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Abstract 

 

Crash frequency and crash severity models have explored the factors that influence 

intersection safety. However, most of these models address the frequency and severity 

independently, and miss the correlations between crash frequency models at different crash 

severity levels. We develop a two-stage bivariate logistic-Tobit model of the crash severity 

and crash risk at different severity levels. The first stage uses a binary logistic model to 

determine the overall crash severity level. The second stage develops a bivariate Tobit model 

to simultaneously evaluate the risk of a crash resulting in a slight injury and the risk of a 

crash resulting in a kill or serious injury (KSI). The model uses 420 observations from 262 

signalized intersections in the Hong Kong metropolitan area, integrated with information on 

the traffic flow, geometric road design, road environment, traffic control and any crashes that 

occurred during 2002 and 2003. The results obtained from the first-stage binary logistic 

model indicate that the overall crash severity level is significantly influenced by the annual 

average daily traffic and number of pedestrian crossings. The results obtained from the 

second-stage bivariate Tobit model indicate that the factor that significantly influences the 

numbers of both slight injury and KSI crashes is the proportion of commercial vehicles. The 

existence of four or more approaches, the reciprocal of the average turning radius and the 

presence of a turning pocket increase the likelihood of slight injury crashes. The average lane 

width and cycle time affect the likelihood of KSI crashes. A comparison with existing 

approaches suggests that the bivariate logistic-Tobit model provides a good statistical fit and 

offers an effective alternative method for evaluating the safety performance at signalized 

intersections. 
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1. Introduction 
 
A number of different approaches and perspectives have been used in crash prediction 
modeling. Lord and Mannering (2010) provided a comprehensive review of the different 
methodological approaches to crash frequency modeling, such as Poisson, negative-binomial, 
Poisson-lognormal, zero-inflated count, Conway-Maxwell-Poisson, gamma, generalized 
estimating equations, generalized additive, random-effects, negative-multinomial, 
random-parameter count, finite-mixture and Markov-switching models, and other intelligent 
algorithms. Savolainen et al. (2011) described modeling crash injury severity using artificial 
neural networks, Bayesian hierarchical binomial logit, Bayesian-ordered logistic, bivariate 
binary/ordered logistic, classification and regression tree, generalized ordered logit, 
Markov-switching multinomial logit, mixed generalized ordered logit, multivariate 
logit/logistic, nested logit and ordered logit/logistic models.  
 

Models have been developed to assess intersection safety at signalized intersections in terms 
of either the crash frequency or crash severity. Wong et al. (2007), on whose research this 
study is based, used Poisson and negative-binomial regression models to quantify the 
influence of factors contributing to the incidence of slight injury crashes and the incidence of 
crashes resulting in a kill or serious injury (KSI) in Hong Kong. Liu (2007) generated a 
back-propagation neural network model using crash records from 62 signalized intersections 
in Taiwan and the characteristics of those intersections. The results indicated that the effects 
of the variables on the number of intersection-related crashes varied between intersections, 
leading to the proposal of a decision-making scheme to prevent erroneous investments. Ye et 
al. (2009) focused on collision types at rural intersections in Georgia and explored the crash 
frequency using multivariate Poisson models structured by simultaneous equations. This 
approach provided new insights into the crash frequency, although the effects of the risk 
factors that it addressed were found to be modest. Obeng (2011) analyzed the crash severity 
at signalized intersections using separate ordered logit models for females and males to 
investigate gender differences. The results indicated that the effects of driving conditions, 
type of crash, type of vehicle driven and vehicle-safety features on the risk of severe injury 
varied according to the gender of the driver. Haque et al. (2010) constructed Bayesian 
hierarchical models to examine motorcycle crashes at four-legged and “T” signalized 
intersections and found that the significant risk factors differed at the two intersections. In a 
similar study, Xie et al. (2013) used Bayesian hierarchical negative binomial models to 
evaluate the safety of signalized intersections in Shanghai at the intersection and corridor 
levels.  
 
Several studies have investigated the heterogeneity of signalized intersections. For instance, 
Karlaftis and Tarko (1998) used negative binomial models and cluster analysis to explore the 
relationships between the crash frequency and possible influencing factors. However, the 
approach to accidents was quite general and the specific case of signalized intersections was 
not addressed. Chin and Quddus (2003) used the random-effects negative binomial model to 
identify the elements affecting intersection safety in Singapore, attempting to address the 
heterogeneity problem. Wang and Abdel-Aty (2006) and Wang et al. (2007) investigated the 
rear-end crash frequency at signalized intersections using the generalized estimating 
equations approach to account for temporal or spatial correlations within the dataset, which 
required that the same correlation matrix be used for different corridors. Guo et al. (2010) 
integrated the Poisson and negative binomial models with a Bayesian approach to evaluate 
the intersection safety with reference to corridor-level spatial correlations between 170 
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signalized intersections in Florida. The results indicated that the Poisson spatial model 
provided the best model fit and that its performance was related to the proximity function. 
However, the performance of alternative functions, such as the exponential function, should 
still be investigated. More recently, Castro et al. (2012) reformulated count modeling as a 
special case of generalized ordered-response modeling to address intersections. They 
presented a flexible count model, one accommodating temporal effects and the other 
accommodating both temporal and spatial effects. These models addressed temporal and 
spatial correlations and provided a fairly generalized method of crash analysis, which can be 
developed to accommodate more specific cases in future research. 
 
However, these studies concentrated on either the crash frequency or crash severity at 
signalized intersections, and the possible correlations between their model estimates at 
different crash severity levels were not considered, which may have led to bias in the 
estimates (Lord and Mannering, 2010). Other studies have dealt simultaneously with the 
crash frequency and severity, using such methods as multi-level hierarchical structures (Kim 
et al., 2007), simultaneous equations (Kim and Washington, 2006) and multivariate analysis 
(Ma and Kockelman, 2006). These approaches either integrated crash frequency and crash 
severity models or involved a two-stage model.  
 
For instance, Abdel-Aty and Keller (2005) explored overall crash severity levels using an 
ordered logistic model and specific crash severity levels using a hierarchical tree-based 
regression model. Their results showed that the aggregation of crash types was a less 
effective method than the development of separate models for each level of collision, an 
insight that has informed the design of this study. However, it should be noted that the two 
models presented were kept relatively separate, with no interaction permitted. Pei et al. (2011, 
2012) developed a joint-probability model to integrate crash occurrence prediction and crash 
severity prediction within a single framework and used the Markov-chain Monte Carlo 
approach to establish a full Bayesian estimate of the effects of the explanatory factors. The 
results indicated that the proposed model was appropriate for signalized intersections and 
roadway safety, but only the binary approach to crash severity was provided as an illustrative 
example. El-Basyouny and Sayed (2011) used a multivariate Poisson-lognormal intervention 
model for the analysis of crash counts by severity level, and extended the model to 
incorporate random parameters to account for the correlation between sites. Chiou and Fu 
(2013) addressed the crash frequency and severity simultaneously in an integrated model with 
a multinomial generalized Poisson structure. The proposed covariance structure was shown to 
enhance the model’s performance.  
 
Wang et al. (2011) used the less-common two-stage model approach to model the crash 
frequency at different severity levels. They proposed a two-stage mixed multivariate model 
and showed how disaggregated data at the level of individual accident could be used to 
predict a certain type of low-frequency accident. Bhat et al. (2014) formulated a count 
outcome model with multinomial probit selection that accommodates unobserved 
heterogeneity and endogeneity issues at intersections. Their results showed that the model 
can be used for intersection crash analysis. 
 
Crashes do not occur at every roadway segment and intersection during a particular 
observation period. Crash or crash-rate data can therefore be considered left-censored at zero, 
in accordance with the requirements of the Tobit model, which has been used by previous 
scholars to address the issue of safety. For example, Obeng and Burkey (2006) used a Tobit 
model to measure the property damage costs resulting from crashes at signalized intersections. 
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They found that driver characteristics, type of vehicle, vehicle speed, presence of a median 
barrier, amber light time and type of crash all had a significant influence on the property 
damage costs arising from crashes at signalized intersections. Anastasopoulos et al. (2008) 
explored the use of Tobit regression to address the censoring problem, offering new insights 
into the factors that significantly influenced the accident rates on interstate highways. 
Anastasopoulos et al. (2012b) then used a multivariate Tobit regression model to investigate 
accident-injury severity rates and found that the multivariate Tobit model helped with the 
analysis of the factors that determine the accident-injury severity on roadway segments.  
 
However, Anastasopoulos et al. (2012b) estimated parameters that were fixed across 
observations and did not consider the possibility that the unobserved heterogeneity may be 
present across observations (which, if present, would suggest a random-parameters modeling 
approach).. El-Basyouny and Sayed (2009) found that the effects of covariates on accident 
frequency varied significantly across corridors, and that a Poisson-lognormal model with 
random parameters for each corridor improved the goodness of fit and accounted for the 
heterogeneity issues among different corridors. Anastasopoulos and Mannering (2009) and 
Anastasopoulos et al. (2012a) found that the random parameters approach permitted some or 
all of the parameters to vary randomly across observations. Anastasopoulos and Mannering 
(2011) explored fixed and random parameter logit models using crash-specific and 
non-crash-specific injury data. Their results verified that the models based on individual 
crash-data provided a better overall fit, and that random parameter models using less detailed 
data can still provide a reasonable level of accuracy. Likewise Venkataraman et al. (2013) 
verified that a random parameters negative binomial model showed significant improvement 
compared with a fixed parameter negative binomial model in relation to severity, the number 
of vehicles involved and the collision and location type. Chen and Tarko (2014) used random 
parameters and random effects models to investigate traffic safety in highway work zones. 
Their results showed that the marginal effects on crash frequency from the random effects 
model were similar to those from the random parameter model, and that the negative 
binomial model with random effects is a useful programming tool for police enforcement in 
highway work zones. Russo et al. (2014) used a random parameters bivariate ordered probit 
model to consider the fault status and examine the factors that affect the degree of injury 
sustained by drivers involved in angled collisions. They investigated concerns relating to 
within-crash correlation and the heterogeneity issues, and the results showed that the random 
parameters bivariate ordered probit models provided significant flexibility, allowing a more 
careful assessment of the effects of the influencing factors.  
 
The aim of this paper is to develop a two-stage bivariate logistic-Tobit model capable of 
simultaneously modeling the crash severity and crash frequency at different severity levels. 
The model accommodates possible correlations (i.e., shared unobserved factors) between 
signalized intersections and deals with the left-censored issue (a predominance of zero or low 
crashes) at signalized intersections. An illustrative example composed of crash data from 
signalized intersections in Hong Kong is used to evaluate the suitability of the proposed 
model.  
 
 
2. Data Description 
 
This study uses 420 observations, of which 133 are of zero crashes, from 262 signalized 
intersections in the Hong Kong metropolitan area, with particular reference to Hong Kong 
Island, Kowloon and the New Territories, to evaluate the safety performance (see Wong et al., 
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2007). 

 
The crash dataset is obtained from the Traffic Accident Database System (TRADS) 
maintained by the Hong Kong Transport Department and the Hong Kong Police Force. 
TRADS categorizes crashes as of slight, serious and fatal severity. As there are few fatal 
crashes and both serious and fatal crashes lead to very serious damage, we consider crashes 
that result in death and in serious injury as a single category, KSI. Therefore, during the first 
stage of the proposed model, the crash severity is evaluated using a binary logistic model for 
slight injury and KSI levels. In the second stage, bivariate Tobit models are developed that 
correspond to the two severity levels: one for slight injury crashes and the other for KSI 
crashes.  
 
Traffic volume significantly influences crash occurrences, and various studies have 
demonstrated a non-linear relationship between the crash incidence and exposure (Wong et al., 
2007). The annual average daily traffic (AADT) is therefore quantified using a logarithmic 
transformation and is expected to reveal the proportionality of the relationship between the 
crash risk and traffic volume. 
 
Data on other risk factors, such as the geometric road design, traffic characteristics, road 
environment and signal phasing, are collected from traffic impact assessment reports made in 
2002 and 2003. These reports were produced for planning and design purposes. The safety 
performance and crash records of the intersections have not previously been investigated. Our 
sampling process should therefore not show a marked bias. We used the number of 
approaches, number of approach lanes, number of conflict points, number of turning 
movements required, average lane width, reciprocal of the turning radius, proportion of 
commercial vehicles, number of signal phases, signal cycle time, number of pedestrian 
crossings, presence of tram stops and light rail transit (LRT) stops and presence of turning 
pockets as the variables. Wong et al. (2007) provided a detailed description of these variables. 
Descriptive statistics for the selected signalized intersections are given in Table 1. 
 
 
Table 1 Descriptive Statistics for the Selected Signalized Intersections 

Variable Description Mean Std. dev. Min. Max. 

Dependent variables     

Logit 0=slight injury, 1=KSI 0.20 0.40 0 1 

Srisk Slight injury crash risk 0.49 0.43 0 3.03 

Krisk KSI crash risk 0.12 0.16 0 0.99 

Exposure      

LnAADT Ln(AADT) 10.36 0.77 6.81 11.42 

Numeral variables     

nolanes Number of approach lanes 9.05 3.41 2 16 

noconflict Number of conflict points 8.84 8.37 0 30 

notrnstream Number of turning movements required 6.40 2.59 2 12 

lanewidth Average lane width (m) 3.27 0.27 2.7 4.6 

reciprad Reciprocal of the turning radius 0.09 0.03 0 0.13 

Traffic characteristics     
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comveh Proportion of commercial vehicles 0.23 0.10 0.01 0.66 

Signal-phasing scheme     

nostages Number of signal stages 3.14 0.70 2 5 

cycletime Cycle time  100.51 17.05 60 130 

pedcrossing Number of pedestrian crossings 4.26 2.20 0 8 

Indicator variables     

Geometrical characteristics     

2 Appr.       Two approaches (Yes=1, No=0) 0.01  0 1 

3 Appr.       Three approaches (Yes=1, No=0) 0.25  0 1 

4 Appr.       Four or more approaches (Yes=1, No=0) 0.74  0 1 

tramstop Presence of tram stops (Yes=1, No=0) 0.08  0 1 

lrtstop Presence of LRT stops (Yes=1, No=0) 0.01  0 1 

 Road environment     

HKI Hong Kong Island (Yes=1, No=0) 0.19  0 1 

KLN  Kowloon (Yes=1, No=0) 0.66  0 1 

Signal-phasing scheme     

turningpock Presence of a turning pocket (Yes=1, No=0) 0.07  0 1 

Number of observations=420. 
 
3. Methodology 
 
In this section, a two-stage bivariate logistic-Tobit model is developed. The crash severity 
level and crash risk are first addressed sequentially using a binary logistic model, and then 
simultaneously using a bivariate Tobit model that enables the simultaneous investigation of 
the slight injury and KSI risks.  
 
The rationale for this model design lies in the prospective sequential nature and jointness of 
the crash severity levels and overall crash data. Crucially, although the crash severity is a 
continuum spanning different levels, we identify the two discrete categories of slight injury 
and KSI. The use of binary categories allows for an initial estimate of the crash severity using 
the binary logistic method, which can be followed by the generation of censored models for 
both slight injury and KSI crashes. By estimating the bivariate logistic-Tobit model, we can 
address the heterogeneity and left-censored issues at signalized intersections. 
 
We first specify the two-stage bivariate logistic-Tobit model. The crash severity is regarded as 
a binary variable and is expected to be determined by the intersection characteristics and 
other influencing factors. The binary logistic stage of the model is thus expressed as follows: 

i
i

i
ii X

p

p
pitZ  










 01
log][log ,                 (1) 

where ip  represents the crash severity probability at the signalized intersection i, ][log ipit is 

the log of the odds ratio or likelihood ratio that the dependent variable is 1,  iX  is a vector of 

the influencing variables,   is a vector of the regression coefficients and 0 is the constant 

of the equation. 
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The probability of an observed class iy  with a features vector iX  is ip  if iy =1 or ip1  

if iy =0. The likelihood function is described as: 

)1(),( 1

1
0

ii y
i

n

i

y
i ppL 


  ,                        (2) 

where n is the number of observations. Further details of the model can be found in 
Washington et al. (2011). 
 
The Tobit model, first presented by James Tobin in 1958, was originally developed to explain 
the range of dependent variables in regression models censored at either a lower threshold 
(left-censored), an upper threshold (right-censored) or both. Truncated data only provide 
non-limited values, and censored data also provide limited data information (Anastasopoulos 
et al., 2008). The data on crash rates can be considered left-censored at zero, as not all of the 
signalized intersections experienced a crash during the observation period.  
 
In the second stage of the proposed model, a bivariate Tobit approach is used to 
simultaneously evaluate the slight injury and KSI risks, thus explaining the heterogeneity of 
the unobserved factors affecting safety at signalized intersections. The way that the Tobit 
model is used is because the slight injury and KSI risks are continuous dependent variables. 
The slight injury risk and KSI risk are respectively defined as the numbers of slight injury 
crashes and KSI crashes per year divided by the annual exposure. The annual exposure is 
calculated by multiplying the AADT by 365. The crash rate is preferred over the count, 
because the crash rate can neutralize the effect of “exposure,” which can be used to identify 
hazardous locations more effectively. Crash frequency models often need to convert the 
results into crash risk by setting the exposure as an offset variable. Therefore, the crash rate is 
more directly useable by traffic agencies to reflect safety risk. These risks are dependent on 
the crash severity level and the relevant influencing factors. The structural equations can be 
expressed as follows: 
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where 
*S

iY and 
*K

iY represent the unobservable slight injury risk and KSI risk at the 

signalized intersection i, respectively, and S
iY and K

iY indicate the slight injury risk and KSI 

risk at the signalized intersection i, respectively. iX  is the vector of the variables derived 

from the characteristics of the signalized intersections and other influencing factors; S  and 
K  are the vectors of the estimable parameters associated with the characteristics of the 

signalized intersections;  S  and K are the estimable parameters associated with the 

severity level;  S
i  and K

i  are the random error terms; and iZ is the predicted value from 

the first stage. The Tobit model’s likelihood function for zero observations (0) and positive 
observations (1) can be expressed as follows: 
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where L is the likelihood estimate; X= iiX , ;  K
i

S
ii YYY , ;  KSKS  ,,, ;   is the 

standard deviation of the normally distributed latent variable *
iY , where  **

,* K
i

S
ii YYY  ; 

 is the standard normal-distribution function; and   is the standard normal-density 
function. More details of the bivariate Tobit model can be found in Chen and Zhou (2011). 

 
The model described above can be considered an extension of a bivariate model combining 
the binary logistic and bivariate Tobit approaches. The method used to estimate the models is 
similar to the two-stage least-squares approach used for simultaneous equation models. The 
predicted values for the crash severity level are obtained from the binary logistic model and 
included as regressors in the respective bivariate Tobit components. The bivariate Tobit 
models incorporate the predicted crash severity level and all of the influencing factors as 
regressors to predict the slight injury and KSI risks. The results obtained from the bivariate 
Tobit model are used to simultaneously estimate the number of slight injury and KSI crashes.  
 
The accuracy of the two-stage model is determined with the statistical methods used to 
evaluate goodness of fit. Information criteria such as Akaike’s information criterion (AIC) 
and the Bayesian information criterion (BIC) are applied, in which the effects of the number 
of parameters and sample size are considered. The lower the value of the AIC and BIC, the 
better the statistical fit of the model. The AIC and BIC can be estimated by: 

AIC = -2log (L) + 2m,                           (5) 

BIC = -2log (L) + mlogn,                         (6) 

where L is the likelihood of the data given the proposed model, m is the number of 
parameters and n is the number of observations.  

 
The two-stage model has received less attention in the transportation literature. Greene (2003) 
developed a two-stage model similar to ours using an ordered logistic approach as its first 
stage and a linear regression as its second stage. Although Greene’s second stage consisted of 
only one linear regression, it offers possible future applications, especially within economics 
(see, for example, Bellemare and Barrett, 2006). It can also easily be used in conjunction with 
a statistical package for maximum-likelihood estimation.  
 
4. Results and Discussion 
 
Although data for a number of independent variables are collected, only those variables that 
are significant are included in the final model. All of the predictor variables must be verified 
as statistically independent with no co-linearity before the final model is estimated. STATA 
11.0 (StataCorp LP, 2009) is used to conduct the relevant analysis and estimates. 
 
We avoid correlations between the variables by conducting a correlation test to identify the 
variables to be included in the model. As in Wong et al. (2007), the number of turning 
movements, number of approach lanes, number of conflict points and number of signal stages 
are highly correlated with one another. Therefore, these variables are not included in the 
model at the same time.  
 
In the first stage of the proposed model, the classical maximum likelihood method is used to 
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estimate the parameters. The crash severity results obtained from the binary logistic model 
are listed in Table 2 and show that the overall crash severity is significantly influenced by the 
AADT and the number of pedestrian crossings.  
 
Table 2 Results of the First Stage of the Bivariate Logit-Tobit Model 

Variables Estimated coefficient Std. Err. Z-statistic 
LnAADT 0.58* 0.16 3.55 
Pedcrossing 0.13* 0.06 2.04 
Const 4.08* 1.59 2.56 

Goodness-of-fit assessment    
Number of observations 420   
Log likelihood at zero -211.55   
Log likelihood at convergence -204.74   
LR chi-square 13.62   

  * 5% level of significance. 
 
It has been found that logit models can have misspecification issues if the effects of the 
parameters that vary across the observations are not allowed for (Enberg, 1990; Yau and Ma, 
1999; Chen and Kuo, 2001; Malchow-Moller and Svarer, 2003; Wang and Tsodikov, 2010; 
Roy 2012). For traffic safety problems, although random-effects and binary logit models have 
been investigated separately (Mannering and Bhat, 2014), their applications were mainly for 
injury severity analyses (Haleem and Gan, 2013; Pai et al., 2013; Yu and Abdel-Aty, 2014). 
There have been few applications of the random parameter binary logit model to crash counts. 
Nevertheless, to avoid the possible misspecification issue, the random parameters were 
introduced into the binary logit model in the first stage and found the results to be very 
similar to those of the binary logit model without random parameters. After the predicted 
value was incorporated into the second stage, the goodness-of-fit values are comparable to 
those of the proposed model. Therefore, the incorporation of random parameters does not 
seriously affect the results for this dataset. However, it would be desirable to adopt the 
random parameters model for other datasets when heterogeneity is a concern, which could be 
a useful future study. 
 
As shown in Table 2, the LnAADT is positively related to the overall severity level, implying 
that a higher AADT increases the likelihood of the overall crash severity. This is consistent 
with the findings of Poch and Mannering (1996), Chin and Quddus (2003) and Wong et al. 
(2007). For every one-unit increase in the LnAADT, we expect a 0.58 increase in the 
log-odds of the overall crash severity, provided that the other variables are kept constant. 
 
The number of pedestrian crossings is positively related to the overall crash severity at 
signalized intersections. This is probably because such crossings increase the likelihood of 
conflict between vehicles and pedestrians, particularly at times when the number of 
pedestrians using the crossings is elevated. Vehicle-pedestrian crashes often lead to severe 
injuries, as pedestrians are more vulnerable in a crash situation. Increasing the number of 
pedestrian crossings by one point causes the overall crash severity level to rise by 0.13 in the 
log-odds, provided that the other variables remain constant. 
 
In the second stage of the proposed model, with the error distribution under the joint 
normality assumption, the classical maximum likelihood method provides an asymptotically 
efficient estimator for the regression parameters (Chen and Zhou, 2011). The results of the 
bivariate Tobit models for slight injury and KSI crashes are shown in Table 3.  
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From Table 3 it is clear that the proportion of commercial vehicles is another significant 
factor that influences both the slight injury and KSI crashes in the bivariate Tobit model. An 
increase in the probability of the crash severity level of one point decreases the risk of a slight 
injury crash by 3.08 points and increases the risk of a KSI crash by 1.09 points, provided that 
the other variables are held constant. Therefore, if the crash severity probability increases, the 
risk of a slight injury crash decreases, whereas that of a KSI crash increases.  
 
Table 3 Results of the Second Stage of the Bivariate Logit-Tobit Model 

Variables Coefficient Std. Err. Z-statistic 
Slight injury model 

Prob_sev -3.08* 0.25 -12.59 
4Appr. 0.48* 0.04 11.50 
Reciprad 3.64* 0.67 5.47 
Comveh -0.50* 0.17 -2.92 
Turningpock 0.19* 0.07 2.82 
Cons -0.69* 0.09 -7.64 

KSI model 
Prob_sev 1.09* 0.11 9.98 
Lanewidth -0.02* 0.01 -6.05 
Comveh 0.33* 0.08 4.10 
Cycletime 0.001* 0.001 2.80 
Cons -0.14* 0.05 -2.64 

Goodness-of-fit assessment    
Sigma1 0.34   
Sigma2 0.18   
Rho 0.26   
Number of observations 420 
Log likelihood at zero -484.17 
Log likelihood at convergence -107.77 
Chi-square  290.52 
Degrees of freedom 20 
AIC 38.45 
BIC 95.01 
MAD 0.324 
MAPE 10.494 
RMSE 0.602 

Note: prob_sev is the predicted probability of the crash severity level from the first stage of the model; * 
indicates a 5% level of significance; the coefficients of all of the variables, sigma 1 and sigma 2, are scaled up to 

a million vehicles; the mean absolute deviation (MAD) = 1
1

ˆ
 n

i i in Y Y , mean absolute percentage error 

(MAPE) = 100
1

ˆ / n
i i i in Y Y Y  and root mean square error (RMSE) = 21

1
ˆ( ) n

i in
Y Y  where  is 

the observed value,  is the predicted value and n is the number of observations. 

 
 
The slight injury risk is negatively influenced by the existence of four or more approaches. 
Larger signalized intersections may therefore decrease the likelihood of crashes. Small 
intersections may generate more crashes in the Hong Kong environment due to lower design 
standards. If one more approach is provided, the slight injury risk reduces by 0.48. 
 
The third significant factor in the slight injury model is the reciprocal of the average turning 
radius, which is positively correlated with slight injury crashes. Fewer lanes and a smaller 
lane width hinder the maneuvers of drivers turning at a signalized intersection, increasing the 
likelihood of conflict and collisions. This is especially significant for large trucks and 
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double-decker buses. A one unit increase in the reciprocal of the average turning radius 
increases the risk of a slight injury crash by 3.64, provided that the other variables remain 
constant. 
 
The slight injury crash risk at signalized intersections is negatively sensitive to the proportion 
of commercial vehicles (mainly heavy trucks and buses): increasing the proportion of these 
vehicles decreases the risk of a slight injury crash. Conversely, the KSI risk is positively 
sensitive to the proportion of commercial vehicles, as increasing the proportion of these 
vehicles increases the risk of a KSI crash. Collisions with or between commercial vehicles 
usually have a greater force of impact and involve more people than collisions with or 
between non-commercial vehicles. A higher proportion of commercial vehicles means a 
higher proportion of heavy vehicles, thus in the event of a crash, the likelihood of a KSI is 
higher. There is apparently a migration effect from slight to KSI injury crashes, resulting in 
this opposite trend. Emphasizing safety education to reduce the aggressive behavior of 
commercial vehicle drivers is a more effective means of reducing the risk of injury to other 
road users than limiting the number of commercial vehicles allowed on the road. A one unit 
increase in the proportion of commercial vehicles results in a 0.50 variation in the risk of 
slight injury crashes and a 0.33 variation in the risk of KSI crashes, provided that the other 
variables are held constant. 
 
Similarly, turning pockets must be used sparingly, because the presence of turning pockets is 
positively correlated with the risk of slight injury crashes. An additional left-turning or 
right-turning pocket will increase the traffic volume of an intersection, because the turning 
pocket is separated from the through lane. However, if the pocket is not appropriately 
designed, conflicts between through and turning vehicles may increase the risk of slight 
injury crashes.  
 
The average lane width is negatively related to the KSI risk: an increase in the average lane 
width reduces the number of KSI crashes at signalized intersections. A wider lane gives 
drivers—especially aggressive drivers—more space to maneuver, thus reducing the crash risk. 
An increase in the average lane width of one unit causes a decrease in the KSI crash risk of 
0.02, provided that the other variables are held constant. 
 
Another significant factor in the KSI model is the cycle time at signalized intersections. The 
model shows a positive correlation with the cycle time: a longer cycle time increases the KSI 
crash risk. Red-light jumping may increase if aggressive drivers know that they will have to 
wait for a long red light if they miss the last seconds of amber light, which is a dangerous 
maneuver that leads to more serous crashes. 
 
In Table 3, sigma 1 and sigma 2 denote the two estimated standard errors obtained from the 
bivariate Tobit regression model. Rho is the disturbance correlation between the slight injury 
model and the KSI model and takes a value of 0.26, indicating that a correlation exists 
between the two parts of the bivariate Tobit model. The test statistic for the first stage of the 
proposed model is 13.62 and for the second stage of the model is 290.52, each with a 
distributed 2 . These values are significant at the 95% level, which provides strong evidence 
for the sequential theoretical formulation of the crash severity level and the resulting 
empirical specifications obtained from the Tobit model. 
 
 
 



12 
 

Table 4 Results of the Bivariate Poisson-lognormal Model and Bivariate Tobit Model 
 Bivariate Poisson-lognormal Model Bivariate Tobit Model 
Variables Coefficient Std. Err. Z-statistic Coefficient Std. Err. Z-statistic 
Slight injury model    

Ln AADT 0.29* 0.11 2.82 0.42* 0.03 14.89 
4Appr. -0.43* 0.21 -2.08 0.46* 0.04 11.44 
Lanewidth 1.40* 0.48 2.89 0.05* 0.01 5.27 
Noconflict    0.02* 0.003 7.82 
Reciprad    2.12* 0.61 3.50 
Comveh    -0.72* 0.17 -4.26 
Cycletime    0.01* 0.001 3.00 
Pedcrossing    0.02* 0.01 2.08 
Tram -0.69* 0.27 -2.58    
KLN 0.69* 0.025 2.82 0.17* 0.04 4.36 
Cons -7.83 1.89 -4.14 3.69* 0.27 13.82 

KSI model    
Ln AADT 0.18* 0.02 9.83 
4Appr -0.34* 0.11 -2.13 0.08* 0.03 2.53 
Noconflict    0.01* 0.002 4.45 
Notrnstream -0.08* 0.31 -2.70    
Lanewidth -0.75* 0.26 -2.92    
Comveh    0.34* 0.12 2.79 
Cycletime 0.02* 0.004 4.34 0.004* 0.001 4.86 
Pedecrossing 0.29* 0.04 6.97    
Lrtstop       
HKI    -0.30* 0.04 -8.47 
Cons -0.58 1.06 -0.54 1.78* 0.21 8.66 

Goodness-of-fit assessment       
Sigma1 0.53 0.30 
Sigma2 0.28 0.18 
Rho -1.00 0.23 
Number of observations 420 420 
Log likelihood at zero -257.38 -396.69 
Log likelihood at 

convergence 
-94.21 -118.14 

Chi-square 337.26 434.64 
Degree of freedom 13 17 
AIC 540.76 270.28 
BIC 520.01 280.88 
MAD 0.324 0.292 
MAPE 11.538 11.865 
RMSE 0.605 0.608 

Note: The coefficients of all of the variables, sigma 1 and sigma 2, are scaled up to a million vehicles; * 5% 
level of significance. 
 
We demonstrate the effectiveness of the proposed model by comparing the results with those 
obtained from the multivariate (bivariate) Poisson-lognormal regression model (Park and 
Lord, 2007) and the single bivariate Tobit model for crashes at different crash severity levels 
(Yoo, 2005; Anastasopoulos et al., 2012b), as shown in Table 4. The bivariate 
Poisson-lognormal model has the strongest correlation between the two severity levels, as it 
has the greatest Rho value (-1.00) at the 5% significance level. However, the AIC and BIC 
values of the Poisson-lognormal model are the largest of the three models. The simple 
bivariate Tobit model has the weakest correlation between the two severity levels, as it has 
the lowest Rho value (0.23) at the 5% significance level. The AIC and BIC values of the 
simple bivariate Tobit model are smaller than those of the bivariate Poisson-lognormal model. 
The proposed model and the bivariate Poisson-lognormal model have the same MAD values, 
which are larger than those of the simple bivariate Tobit model. However, the likelihood 
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ratios of the bivariate Tobit model at zero and convergence are lower than those of the 
bivariate Poisson-lognormal model and comparable with those of the proposed model. 
Although the correlation in the proposed model is not the strongest (Rho value = 0.26) at the 
5% significance level, the AIC, BIC, MAPE and RMSE values are the lowest, indicating that 
its performance is the best of the three models. It should be noted that the proposed model has 
the most degrees of freedom and that it includes the variables from both stages. As defined, 
both MAPE and RMSE do not show signs of errors. However, MAPE takes percentages of 
actual values and does not penalize extreme deviations or cancel offsetting errors, whereas 
RMSE penalizes extreme errors and does not offset the errors. Both values are smaller in the 
proposed model, indicating that the errors for the proposed model are offset and implying that 
if adequate geometric and traffic data are available, a fully specified model may be better 
than the proposed model. 
 
5. Conclusions 
 
In this paper, a two-stage bivariate logistic-Tobit model is developed to evaluate the safety 
performance at signalized intersections in Hong Kong. A binary logistic model is used to 
assess the crash severity level and a bivariate Tobit model is used to simultaneously address 
the slight injury and KSI risks.  
 
The results of the binary logistic model indicate that the crash severity level is positively 
correlated with the AADT and number of pedestrian crossings. The results of the bivariate 
Tobit model suggest that the proportion of commercial vehicles is most likely to influence 
both slight injury and KSI crashes. The overall severity level, existence of four or more 
approaches, reciprocal of the average turning radius and presence of a turning pocket increase 
the likelihood of slight injury crashes. The cycle time increases the likelihood of KSI crashes, 
whereas the average lane width reduces the likelihood of KSI crashes. The bivariate Tobit 
model also addresses the correlation between the risk of slight injury crashes and the risk of 
serious or fatal injury crashes, which implies that the unobserved variables are heterogeneous 
between the signalized intersections in Hong Kong.  
 
The proposed two-stage model has several advantages over the conventional crash prediction 
analysis method, which uses separate crash frequency and crash severity models. 
 
Previous studies have demonstrated that crash severity types may be correlated (i.e., that they 
share unobserved effects) (Milton et al., 2008). The proposed model circumvents this 
limitation by using bivariate models in its second stage, making it a useful tool.  
 
Some signalized intersections have low or zero crash counts, especially for fatal crashes, and 
cannot therefore be easily analyzed using crash frequency models at different severity levels. 
Zero-inflated models can account for the excessive number of zeros in the count models and 
can also be implemented in our two-stage analysis framework. The Tobit approach can be 
replaced with a zero-inflated approach if the crash frequency is a concern rather than the 
crash rate. The second stage of the bivariate Tobit model is capable of predicting the number 
of crashes at different crash severity levels even when the signalized intersection under study 
has a low or zero crash count. 
 
The proposed model offers flexible, convenient specifications and estimation procedures. The 
two stages of the proposed model are not limited to the specific methods used here and the 
most suitable model can be used instead at each stage. For instance, if more than three 
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severity levels are considered, the ordered logistic/probit model can be substituted with the 
binary logistic model, another non-regression model or an artificial intelligence algorithm 
(e.g., a genetic algorithm or neural network), all of which offer appropriate tools for a 
severity analysis. The same is true of the second-stage bivariate Tobit model, which can 
accommodate different correlation patterns between the crash severity outcomes and 
unobserved heterogeneity according to various requirements. It can also be extended to 
multivariate models if required. 
 
This method involves a less complex estimation procedure than other models. Researchers 
with less mathematical expertise will find it convenient to estimate the model using the 
associated statistical package. This may benefit practitioners and facilitate the validation 
process. 
 
In sum, compared with a simple bivariate Tobit model, the proposed two-stage approach has 
the following advantages: (1) the two-stage approach handles endogenous and heterogeneous 
effects by incorporating the crash severity and crash frequency into the forecast; (2) by 
incorporating crash severity and crash frequency, the two-stage approach reduces the effects 
of the overly complicated single level modeling structure and the effects of complex 
modeling estimation; (3) the two-stage approach retains all of the benefits of a single level 
model; and (4) the two-stage model is easy to implement. 
 
However, as Mannering and Bhat (2014) have stated, all methodological approaches have 
inherent limitations. Accordingly, one weakness of the proposed model is that in the first 
stage only two variables are statistically significant, which may generate biased results. 
Accordingly, one weakness of the proposed model is that in the first stage only two variables 
are statistically significant. Having data that includes a broader range of explanatory variables 
could result in additional variables producing statistically significant coefficient estimates. In 
addition, the endogeneity issue is also only partially addressed with this two-stage approach. 
More fully addressing endogeneity issues is promising direction for future research. 
 
Future research in this area should establish a more comprehensive dataset by integrating the 
time-series cross-sectional information available for typical signalized intersections and then 
using the panel data model to simultaneously investigate the temporal and spatial effects at 
signalized intersections. The model performance for signalized intersections may be 
improved by incorporating data on pedestrian flow and approach speed, addressing the 
endogeneity between safety and mobility.  
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