ranging from 1% to 3%. All the other variants

were rare. The p.R268Q variant that was identified in the

symptomatic members of the family was not found in any of the

public databases, or in our internal database. There was perfect

co-segregation of the p.R268Q mutation with disease status in our

family. This mutation is predicted to be pathogenic when

combining multiple deleteriousness predictions [including SIFT

[17], Polyphen2 [18] and MutationTaster [19]. PMCA4 has

protein-protein interaction and shares the same pathways with

some known causal genes of FSP and spinocerebellar ataxias.

PMCA4 is expressed ubiquitously in the adult but is the only

isoform which is localized in lipid rafts in pig cerebellum [20].

Lipid rafts exist in neuronal dendrites where postsynaptic protein

complexes are localized. Thus, PMCA4 may play a role in

signaling pathways at synaptic nerve terminals, where the synaptic

activity is highly dependent on calcium signaling [21]. Dysregu-

lation of calcium signaling in brain is commonly associated with

various neurodegenerative diseases, e.g. Alzheimer’s disease,

Parkinson’s disease, and amyotrophic lateral sclerosis [22]. The

PMCA4 R268Q mutation may be pathologically important

because the potential deficiency in removing cytosolic free calcium

may cause transient accumulation of free Ca2+ (calcium overload)

between neuronal excitation, and may result in subsequent

activation of various cell death pathways, e.g. Ca2+-dependent

synthases and proteases to damage cytoskeleton, membrane, and

DNA leading to excitotoxicity and neuronal death [23]. Taken

together, we postulate that the p.R268Q mutation in PMCA4

identified in this family caused neuronal deficits associated with

FSP. This is the first report to demonstrate PMCA4 mutation to

be associated with autosomal dominant FSP, indicating that

calcium dysregulation may be involved in the pathogenesis of

spastic paraplegia. The detailed pathogenic mechanism of how

impairment in neuronal calcium flux can directly cause the disease

phenotype in FSP requires further studies.
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