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Abstract 

The timing of commuting trips made during morning and evening peaks has typically been 

investigated using Vickrey’s bottleneck model. However, in the conventional trip-based 

approach, the decisions that commuters make during the day about their activity schedules 

and time use are not explicitly considered. This study extends the bottleneck model to address 

the scheduling problem of commuters’ morning home-to-work and evening work-to-home 

journeys by using an activity-based approach. A day-long activity-travel scheduling model is 

proposed for the simultaneous determination of departure times for morning and evening 

commutes, together with allocations of time during the day among travel and activities 

undertaken at home or at the workplace. The proposed model maximizes the total net utility 

of the home-based tour, which is the difference between the benefits derived from 

participating in activities and the disutility incurred by travel between activity locations. The 

properties of the model solution are analytically explored and compared with the conventional 

bottleneck model for a special case with constant marginal-activity utility. For the case with 

linear marginal-activity utility, we develop a heuristic procedure to seek the equilibrium 

scheduling solution. We also explore the effects of marginal-work utility (or the employees’ 

average wage level) and of flexible work-hour schemes on the scheduling problem in relation 

to the morning and evening commuting tours. 
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1. Introduction 

 

The bottleneck model introduced by Vickrey (1969) has been recognized as a benchmark 

representation of the dynamics of peak-hour traffic congestion due to its ability to capture the 

essence of congestion dynamics in a simple and tractable way. The standard bottleneck model 

has been extended in numerous ways, such as by considering heterogeneous travelers (Arnott 

et al., 1988, 1992; Lindsey, 2004; Qian and Zhang, 2013; van den Berg, 2014), bottleneck 

congestion pricing (van den Berg and Verhoef, 2011, 2014; Xiao et al., 2011, 2012; Lindsey et 

al., 2012), bottleneck capacity expansion (Arnott et al., 1990; Arnott and Kraus, 1995), 

interaction between parallel or serial bottlenecks (Huang and Yang, 1996), mode substitution 

(Tabuchi, 1993; Huang, 2002; Huang et al., 2007; Gonzales and Daganzo, 2013), and recently, 

designing tradable credit schemes (Nie and Yin, 2013; Xiao et al., 2013) and considering 

stochastic bottleneck (Fosgerau and Lindsey, 2013; Siu and Lo, 2013; Xiao et al., 2014). 

Arnott et al. (1993) provided a structural definition of the bottleneck model and illustrated its 

application in the assessment of various congestion toll-pricing schemes. For a comprehensive 

review, readers can refer to Arnott et al. (1998) and Lindsey and Verhoef (2001). 

 

Vickrey’s bottleneck model and its variations usually treat a single-trip scheduling problem by 

modeling the trade-off between bottleneck congestion and schedule delay, and thus falls into 

the trip-based modeling framework. Trip-based models do not explicitly recognize the 

motivations or reasons for trips, and simply use discrete trips as the standard travel unit. Thus, 

they cannot reflect the links among trips, the links between trips and activities, and the 

temporal constraints and dependencies of participation in the activities concerned (Kitamura, 

1988; Lam and Yin, 2001; Lam and Huang, 2002; Fu and Lam, 2014). As a result, the 

trip-based approach cannot properly capture the activity and travel-choice behavior of 

individuals or their allocations of time during a day among activities and travel, which may 

lead to biased or distorted evaluations of transport policy influence on individuals’ 

activity-travel scheduling (Li et al., 2010). 

 

In reality, the departure-time choices of commuters leaving home in the morning and their 

workplaces in the evening are usually related to the utilities of home and work activities in 

addition to the factors of bottleneck congestion and schedule delay (Zhang et al., 2005; 

Ettema et al., 2007; Jenelius et al., 2011; Jenelius, 2012). For example, when the home 
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activity in the morning (e.g., preparing breakfast for the children) has a higher marginal utility 

than the work activity, the commuter may leave home late to achieve a high level of utility 

from participating in the home activity. Conversely, when the marginal utility of the work 

activity is higher than that of a home activity (e.g., a high overtime payment), the commuter 

may stay in the office for a longer time. In addition, when the home activity in the evening 

(e.g., family dinner, watching television or sleeping) has a higher marginal utility than the 

work activity, the commuter may leave the office early to perform more home activities in the 

evening. Hence, it is of great importance that the activity-scheduling behavior of the 

commuters is incorporated into the traditional bottleneck model, such that the effects of 

activity utility on the commuters’ departure-time choices and time-use decisions can be 

revealed. 

 

It has been widely recognized that the activity-based approach can serve as a powerful tool for 

understanding activity-travel scheduling behavior (Kitamura, 1988). Activity-based models 

consider travel as demand derived from the need to participate in activities at different points 

in space and time, and individuals’ activity-travel patterns as the results of time-use decisions 

within a continuous time domain (e.g., a day). In activity-based models, travel patterns are 

organized as sets of related trips known as “tours.” These tours are chains of multiple trips 

that begin and end at the same point, such as the commuter’s home. Activity-based models 

can address the interdependencies of trips and activities in time and space and the time-use 

decisions that individuals make during the day. For more details on the activity-based 

approach, readers can refer to Jones et al. (1990), Ettema and Timmermans (1997), and 

Timmermans (2005). In this paper, we propose an activity-based bottleneck model to address 

the interactions between commuters’ time allocations among their activities and travel and the 

dynamics of bottleneck congestion. 

 

The standard bottleneck model also focuses mainly on morning commuting trips in which 

commuters are assumed to care about when they depart from their homes. Little attention has 

been paid to evening or day-long commuting problems. This may have arisen because the 

evening commuting trip is usually considered to be a symmetric reverse process of the 

morning trip. Some previous studies, such as those by Vickrey (1973), Hurdle (1981), Fargier 

(1983), and de Palma and Lindsey (2002a) have investigated morning and evening departure 

patterns in isolation and shown that the morning and evening departure patterns of specific 

individuals were symmetric (i.e., the departure pattern of the morning commute was a mirror 
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image of that for the evening commute). However, this symmetry tends to break down with 

increased heterogeneity among commuters in terms of their preferred work start/end times, 

the value of their time and the costs of schedule delays. De Palma and Lindsey (2002b) 

illustrated this lack of symmetry in the presence of congestion toll pricing. 

 

Although investigating the morning and evening commuting problems in isolation provides 

some important insights, in reality, commuters usually make travel decisions based on their 

day-long schedules. In the literature to date only a few published papers have involved 

analysis of day-long commuting problems. For example, Zhang et al. (2008) proposed an 

integrated daily commuting model that linked the morning and evening trips via choice of 

parking location. Recently, Gonzales and Daganzo (2013) incorporated mode choice in the 

combined morning and evening commute problem. More recently, Daganzo (2013) has 

further examined the day-long problem by considering two modes (auto and transit) and their 

distributed demand. However, the day-long commuting models developed in these studies 

have adopted the trip-based modeling approach, which means that the time-use decisions of 

commuters and the effects of flexibility in their activity scheduling cannot be properly 

addressed.  

 

Zhang et al. (2005) presented a day-long activity-travel scheduling model to address 

commuters’ time allocations among activities and travel during a day. Their model connected 

the morning and evening commutes via work duration. However, their paper did not examine 

the analytical properties of their proposed model. Recently, Jenelius et al. (2011) and Jenelius 

(2012) extended the Zhang et al. (2005) model to determine the values of travel-time savings 

and travel-time variability in both deterministic and stochastic environments. However, strong 

assumptions (e.g., no traffic congestion at the bottleneck) were made for derivation of some 

analytical properties of this model. In addition, none of these researchers (Zhang et al., 

Jenelius et al. or Jenelius) have considered the effects of schedule delays associated with work 

activities (which are usually mandatory activities). Recently, Ettema et al. (2007) showed that 

schedule delays for work activities play an important role in the commuters’ scheduling of 

daily activities and travel, and such delays should therefore be considered in an activity-based 

model. 

 

In light of the above discussion, we extend the traditional Vickrey bottleneck model to address 

commuters’ time allocations among activities and travel during a day, and investigate the 
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effects of home/work-activity utilities on the commuters’ morning and evening departure 

patterns. The problems addressed here are defined as follows. Given a typical 

“home-work-home” activity chain, how does a worker/commuter allocate the time in a day 

(i.e., 24 hours) among activities and travel and choose the departure time of each activity such 

that his/her total net utility within a day is maximized? Is there a correlation between the 

commuters’ morning and evening departure-time choices? Under what conditions do queues 

occur at the bottleneck during the morning and evening commuting trips? If queues exist 

during the morning and evening peaks, which queuing delay (or en-route travel time) is 

longer? If a flexible work-hour scheme is implemented, then how does it affect the 

time-allocation decisions of commuters during the day, and what is the optimal degree of 

flexibility for such a scheme? 

 

To answer these important and interesting problems, an activity-based bottleneck model is 

proposed in this paper to model the trip-timing choices of commuters during their morning 

and evening commutes. The main contributions of this paper are as follows. First, an 

activity-based bottleneck model is proposed for simultaneous determination of the 

equilibrium departure-time choices for the morning and evening commutes. Compared to the 

traditional bottleneck model, the proposed model can endogenously determine the commuters’ 

allocations of time among activities and travel during a day. Second, the properties of the 

activity-based bottleneck model are analytically explored and compared with those of the 

traditional bottleneck model, particularly when the marginal utilities of home/work activities 

are constants. A sufficient and necessary condition for the occurrence of queues at the 

bottleneck during the morning and evening peaks and that for the interdependence between 

morning and evening departure-time choices are presented. The effects of work-activity utility 

(i.e., the employees’ average wage level) on queuing delays during the morning and evening 

peaks are also explored. Third, we examine the effects of flexibility in the work-hour scheme 

on commuters’ activity-travel scheduling patterns and their time-use decisions during the day. 

The optimal level of work-hour flexibility in terms of total user net utility of the system 

during the day is also determined. 

 

The remainder of this paper is organized as follows. In the next section, the activity-based 

bottleneck model is proposed. Section 3 formulates the properties of the proposed model and 

presents analytical solutions for a special case with constant marginal-activity utility. In 

Section 4, another case with linear marginal-activity utility is presented, together with a 
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heuristic solution algorithm. In Section 5, two numerical examples are given to illustrate the 

properties and applications of the proposed model. Finally, Section 6 provides our conclusions 

and recommendations for further studies. 

 

2. Activity-based bottleneck model 

 

In this section, we extend the standard bottleneck model to address the activity-travel 

scheduling behavior of commuters over the times of a day. We consider a typical 

“home-work-home” (or “home-based tour”) activity chain, as shown in Figure 1. Kawakami 

and Isobe’s (1990) empirical study showed that the “home-work-home” chain is the most 

typical activity pattern for worker. It accounts for almost 90% of workers’ activity patterns. 

Thus, we mainly focus on this typical home-based tour in this paper. 

 

In Figure 1, it is assumed that every morning, N commuters travel to workplace W for work, 

and then return home H every evening along the same route. This chain consists of three 

activities (i.e., home activity in the morning, work during the day and home activity in the 

evening) and a chain of two intermediate trips (i.e., travel from home to work in the morning 

and from work to home in the evening). To calculate the total utility of this tour, the disutility 

of a round journey between home and the workplace and the utilities of home and work 

activities are defined as follows. 

 

2.1. Disutility of travel 

 

The total disutility of travel on the “home-work-home” tour consists of the travel times from 

home to work in the morning and from work to home in the evening and the costs of schedule 

delays from arriving early or late at the workplace in the morning and departing early or late 

from the workplace in the evening. 

 

2.1.1. Travel time 

 

In Figure 1, the route connecting the commuter’s home and workplace consists of three 

segments: HA, with a constant travel time of 1T ; BW, with a constant travel time of 2T ; and 

AB, which is a bottleneck with a maximum service rate or capacity of S. When the arrival rate 



 7

of vehicles at the bottleneck is less than S, the travel time on AB is a constant 0T . However, 

when the arrival rate exceeds S, a queue forms at the bottleneck. Let the subscripts “M” and 

“E” represent the “morning” and “evening” trips, respectively. Let )(tTM  and )(tTE  be the 

waiting times at the bottleneck for a commuter departing from home in the morning and from 

work in the evening at time t, respectively. Thus, the travel times of commuters departing at 

time t from home in the morning, )(tM , and from work in the evening, )(tE , can be 

respectively defined as 

)()()( 201 tTTTTtTTt MfMM  , and  (1) 

)()()( 102 tTTTTtTTt EfEE  ,  (2) 

where fT  is the fixed component of travel time between home and workplace, i.e., 

201 TTTTf  . Without loss of generality, we set 0fT  (i.e., zero free-flow travel time). 

This assumption, which has been made in the standard bottleneck model, does not affect the 

results that are of interest, and it can facilitate comparison with the results of the standard 

bottleneck model. Thus, a commuter arrives at the bottleneck immediately after leaving home 

and arrives at his/her workplace immediately after leaving the bottleneck. Hence, 

)()( tTt MM   and )()( tTt EE   hold, and thus )(tM  and )(tTM , and )(tE  and 

)(tTE  can be used interchangeably in this analysis.  

 

Let )(tDM  and )(tDE  be the numbers of vehicles in the queues (i.e., queue lengths) at the 

bottleneck at time t in the morning and evening peaks, respectively. When there is no 

congestion at the bottleneck, 0)()(  tDtD EM , and the departure rate of the bottleneck 

equals the arrival rate. When a queue occurs, 0)( tDM  and 0)( tDE , and the departure 

rate of the bottleneck equals its capacity. The queue length at the bottleneck at any time equals 

the difference between cumulative arrivals and cumulative departures by that time, which is 

expressed as 

 M

t

t MM ttSdttrtD
M

ˆ)()(
ˆ

    for the morning commute, and (3) 

 E

t

t EE ttSdttrtD
E

ˆ)()(
ˆ

    for the evening commute,  (4) 

where Mt̂  and Et̂  are the most recent times at which there is no queue during the morning 

and evening peaks, respectively, and )(trM  and )(trE  are the departure rates for the 

morning and evening commuting trips at time t, respectively. 
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The rates of change in the queue lengths can thus be given by 



 


otherwise,  ,0

,0)(for    ,)()( tDStr

dt

tdD MMM   for the morning commute, and  (5) 



 


otherwise,  ,0

,0)(for    ,)()( tDStr

dt

tdD EEE   for the evening commute.  (6) 

 

The waiting times )(tTM  and )(tTE  at the bottleneck for a departure from home and 

departure from work at time t can be derived from a deterministic queue model; that is, the 

queuing time of a commuter at the bottleneck equals the queue length at the time that he/she 

joins the queue divided by the service rate (or capacity) of the bottleneck. This can be 

expressed as 

S

tD
tT M

M

)(
)(  , and  (7) 

S

tD
tT E

E

)(
)(  . (8) 

 

2.1.2. Schedule delay 

 

Work activities are usually obligatory and have rigid time windows, i.e., there are usually 

strict work start (e.g., 09:00) and end (e.g., 17:00) times. This means that arriving at the office 

early or late in the morning and departing early or late in the evening invoke penalties (de 

Palma and Lindsey, 2002a,b). When a flexible work-hour scheme is implemented, the 

schedule delay caused by a deviation from the “core work-hour period” can be explained as 

an extra cost or loss due to a weakened synchrony among the employees’ work hours. We 

define a schedule delay for the morning commute as the difference between the actual and 

preferred arrival times at the workplace, whereas a schedule delay for the evening commute is 

the difference between the actual and preferred departure times from the workplace. In 

general, assembly-line workers, clerks or support staff in white-collar jobs have a high 

schedule-delay value due to rigid work schedules. 

 

We use the subscripts “h” and “w” to represent “home” and “work” and the superscripts “d” 

and “a” to represent “departure” and “arrival”, respectively. Let a
wt  and *a

wt  be the actual 
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and the preferred arrival times at the workplace in the morning, respectively. For a commuter 

leaving home at time d
ht  in the morning, his/her actual arrival time at workplace a

wt  is 

)( d
hM

d
h tTt  . Thus, the time for early arrival is  a

w
a
w tt *,0max  or  )(,0max * d

hM
d
h

a
w tTtt  , 

and the time for late arrival is  *,0max a
w

a
w tt   or  *)(,0max a

w
d
hM

d
h ttTt  . Therefore, the 

schedule-delay cost of the morning commute for a commuter departing at time t is 

   * *max 0, ( ) max 0, ( )a d d d d a
M w h M h h M h wSD t t T t t T t t        , (9) 

where   is the unit cost of arriving early, and   is the unit cost of arriving late.  

 

Let d
wt  and *d

wt  be the actual and the preferred departure times from the workplace in the 

evening, respectively. The early and late departure times are  d
w

d
w tt *,0max  and 

 *,0max d
w

d
w tt  , respectively. The schedule-delay cost of the evening commute for a 

commuter departing at time t is thus defined as 

   * *max 0, max 0,d d d d
E w w w wSD t t t t     ,  (10) 

where   is the unit cost of departing early, and   is the unit cost of departing late. 

 

2.1.3. Disutility of travel 

 

As previously stated, the total disutility of travel on the home-work-home tour, denoted as 

TU , is the sum of the round-journey times between home and workplace, and the 

schedule-delay costs of the morning and evening commutes. It can be expressed as 

   ** )(,0max)(,0max)( a
w

d
hM

d
h

d
hM

d
h

a
w

d
hM

T ttTttTtttTU   

   ** ,0max,0max)( d
w

d
w

d
w

d
w

d
wE tttttT  ,  (11) 

where   is the unit cost of travel time. Following previous related studies (see, e.g., Small, 

1982; de Palma and Lindsey, 2002a,b), it is assumed that   for the morning 

commuting trip, and   for the evening trip. 

 

2.2. Utility of activity 

 

The activities involved in the home-based tour (i.e., home-work-home) consist of the morning 

home activity, work activity during the day, and the evening home activity. The utility 
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achieved by a commuter performing an activity depends on what time the activity starts (in 

terms of clock time) and the activity’s duration (Wang, 1996; Ettema and Timmermans, 2003; 

Ashiru et al., 2004; Zhang et al., 2005; Ettema et al., 2007; Li et al., 2010; Jenelius et al., 2011; 

Jenelius, 2012). We assume that a day’s schedule is independent of preceding and subsequent 

days. We can thus fix two times, 0t   and 24t  , that represent the start and the end of a 

day, respectively. Thus, there is no need to distinguish between time-of-day and 

duration-dependent utility for the morning and evening home activities. We denote )(tuh  and 

)(tuh


 as the marginal utilities of the morning home activity and the evening home activity at 

time t, respectively. The marginal utility of the work activity depends on time t of a day and 

the work duration ( )a
wt t . According to Ettema and Timmermans (2003), the marginal utility 

of a work activity can be measured by a linear combination of time t and the work duration 

( )a
wt t , namely  (1 ) ( )a

w wu t t t     (or ( )a
w wu t t ), where [0,1]  is a parameter 

representing the flexibility in scheduling the work activity. “ 0  ” implies that the marginal 

utility of the work activity depends entirely on the (clock) time of day, resulting in a rigid 

work-hour scheme. “ 1  ” implies that the marginal utility of the work activity depends only 

on a required work duration, leading to a totally flexible work-hour scheme. This method has 

been adopted by some previous related studies, such as Zhang et al. (2005), Jenelius et al. 

(2011), and Jenelius (2012). 

 

The total utility of all the activities performed by a commuter within a day, denoted as AU , 

can then be represented as 

 
24

0
)()()(

a
h

d
w

a
w

d
h

t h

t

t

a
ww

t

h
A dttudtttudttuU


 

    


24

)()(0
)()()(

d
wE

d
w

d
w

d
hM

d
h

d
h

tTt h

t

tTt

d
hM

d
hw

t

h dttudttTttudttu


, (12) 

where a
ht  is the actual arrival time at home in the evening, )( d

wE
d
w

a
h tTtt  . 

 

2.3. Total net utility of the home-based tour 

 

The total net utility U of the home-based tour for a commuter departing from home at time d
ht  

in the morning and from the workplace at time d
wt  in the evening is the difference of the total 

utility of the activity minus the total disutility of travel on this tour. It can be represented as 
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 ,d d A T
h wU t t U U   

    )()()()()(
24

)()(0

d
wE

d
hMtTt h

t

tTt

d
hM

d
hw

t

h tTtTdttudttTttudttu
d
wE

d
w

d
w

d
hM

d
h

d
h   


 

   ** )(,0max)(,0max a
w

d
hM

d
h

d
hM

d
h

a
w ttTttTtt   

   ** ,0max,0max d
w

d
w

d
w

d
w tttt  .  (13) 

 

For illustration purpose, we consider a constant marginal activity utility case, in which the 

marginal home/work activity utilities are constants (i.e., hh utu )( , ww utu )( , and 

hh utu
 )( ). We assume that the commuter, who departs from home at d

ht  in the morning and 

from work at d
wt  in the evening, arrives at work early in the morning, leaves work early in 

the evening, and returns home after *d
wt . In an ideal situation, the commuter leaves home at 

*a
wt , arrives at work immediately at *a

wt , leaves work at *d
wt , and arrives home immediately at 

*d
wt . We can determine the commuter’s loss of utility with regard to this ideal situation, which 

is shaded in Figure 2. Note that arriving early at work in the morning implies an increased 

work duration of  *a a
w wt t  and a decreased home activity duration of  *a d

w ht t , which lead 

to a gain in utility by   *a a
w w wu t t   and a loss of utility by  *a d

h w hu t t , respectively. 

Similarly, leaving work early in the evening, and returns home after *d
wt  imply a decreased 

work duration of  *d d
w wt t  and a decreased home activity duration of  *a d

h wt t , which are 

associated with a loss of utility by  *d d
w w wu t t  and by  *a d

h h wu t t
, respectively. Moreover, 

an additional penalty by  *d d
w wt t   due to early departure from work is incurred. 

 

2.4. Travel and activity-scheduling model 

 

Given Equation (13), the total net utility U is a function of the departure time d
ht  from home 

in the morning, the departure time d
wt  from work in the evening, and the two travel times 

)( d
hM tT  and )( d

wE tT  between home and workplace in the morning and evening, which are 

functions of d
ht  and d

wt , respectively. Thus, once the departure times d
ht  and d

wt  are 

determined for a commuter, his/her total net utility U can be determined. The activity-travel 
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scheduling model that maximizes the total net utility of the home-based tour can thus be 

formulated as 

 d
w

d
h

tt
ttU

d
w

d
h

,max
,

,  (14) 

where the departure times d
ht  and d

wt  of commuters are the decision variables. 

 

According to Equation (14), the activity-travel scheduling model is actually equivalent to a 

departure-time choice equilibrium problem. The solution to this problem is a pure-strategy 

Nash equilibrium with the departure times d
ht  and d

wt  as the strategy variables, which is 

defined as follows. 

 

Definition 1. At equilibrium, any used combination of d
ht  and d

wt  yields equal net utility. 

 

Definition 1 implies that when the equilibrium state is reached, all commuters choosing any 

departure-time pair or combination ( , )d d
h wt t  share an identical total net utility, and no one can 

increase his/her total net utility over the course of a day by changing his/her departure time 

for the morning and/or evening commutes. 

 

Let  ,d d
h wq t t  be the departure rate of commuters choosing combination ( , )d d

h wt t . The 

equilibrium condition defined above can then be expressed as a complementarity problem 

with respect to the departure rate  ,d d
h wq t t , i.e., 

   
   

*

*

, , 0,

, 0,  , 0,   , ,

d d d d
h w h w

d d d d d d
h w h w h w

q t t U t t U

q t t U t t U t t

     


   
  (15) 

where *U  is the equilibrium (maximum) net utility received by commuters during a day. 

 

Given the departure pattern  ,d d
h wq t t , both the home-to-work departure rate ( )d

M hr t  at time 

d
ht  in the morning and the work-to-home departure rate ( )d

E wr t  at time d
wt  in the evening 

can be respectively calculated by  

 ( ) , ,   
e
E

b
E

td d d
M h h ht

r t q t t dt t  , and  (16) 
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 ( ) , ,   
e
M

b
M

td d d
E w w wt

r t q t t dt t  ,  (17) 

where b
Mt  and e

Mt  are the times at which the first and last commuters depart from home 

during the morning commute to work, respectively. b
Et  and e

Et  are the times at which the 

first and last commuters depart from the workplace during the evening commute to their 

homes, respectively. 

 

To summarize, the travel and activity scheduling model (14) serves to find the equilibrium 

departure pattern  ,d d
h wq t t  or, equivalently, the equilibrium departure rates ( )d

M hr t  and 

( )d
E wr t  during the morning and evening commuting trips. By using this proposed model, the 

commuters’ average time allocation among activities and travel can also be determined. In the 

next section, it will be shown that one can derive a closed-form solution for the equilibrium 

departure rates ( )d
M hr t  and ( )d

E wr t  for a special case with constant marginal-activity utility, 

but a numerical approach must be used for general cases, including those with linear 

marginal-activity utility. 

 

3. Equilibrium properties 

 

We first present an important property of the proposed model, namely a sufficient and 

necessary condition that a queue must exist at the bottleneck during the morning and evening 

commutes. Let o
Mt  denote the morning departure time from home at which a commuter can 

arrive at the workplace on time, i.e., *( )o o a
M M M wt T t t  . We make the following proposition. 

 

Proposition 1. (i) Given the departure time d
wt  from the workplace in the evening, a queue 

must exist at the bottleneck at time t during the morning home-to-work commute if and only 

if the following conditions are satisfied: 

 
 









).,[for    ,)(1)()(

],,(for    ,)(1)()(
e
M

o
Mw

d
wwh

o
M

b
Mw

d
wwh

tttttuttutu

tttttuttutu
  (18) 

 

(ii) Given the arrival time a
wt  at the workplace in the morning, a queue must exist at the 

bottleneck at time t during the evening work-to-home commute if and only if the following 
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conditions are satisfied: 

*

*

( ) ( ) ,   for  ( , ],

( ) ( ) ,   for  [ , ).

a b d
h w w E w

a d e
h w w w E

u t u t t t t t

u t u t t t t t

     


   



   (19) 

 

The proof of Proposition 1 is given in Appendix A. It shows that when the conditions (18) and 

(19) are not satisfied, a queue never occurs at the bottleneck during the morning or evening 

commutes. In particular, when the marginal utility functions of the home/work activities are 

constants (i.e., hh utu )( , ww utu )( , and hh utu
 )( ), we have the following properties. 

 

Corollary 1. For a constant marginal-activity utility, 

(i) If  wh uu  holds, then a queue must exist at the bottleneck during the morning 

peak ),( e
M

b
M tt . If h wu u    

 holds, then a queue must exist at the bottleneck during 

the evening peak ),( e
E

b
E tt . 

(ii) If 0 wh uu  (or 0 wh uu ), then all commuters leave home early (or late), 

and no queue occurs at the bottleneck during the morning peak. If 0h wu u  
 (or 

0h wu u   
), then all commuters leave the office early (or late) and no queue occurs at the 

bottleneck during the evening peak. 

 

Proof. Part (i) can be directly obtained from Proposition 1. In the following, we prove the first 

part of (ii), that is, if h wu u   or h wu u   , a queue never occurs at the bottleneck 

during the morning peak. In fact, if h wu u  , then the marginal benefit of prolonging the 

work duration by one unit of time exceeds the sum of the marginal loss from shortening the 

home activity duration by one unit of time and the schedule-change cost due to early arrival of 

one unit of time. Hence, early departure from home can bring a positive net benefit due to an 

extended work duration (shaded area in Figure 3a). Under these conditions, all commuters 

would benefit by leaving home early. 

 

However, if h wu u   , then all commuters would benefit by departing late from home, 

because the marginal benefit caused by increasing the duration of the home activity by one 

unit of time (shaded area in Figure 3b) is not less than the sum of the marginal benefit from 

decreasing the duration of the work activity by one unit of time and the schedule-delay cost of 
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late arrival of one unit of time. This condition would indicate that late departure from home 

can lead to a positive net benefit. Similarly, one can prove the latter part of (ii). 

 

Remark 1. Corollary 1 shows that the trade-off between the utilities of home and work 

activities and the schedule delays involved can significantly affect the departure-time choices 

of commuters. Hence, it is of great importance to incorporate the commuters’ 

activity-scheduling behavior into the bottleneck model to analyze the departure-time decisions 

of commuters. This incorporation cannot be achieved in the traditional trip-based bottleneck 

models. In addition, it can be noted that the traditional trip-based bottleneck models (i.e. the 

Vickrey’s bottleneck model and its variations) satisfy the conditions in part (i) of Corollary 1. 

Consequently, a queue always exists in the traditional trip-based bottleneck models. 

 

In the following proposition, we describe the interrelationship between the departure-time 

decisions of commuters for their morning and evening commuting trips. 

 

Proposition 2. The commuters’ morning and evening departure-time choices are 

interdependent if and only if the marginal utility of their work activity ( )a
w wu t t  is not a 

constant, and 0  . 

 

Proof. The first-order partial derivatives of total net utility ( )U   from Equation (14), with 

regard to the decision variables d
ht  and d

wt , comprise the following system of equations: 

    

    

( )
( ) ( ) 1 ( ) ( ) 1 ( ) ,   [ , ],

( )

( )
( ) ( ) 1 ( ) ( ) 1 ( ) ,  

d
d d a a a d a a a d b oM h

h h w w w w w w w w w w w w h M Md
h

d d
h d d a a a d a a a M h

h h w w w w w w w w w w w w d
h

T t
u t u t t u t t u t t u t t t t t

tU

t T t
u t u t t u t t u t t u t t

t


                        

 


 
                       


 [ , ].d o e

h M Mt t t







 


 (20) 

 

 

*

*

( )
( ) ( ) ( ) ,   [ , ],

( )

( )
( ) ( ) ( ) ,   [ , ].

d
d a a a d b dE w

w w w h h h h w E wd
w

d d
w d a a a d d eE w

w w w h h h h w w Ed
w

T t
u t t u t u t t t t

tU

t T t
u t t u t u t t t t

t

 
                     

 

 

 (21) 

 

From Equation (20) or (21), we can obtain 

2 ( )( )
( ) 1

d
d a M h

w w wd d d
h w h

T tU
u t t

t t t

           
. (22) 
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The independence of the morning and evening departure-time decisions means that the 

marginal contributions of d
ht  and d

wt  to the total net utility ( )U   have no interaction, which 

requires Equation (22) to be 0. Thus, ( )a
w wu t t  is a constant, or 0  . Therefore, the 

morning and evening departure-time decisions are interdependent if and only if ( )a
w wu t t  

is not a constant, and 0  . This completes the proof of this proposition. 

 

Remark 2. It can be noted that there is generally no closed-form solution for the morning and 

evening queuing delays ( )d
M hT t  and ( )d

E wT t , except for the no bottleneck congestion case 

(see Jenelius et al., 2011) and the constant marginal activity utility case (as shown in 

Corollary 2 as below). Therefore, the concavity of the Hessian matrix of the net utility 

function  ,d d
h wU t t , and thus the uniqueness of the model solution, cannot be guaranteed. 

 

According to Proposition 2, one immediately obtains the following. 

 

Corollary 2. For a constant marginal-activity utility, the commuters’ departure-time choices 

in the morning and evening periods are independent. 

 

For the constant marginal-activity utility case, one can determine the unique optimal solution 

of the activity-travel scheduling model (14) as given below. According to the extreme value 

theory of multivariate functions, the critical points of the activity-travel scheduling model (14) 

with regard to the decision variables d
ht  and d

wt  require that Equations (20) and (21) both be 

zero, i.e., ( ) 0d
hU t     and ( ) 0d

wU t    . When the marginal utilities of all activities are 

constants, i.e., ( )h hu t u , ( )w wu t u  and hh utu
 )( , one can obtain from Equations (20) 

and (21) 

 

 

( )
0,   [ , ],

( )
0,   [ , ],

d
d b oM h

h w w h M Md
h

d
d o eM h

h w w h M Md
h

T t
u u u t t t

t

T t
u u u t t t

t

 
       


            

 for the morning commute, and (23) 

 

 

*

*

( )
0,   [ , ],

( )
0,   [ , ],

d
d b dE w

w h h w E wd
w

d
d d eE w

w h h w w Ed
w

T t
u u u t t t

t

T t
u u u t t t

t

 
       


        

 

 

 for the evening commute. (24) 
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From Equations (23) and (24), we obtain 

,   [ , ],
( )

,   [ , ],

d b oh w
h M Md

wM h
d

d o eh wh
h M M

w

u u
t t t

uT t

u ut
t t t

u

             
   

 for the morning commute, and  (25) 

*

*

,   [ , ],
( )

,   [ , ],

d b dw h
w E wd

hE w
d

d d ew hw
w w E

h

u u
t t t

uT t

u ut
t t t

u

           
 









 for the evening commute. (26) 

 

Combining Equations (25), (26) and (5)-(8), we obtain the equilibrium departure rates of the 

morning and evening peaks as follows: 

,   [ , ],

( )

,   [ , ],

d b oh
h M M

wd
M h

d o eh
h M M

w

u
S t t t

u
r t

u
S t t t

u

         
   

 for the morning commute, and (27) 

*

*

,   [ , ],

( )

,   [ , ],

d b dw
w E w

hd
E w

d d ew
w w E

h

u
S t t t

u
r t

u
S t t t

u

           
  





 for the evening commute. (28) 

 

Equations (27) and (28) show that the equilibrium departure rates under the conditions of 

constant marginal-activity utility are constants. This constancy means that the commuters’ 

departure-time choice decisions in the morning and evening are uncorrelated. 

 

Remark 3. The independence of the morning and evening departure-time choice decisions 

implies that at the equilibrium, the first individual to leave home in the morning can be the 

last to leave work in the evening, and the last individual to leave home in the morning can be 

the first to leave work in the evening. In addition, according to Equations (27) and (28) and 

Corollary 1, when  wh uu  is satisfied for the morning commute, the equilibrium 

departure rate during the early arrival period [ , ]b o
M Mt t  exceeds the capacity S of the 

bottleneck, whereas the equilibrium departure rate during the late arrival period [ , ]o e
M Mt t  is 

less than S. This condition means that in the morning peak, a queue builds up linearly from 

b
Mt  to o

Mt  and then dissipates linearly until it disappears at e
Mt . Similarly, when 
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h wu u    
 holds for the evening commute, a queue grows linearly from b

Et  to *d
wt , 

reaches its maximum at *d
wt , and then shrinks linearly to zero at e

Et . 

 

We now determine the equilibrium departure periods [ , ]b e
M Mt t  and [ , ]b e

E Et t . As stated above, 

when  wh uu  and h wu u    
, a queue exists in the periods ),( e

M
b
M tt  and 

),( e
E

b
E tt , respectively. Therefore, the departure rates from the bottleneck during the morning 

and evening peaks equal the capacity of the bottleneck. Thus, we have 











.

,

SNtt

SNtt
b
E

e
E

b
M

e
M  (29) 

 

At the equilibrium, however, the commuters who depart at the beginnings and ends of the 

departure periods [ , ]b e
M Mt t  and [ , ]b e

E Et t  face no queue at the bottleneck, but will incur the 

highest schedule-delay costs. Their total net utilities must be equal in terms of Definition 1; 

that is, 

( , ) ( , ),   ,

( , ) ( , ),   .

b d e d d
M w M w w

d b d e d
h E h E h

U t t U t t t

U t t U t t t

  


 
 (30) 

 

By substituting Equation (13) into (30) and solving the system of Equations (29) and (30), we 

can obtain the equilibrium departure times, b
Mt , e

Mt , o
Mt , b

Et  and e
Et  as follows. 

  
  

*

*

*

,

,

,

b a w h
M w

e a h w
M w

w h h wo a
M w

h

u u N
t t

S

u u N
t t

S

u u u u N
t t

u S

   
 

 
      
     

 
   

 for the morning commute, and (31) 

*

*

,

,

b d h w
E w

e d w h
E w

u u N
t t

S

u u N
t t

S

       
    
   



  for the evening commute. (32) 

 

It can be noted that when the home/work-activity utilities equal zero (i.e., 0h h wu u u  
), 

the equilibrium solutions in Equations (27), (28), (31) and (32) are reduced to those under the 
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traditional trip-based bottleneck model. This implies that the trip-based bottleneck model is a 

special case of the proposed activity-based bottleneck model. 

 

The following numerical example illustrates the equilibrium solution of the activity-based 

model. In this example, we assume constant marginal utilities for the home and work 

activities, as shown in Figure 4, i.e., 8.0hu  , 11.0wu   and 10.0hu 
 ($/h). We also 

assume that the marginal utilities of the morning and evening home activities are different, as 

observed in some previous empirical studies (see, e.g., Tseng and Verhoef, 2008). The values 

for the parameters of the model are summarized in Table 1. In this table, it is assumed that 

arriving early (late) in the morning and departing late (early) in the evening are equally costly. 

This is consistent with that made by de Palma and Lindsey (2002a,b). 

 

Figure 5a depicts the equilibrium solution of the activity-based bottleneck model proposed in 

the previous section. The curves 111 CBA  and 222 CBA  represent the cumulative departures 

from home in the morning and from work in the evening, respectively. The straight lines 

11CA  and 22CA  represent the associated cumulative arrivals in the morning and the evening 

peaks, respectively. The values of b
Mt , e

Mt , o
Mt , b

Et  and e
Et  can be determined by Equations 

(31) and (32) as follows: 06 : 48b
Mt  , 09 :18e

Mt  , 08 : 38o
Mt  , 16 : 30b

Et   and 

19 : 00e
Et  , respectively. For comparison, Figure 5b depicts the equilibrium solution for the 

conventional trip-based bottleneck model. It shows that the departure times from home of the 

first and last commuters in the morning peak are 07:06 and 09:36, respectively. These times 

are 18 minutes later than those indicated by the activity-based model (06:48 and 09:18). The 

times of evening departure from work of the first and last commuters are 16:24 and 18:54, 

respectively. These times are 6 minutes earlier than those indicated by the activity-based 

model (16:30 and 19:00). This time difference means that the trip-based bottleneck model 

may lead to a biased estimation of the departure patterns for the morning and evening 

commuting trips compared to the activity-based bottleneck model. 

 

We now derive the average time allocation of commuters among home/work activities and 

travel according to Figure 5a. Let MATT  and EATT  represent the average travel times of 

commuters in the morning and evening peaks, respectively. Let MhAD ,  and EhAD ,  be the 

average durations for their home activities in the morning and evening, respectively, and let 
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wAD  be the average work duration. They can be represented as the areas of the geometric 

figures shown in Figure 5a, as follows. 























.)( area

,)( area

,)( area

,)( area

,)( area

112221

22222,

111111,

2222

1111

NACCBAAAD

NOGCAOAD

NOGCBAOAD

NACBAATT

NACBAATT

w

Eh

Mh

E

M

  (33) 

 

Assuming that the marginal utilities of home and work activities are constants, one can easily 

calculate the expressions in Equation (33) as shown in Table 2. 

 

We next define the performance indices of the system, including total travel-time costs, total 

schedule-delay costs and total activity utilities. Let MTTC  and ETTC  be the total 

travel-time costs of commuters in the morning and evening peaks, respectively. Let MSDC  

and ESDC  be the total schedule-delay costs in the morning and evening peaks, respectively. 

Let MhTU ,  and EhTU ,  be the total utilities of home activities in the morning and evening, 

respectively, and let wTU  be the total utility of work activity. These can be represented as 



















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
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ww
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hMh
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E

M



  (34) 

 

The detailed expressions for the system performance indices with constant marginal-activity 

utility are given in Table 3. It can be noted that in Tables 2 and 3, when the utilities of the 

home/work activities are zero, the expressions for the time-allocation and the 

system-performance indices in the activity-based bottleneck model are the same as those in 

the traditional trip-based bottleneck model. Again, this means that the trip-based bottleneck 

model is a special case of the activity-based bottleneck model. 

 

In addition, it can be observed in Figures 5a and b that the areas of 3 3 3 3A B C A  and 4 4 4 4A B C A  
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are greater than those of 1111 ACBA  and 2222 ACBA , respectively. This situation indicates that 

the total travel times (or total queuing times) during the morning and evening commutes in 

the trip-based bottleneck model are higher than those in the activity-based bottleneck model. 

The relative increases in the total travel times (or total queuing times) during the morning and 

evening commutes can be respectively defined by the following two equations. 

  
  

3 3 3 3 1 1 1 1

1 1 1 1

area( ) area( )
100% 100%

area( )
h h w h w

h w w h

u u u u uA B C A A B C A

A B C A u u u u

     
  

     
,  (35) 

  
  

4 4 4 4 2 2 2 2

2 2 2 2

area( ) area( )
100% 100%

area( )
h h w h w

h w w h

u u u u uA B C A A B C A

A B C A u u u u

      
  

     

  

  . (36) 

 

In view of the above discussion, we make the following proposition. 

 

Proposition 3. Compared with the activity-based bottleneck model, the trip-based bottleneck 

model overestimates the total travel times (or total queuing times) during the morning and 

evening commutes by those given in Equations (35) and (36), respectively. 

 

A commuter’s work-activity utility may be positively correlated with his/her wage level, 

which usually varies with socio-economic conditions and level of urban development. The 

following proposition further reveals the effects of the marginal work-activity utility on the 

total queuing-delay costs in the morning and evening peaks. 

 

Proposition 4. For a constant marginal-activity utility, if  wh uu  and 

h wu u    
 hold, we then have 

(i) The total travel-time costs (or queuing-delay costs) in the morning and evening peaks (i.e., 

MTTC  and ETTC  in Table 3) are concave with regard to the marginal work-activity 

utility; 

(ii) Assuming that     and    , there is a critical value wu  of the marginal 

work-activity utility such that when w wu u  (or w wu u ), the total queuing time at the 

bottleneck in the morning peak is longer (or shorter) than that in the evening peak. 

 

Proof. (i) The first-order and second-order partial derivatives of MTTC  regarding the 

marginal utility wu  of work activity are 
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  
2 2 2

2
h wM

w h

u uTTC N

u S u

   


    
, and  (37) 

  
2 2

2
0M

w h

TTC N

u S u

 
  

    
. (38) 

Accordingly, MTTC  is concave with regard to wu . In addition, for a given value of hu , 

MTTC  achieves the maximum at * 1
( )

2w hu u     in terms of Equation (37).  

 

Similarly, it can be easily proved that the total travel-time cost ETTC  in the evening peak is 

also concave with regard to wu , and that ETTC  reaches the maximum at 

* 1
( )

2w hu u   
.  

 

(ii) One only needs to prove that the following equation has one unique positive root. 

M ETTC TTC .  (39) 

From Table 3, Equation (39) can be expressed as 

  
  

  
  

h w w h h w w h

h h

u u u u u u u u

u u

         


        

 

 .  (40) 

Equation (40) can further be written as 

2
2 1 0 0w wa u a u a   ,  (41) 

where  

     
     

2

1

2 2
0

,

2 2 ,

( ) ( ) .

h h

h h h h

h h h h h h

a u u

a u u u u

a u u u u u u

  
           


             



 

  
  (42) 

 

Let ,1wu  and ,2wu  be two roots of Equation (41). As     and    , we have 

  ,1 ,2 0w w h h h hu u u u u u           
.  (43) 

This implies that Equation (39) has exactly one positive root, which is given as 

2
1 1 2 0

2

4

2w

a a a a
u

a

  
 .  (44) 

It can be further shown that as w wu u , then M ETTC TTC  holds, and as w wu u , then 
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M ETTC TTC  holds. This completes the proof of the proposition. 

 

Proposition 4 shows that given the values of all other parameters of the model, for a city with 

a high marginal work-activity utility (or high average wage level), the total queuing time at 

the bottleneck during the evening commute is longer than that during the morning commute. 

Conversely, for a city with a low marginal work-activity utility (or low average wage level), 

the total queuing time at the bottleneck during the morning commute is longer than that 

during the evening commute.  

 

4. Linear marginal-activity utility 

 

In the previous section, the properties of the day-long activity-travel scheduling model (14) 

have been discussed, particularly for the special case with a constant marginal-activity utility. 

In this section, we look at another important case in which the marginal utility of activity is a 

linear function of the clock time. Following Jenelius et al. (2011) and Jenelius (2012), we 

assume that the marginal utilities of morning and evening home activities, ( )hu   and ( )hu 
 

are, respectively, a decreasing and an increasing function of time, and that the marginal utility 

of work activity ( )wu   initially increases and then decreases with regard to time. The linear 

marginal utility functions of the home and work activities are mathematically specified as 

follows: 

0 1( ) ,hu t g g t   1 0g  ,  (45) 

 
 

0 1 1

0 1 1

,   ,  0,
( )

,   ,  0,

a a
w wa

w w a a
w w

h h t t t t t h
u t t

k k t t t t t k

          
    

  (46) 

0 1( )hu t l l t 
, 1 0l  , (47) 

where t  represents the time at which the marginal utility of the work activity stops  

growing in the morning (i.e., the end of the warm-up period), and t  ( t t ) represents the 

time at which the marginal utility of the work activity in the evening starts to drop (i.e., the 

start of the cool-down period). When a
wt t t    ( a

wt t t   ), the marginal utility of the 

work activity is an increasing (or a decreasing) function of time t.  

 

For illustration purpose, Figure 6 shows an example of the linear marginal utility functions for 
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home and work activities. In this figure, when the work start time falls in the interval 

[ , ]a a
w wt t t t    , the marginal utility of the work activity is a constant of 0 1h h t  or 

0 1k k t . According to Proposition 2, if 0  , the commuters’ morning and evening 

departure-time choices are interdependent. 

 

With the linear marginal-activity utility specifications as described above, the total utilities of 

the morning and evening home activities can be respectively expressed as follows: 

  2
0 1 0 10 0

( ) 0.5 ( )
d d
h ht t d d

h h hu t dt g g t dt g t g t      ,  (48) 

     24 24 2 2
0 1 0 1( ) 24 0.5 24 ( )

a a
h h

a a
h h ht t

u t dt l l t dt l t l t      


. (49) 

 

We now calculate the total utility of the work activity during the day, i.e., ( )
d
w

a
w

t a
w wt

u t t dt . It 

can be seen in Figure 6 that the end of the warm-up period (i.e., a
wt t  ) and the start of the 

cool-down period (i.e., a
wt t  ) divide each whole day into three periods: [0, ]a

wt t  , 

[ , ]a a
w wt t t t     and [ , 24]a

wt t  . The lower limit a
wt  of the integral ( )

d
w

a
w

t a
w wt

u t t dt  (i.e., 

the arrival time at the workplace in the morning) and the upper limit d
wt  of the integral (i.e., 

the departure time from work in the evening) may be located in any one of these three periods, 

subject to the constraint of a d
w wt t . There are a total of six possible cases for locating the 

relationship between a
wt  and d

wt , as shown in Table 4. The corresponding work-activity 

utility ( )
d
w

a
w

t a
w wt

u t t dt  for these six cases can, respectively, be given as follows: 

 

(i) When a
wt  and d

wt  [0, ]a
wt t  , 

       2 2
0 1 0 1 1( ) 0.5 ( ) ( )

d d
w w

a a
w w

t ta a a d a d a
w w w w w w w wt t

u t t dt h h t t dt h h t t t h t t           .  (50) 

 

(ii) When [0, ]a a
w wt t t   and [ , ]d a a

w w wt t t t t    , 

    0 1 0 1( )
d a d
w w w

a a a
w w w

t t t ta a
w w wt t t t

u t t dt h h t t dt h h t dt



          
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        
2 2

0 1 1 0 10.5 ( )a a a a a d a
w w w w w w wh h t t t t h t t t t t t h h t              .  (51) 

 

(iii) When [0, ]a a
w wt t t   and [ , 24]d a

w wt t t   , 

       0 1 0 1 0 1( )
d a a d
w w w w

a a a a
w w w w

t t t t t ta a a
w w w wt t t t t t

u t t dt h h t t dt h h t dt k k t t dt
 

 
              

        2 2
0 1 1 0 10.5 ( )a a a a a

w w w w wh h t t t t h t t t t t h h t              

     22
0 1 10.5 ( )a d a d a

w w w w wk k t t t t k t t t         .  (52) 

 

(iv) When a
wt  and [ , ]d a a

w w wt t t t t     , 

  0 1( )
d
w

a
w

t a d a
w w w wt

u t t dt t t h h t    .  (53) 

 

(v) When [ , ]a a a
w w wt t t t t     and [ , 24]d a

w wt t t   , 

    0 1 0 1( )
d a d
w w w

a a a
w w w

t t t ta a
w w wt t t t

u t t dt h h t dt k k t t dt



           

        22
0 1 0 1 10.5 ( )a a a d a d a

w w w w w w wt t t h h t k k t t t t k t t t              .  (54) 

 

(vi) When a
wt  and [ , 24]d a

w wt t t   , 

       2 2
0 1 0 1 1( ) 0.5 ( ) ( )

d d
w w

a a
w w

t ta a a d a d a
w w w w w w w wt t

u t t dt k k t t dt k k t t t k t t           .  (55) 

 

It should be pointed out that when t  and t  are equal, the interval [ , ]a a
w wt t t t     

becomes a time point, and cases (ii), (iv) and (v) thus immediately disappear. In other words, 

there are only three cases, i.e., (i), (iii) and (vi) for which t t . We will later illustrate this 

situation with an example. 

 

In light of the above discussion, if we are given a departure-time pair ( , )d d
h wt t , we can then 

directly calculate the total utility of the morning home activity according to Equation (48). 

However, to determine the total utility of the evening home activity by Equation (49) and of 

the work activity by Equations (50)-(55), we must first determine the queuing delays ( )d
E wT t  
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and ( )d
M hT t , and then a

ht  and a
wt  in terms of )( d

wE
d
w

a
h tTtt   and ( )a d d

w h M ht t T t  , 

respectively. For the constant marginal-activity utility case, one can easily determine the 

closed-form expressions of ( )d
M hT t  and ( )d

E wT t  and the constant equilibrium departure rates 

( )d
M hr t  and ( )d

E wr t . However, for the linear marginal-activity utility case, we cannot obtain 

the closed-form solutions of these quantities, and thus must turn to a numerical approach. In 

the following, a heuristic solution algorithm based on the method of successive averages 

(MSA) is presented to solve the activity-travel scheduling model (14) with a linear 

marginal-activity utility function. 

 

Step 0. Choose an initial departure flow pattern  (0) ,d d
h wq t t  for any departure-time pair ( d

ht , 

d
wt ) and set 1i  . 

Step 1. Calculate the net utility  ( ) ,i d d
h wU t t  according to Equation (13) and determine the 

“best” departure-time pair  *,d d
h wt t  that maximizes the net utility over all times of the 

day. 

Step 2. Assign all the commuters to the “best” pair  *,d d
h wt t  and obtain the auxiliary 

departure flow pattern  ( )ˆ ,i d d
h wq t t . 

Step 3. Make use of the MSA to update the departure flow pattern: 

        ( 1) ( ) ( ) ( )1
ˆ, , , ,

1
i d d i d d i d d i d d

h w h w h w h wq t t q t t q t t q t t
i

   


. 

Step 4. If 
    

 

2
( ) ( )

( )

ˆ , ,

,

d d
h w

d d
h w

i d d i d d
h w h wt t

i d d
h wt t

q t t q t t

q t t


 

 
 

 (where   is a pre-specified precision or 

tolerance), then stop. Otherwise, set 1i i   and go to Step 1. 

 

In Step 0, the initial departure flow pattern  (0) ,d d
h wq t t  can be set to zero, which signifies an 

empty state at the beginning of the day. Once the optimal departure-flow pattern is obtained, 

one can then determine the morning home-to-work departure rate ( )d
M hr t  and the evening 

work-to-home departure rate ( )d
E wr t  by Equations (16) and (17), respectively. The morning 

and evening queue lengths and queue times can be determined by Equations (3)-(8), the 

schedule delays by Equations (9) and (10), the activity utility by Equation (12) and finally the 
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total net utility of each commuter for the whole day by Equation (13). The MSA-based 

solution algorithm has also been adopted in previous related studies, such as those by Zhang 

et al. (2005) and Huang and Lam (2005). 

 

5. Numerical studies 

 

In this section, two test scenarios are used to illustrate the properties of the proposed model 

and the contributions of this paper. The first scenario, which is concerned with a constant 

marginal-activity utility, is applied to ascertain the effects of the work-activity utility on the 

morning/evening queuing-delay costs and to compare the solutions of the activity-based and 

trip-based models. The second scenario, which takes account of a linear marginal-activity 

utility function, is used to investigate the effects of flexibility in work hours on the 

commuters’ time allocations and the system performance. 

 

5.1. Scenario 1: Constant marginal-activity utility 

 

The model input parameters for Scenario 1 are the same as those shown in Table 1. We first 

explore the effects of the work-activity utility on morning/evening queuing-delay costs. 

Figure 7 shows the change in the total queuing-delay costs, MTTC  and ETTC , in the 

morning and evening peaks in relation to the marginal utility of the work activity (i.e., wu ) 

when hu  and hu


 are fixed as $8.0 and $10.0 per hour, respectively. It can be seen that both 

the morning and evening queuing-delay cost curves are concave. As wu  increases, the total 

queuing-delay costs ( MTTC  and ETTC ) in the morning and evening peaks first increase and 

then decrease, achieving their maxima at points X1 and X2, with 1.5wu   and 3.5 ($/h), 

respectively. This scenario leads to total queuing-delay costs of $21,701 and $19,531 in the 

morning and evening peaks, respectively. These two queuing-delay cost curves intersect at 

point X3, with a marginal-utility level of 6.2wu   ($/h) in terms of Equation (44), which 

gives a total queuing-delay cost of $18,607. As w wu u , the total queuing time in the 

morning peak is longer than that in the evening peak. 

 

We now compare the equilibrium solutions under different modeling approaches (i.e., the 

activity-based and trip-based models). Figure 8 shows the resultant queue lengths over the 
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times of a day under the activity- and trip-based approaches. It can be seen that the 

queue-length curves for both approaches take triangular forms. Specifically, for the 

activity-based approach, the queue length in the morning increases linearly from zero at 06:48 

to the maximum (733 vehicles) at o
Mt  (i.e., 08:38). The queue length then decreases linearly 

to zero at 09:18. During the evening commute, the queue length increases linearly from zero 

at 16:30 to the maximum (1,000 vehicles) at the preferred departure time of 17:00, and then 

decreases linearly to zero at 19:00. It can also be observed that under the activity-based 

approach, the area of the triangle for the queue length in the morning is smaller than that in 

the evening. However, under the trip-based approach, the areas of the triangles associated 

with the morning and evening queuing are the same, implying that for the trip-based approach, 

the queue pattern in the morning is a mirror image of the evening pattern. 

 

Tables 5 and 6 further indicate the equilibrium time allocation of commuters and the 

performance of the system under the activity-based and trip-based approaches. Table 5 shows 

that compared to the activity-based approach, the trip-based approach overestimates the 

average travel times in the morning and evening peaks by 0.39 and 0.32 hours, respectively, 

and overestimates the average duration for evening home activity by 0.10 hour. It also 

underestimates the average duration of morning home activity by 0.09 hour and the average 

work duration by 0.72 hour. Table 6 shows that the trip-based approach overestimates the total 

travel-time costs in the morning and evening peaks by $19,333 and $16,000, respectively, and 

overestimates the total utility of evening home activity by $5,000. However, it underestimates 

the total utilities of the morning home activity and the work activity by $3,467 and $39,600, 

respectively. As a result, the trip-based approach underestimates the total net utility of the 

system (with a total of 5,000 commuters) by $72,150 per day ($994,850 per day compared to 

$1,067,000 per day for the activity-based approach). Thus, the average net utility of each 

commuter is underestimated by $14.43 per day ($198.97 per day compared to $213.40). These 

results indicate that the trip-based bottleneck model may lead to a biased estimation of the 

commuters’ time-use decisions and of the system’s performance. 

 

5.2. Scenario 2: Linear marginal-activity utility 

 

In this section, we illustrate the case with the linear marginal-activity utility. The linear 

marginal-activity utility functions for home and work activities are shown in Figure 9. It is 
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assumed that both t  and t  are equal to 12:00, implying that three cases exist for the 

location between a
wt  and d

wt , i.e., (i), (iii) and (vi), as shown in Section 4. All other model 

input parameters are identical with those given in Table 1. As there is no closed-form solution 

for this case, we have to adopt the heuristic solution algorithm as presented in Section 4. The 

proposed solution algorithm has been coded in the C programming language and run on a 

personal computer with an Intel Pentium 1.4-GHz CPU and 1 GB of RAM. 

 

To look at the performance of the proposed heuristic solution algorithm, we apply the 

algorithm to the constant marginal-activity utility case examined in Section 5.1. Figure 10 

reports the numerical solutions of departure flow rate with different levels of precision 

(0.0001 and 0.00001), along with the analytical solution calculated directly from Equations 

(27) and (28). It can be seen that as the precision increases, the difference between the 

numerical and analytical solutions diminishes. However, the CPU time required for the 

numerical computation increases. Specifically, the CPU times needed with the precision levels 

of 0.0001 and 0.00001 are 617 and 5,700 seconds, respectively. In the following experiments, 

the convergence precision is set as 0.00001. 

 

Figure 11 displays the departure flow patterns during the morning and evening peaks and the 

associated net utility for three different values of the flexibility parameter   (i.e.,  = 0.0, 

0.3, and 1.0). These three values stand for the rigid, partially flexible, and totally flexible 

work-hour schemes, respectively. It can be noted that for a given value of  , the net utilities 

of commuters are exactly equal and are maximum for all chosen departure times, implying 

that the departure-time choice equilibrium is really achieved. Among these three schemes, the 

equilibrium net utility with  = 0.3 is largest ($192.69 per day), that with  = 1.0 is smallest 

($167.05 per day) and that with  = 0.0 is in between ($188.72 per day). 

 

It can also be noted that the departure rates during the morning and evening peaks change 

linearly, unlike the departure rates in the constant marginal-activity utility case, which are 

constant (see Equations 27 and 28 or Figure 10). In particular, within the departure periods, 

the morning and evening departure rates decrease linearly for a small  -value (e.g.,  = 0.0 

and 0.3), but increase linearly for the case of  = 1.0. In addition, compared to the rigid 

scheme of  = 0.0, the partially flexible scheme of  = 0.3 and the totally flexible scheme of 
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 = 1.0 lead commuters to postpone their off-work time in the evening. However, the former 

(i.e.,  = 0.3) results in a more centralized morning departure period, and the latter (i.e.,  = 

1.0) causes a more decentralized departure period. As a result, the total queuing delay with 

 = 0.3 during the morning peak is highest, whereas the delays with  = 1.0 during the 

morning and evening peaks are always lowest, as shown in Figure 12. In addition, Figure 12 

shows that the changes in queue length are no longer linear over the times of the day as they 

are in the constant marginal-activity utility case (see Figure 8). According to Equations (3) 

and (4) and the linear departure-rate patterns shown in Figure 11, the change curves in the 

queue lengths seem to be quadratic. This finding deserves an in-depth investigation in a 

further study. 

 

Table 7 further shows the effects of the flexibility parameter   on commuters’ patterns of 

time allocation and average net utility during a day. This parameter shows that when   does 

not exceed 0.7, the commuter’s average work duration always increases, whereas the average 

queuing duration and the average home duration decrease. As a result, the average net utility 

for commuters first increases and then decreases, with the maximum occurring at the 

flexibility level of  = 0.3. When   is larger than 0.7 (i.e.,   = 0.8, 0.9 or 1.0), the effect 

on the commuters’ allocations of time to activities and travel during the day is modest. These 

observations show that introducing a flexible work-hour scheme can change workers’ activity 

schedules and time-use decisions. The workers’ productivity could be impaired when 

coworkers are absent during a large portion of the workday. Consequently, when 

implementing a flexible work-hour scheme, the degree of flexibility should be carefully 

designed such that the workers can use their time during a day more efficiently. 

 

Finally, we investigate the effects of the flexibility parameter   on the performance of the 

system, as shown in Figure 13. It can be seen that as   increases, the total activity utility of 

the system first increases and then decreases. The maximum total activity utility comes at 

point Y1, with a flexibility of  = 0.2 and a total activity utility of $1.055 million per day. 

The total schedule-delay cost first decreases and then increases, reaching the minimum at 

point Y3, which is associated with a flexibility of  = 0.4 and a total schedule-delay cost of 

$54,720 per day. However, the total queuing-delay cost always decreases with the increase of 

flexibility. As a result of the tradeoff among the utility and cost components, the total user net 
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utility of the system achieves its maximum at point Y2, with a flexibility of  = 0.3 and a 

total net utility of $0.965 million per day. This result shows that either a rigid or a totally 

flexible work-hour scheme could cause low work efficiency and low user net utility. There is 

an optimal partially flexible work-hour scheme that yields the maximum total user net utility. 

 

6. Conclusion and areas for further study 

 

In this paper, we extend the conventional bottleneck model to address the activity and travel 

scheduling problems of workers during the course of a day by using an activity-based 

approach. A typical activity chain for a worker, i.e., the “home-work-home” tour, is 

considered. Given the definition of total net utility for the typical tour, we propose an 

activity-travel scheduling model that maximizes the total net utility for this tour within a day. 

The properties of the equilibrium model are analytically explored and compared with those of 

the standard bottleneck model, particularly for a special case with constant marginal-activity 

utility. For the case with linear marginal-activity utility, we develop a heuristic solution 

algorithm to find its equilibrium solution. The effects of flexibility in work-hour schemes on 

the scheduling of morning and evening commuting tours are also explored. 

 

This paper offers some new insights and important findings. First, we present a sufficient and 

necessary condition that a queue exists at the bottleneck during the morning and evening 

commutes (see Proposition 1 and Corollary 1), along with a condition of interdependence 

between the morning and evening departure-time decisions (see Proposition 2). Second, it is 

shown that the conventional bottleneck model is a special case of the activity-based 

bottleneck model proposed here. The trip-based model might lead to a biased estimation of 

the commuters’ time-allocation decisions and of the system performance (see Proposition 3). 

Third, the bottleneck queuing delays in the morning and evening peaks are shown to be 

concave with regard to the marginal utility of work activity. A sufficient condition for 

identifying whether the morning or evening average queuing delays will be heavier is also 

proposed (see Proposition 4). Fourth, the implementation of a flexible work-hour scheme is 

shown able to change the commuters’ activity schedules and their time-use decisions. An 

appropriate flexibility in work hours can be more productive than either a rigid or a totally 

flexible scheme in terms of total net utility of the system. The proposed model can serve as a 

useful tool for modeling the commuters’ daily time allocations among activities and trips, and 
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their departure-time choices. 

 

Although the model proposed in this paper provides useful insights for practical policy 

analysis and evaluation, some important extensions should be made in future studies. These 

extensions include the following. 

 

(1) The proposed model assumes that all commuters are homogenous in terms of their work 

arrival/departure-time preferences, values of their time and costs of schedule delays. However, 

other studies have shown that there are big differences in the choice behavior of 

heterogeneous commuters. The assumption of commuter homogeneity should be relaxed to 

incorporate the heterogeneity of commuters in a further study. 

 

(2) This paper mainly focuses on the travel and activity scheduling problems of commuters 

over the times of an individual day. Some other effective measures for bottleneck congestion 

relief are not addressed here, such as congestion pricing or tradable credit schemes (Yang and 

Wang, 2011; Xiao et al., 2013; Nie and Yin, 2013). It should be worthwhile to extend the 

proposed model to investigate these issues. 

 

(3) Parking issues in downtown areas are not considered in this paper. It has been shown that 

parking availability can influence the activity and trip schedules of commuters, thereby 

affecting the dynamics of traffic congestion at the bottleneck (Zhang et al., 2008, 2011; Arnott 

and Rowse, 2009; Qian et al., 2012; Yang et al., 2013). It is thus important to explicitly 

incorporate the effects of parking policies on commuters’ activity and travel scheduling into 

the bottleneck model in a future study. 

 

(4) Only the auto mode is examined in this paper, and thus the interaction between auto and 

other transit modes is not considered. In reality, the accessibilities and service levels of 

various competitive modes (e.g., auto, bus and metro) do affect commuters’ activity plans and 

time allocations. It should therefore be meaningful to incorporate other travel mode options 

and the interactions between mixed forms of traffic into the activity-travel scheduling model. 

 

(5) In this paper, a constant and a linear marginal-activity utility function are analyzed. A step 

marginal-activity utility function may be more sensible for practical applications, and this 

approach deserves further study. In addition, there is a need to empirically calibrate the utility 
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functions of various activities through field surveys. 
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Appendix A. Proof of Proposition 1 

 

We only provide the proof of part (i) here. The proof of part (ii) is similar to that of part (i), 

and is omitted to save space, but is available from the authors on request. 

 

(Necessity) We need to prove that a queue exists at the bottleneck, as implied in Equation (18). 

A contradiction method is adopted here. Suppose that Equation (18) does not hold, which 

implies 

 
 

( ) ( ) 1 ( ) ,   for  ( , ],

( ) ( ) 1 ( ) ,   for  [ , ).

d b o
h w w w M M

d o e
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u t u t t u t t t t t

u t u t t u t t t t t
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

          
 (A.1) 

 

In the following proof, we discuss the two potential cases of early arrival (i.e., ],( o
M

b
M ttt ) 

and late arrival (i.e., ),[ e
M

o
M ttt  ). 

 

(1) Case 1: ],( o
M

b
M ttt   

The first commuter departing from home at b
Mt  faces no queue due to his/her early departure 

from home, but incurs a schedule-delay cost of arriving early, and his/her total net utility in 

terms of Equation (13) is 
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where ( )d
E wt  is a function with regard to d

wt , which is given by 
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. (A.3) 

 

The total net utility of a commuter departing from home at any time ),(~ o
M

b
M ttt   in the 

morning is 
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where ( )d
E wt  is given by Equation (A.3). 

 

Consequently, the difference in the total net utilities of the commuters, who depart at t~  and 

at b
Mt  is 
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Note that the second and third terms on the right-hand side of Equation (A.5) can be 

respectively expressed as 
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According to Equation (A.1) for ( , ]b o
M Mt t t , the term ( )
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 in Equation (A.5) can be 

expressed as 
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Substituting Equations (A.6)-(A.8) into (A.5) and carrying out further algebraic operations, 

we obtain 
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Note that     ( ) 1 ,  ( ) ,  d d
M w M wt T t t t T t t t t t                    , so that we have 

  

 ( )

( ) 1
( ) ( ) 0

d d
w M w

M

t t T t t t

w wt T t t t
u t dt u t dt

  

  
  

  

   
.  (A.10) 

As   and 0)( tuw  (i.e., the work activity has a non-negative utility), we have 
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However, by the definition of the equilibrium (i.e., Definition 1), we have 
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From Equations (A.9) and (A.12), one obtains 
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According to Equations (A.11) and (A.13), the following equation must be satisfied: 
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This condition contradicts the assumption that a queue exists at the bottleneck. 

 

(2) Case 2: ),[ e
M

o
M ttt   

The last commuter who departs at e
Mt  faces no queue due to his/her late departure from home, 

but suffers a schedule delay by arriving late. According to Equation (13), the total net utility 

received by the last commuter is 
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where ( )d
E wt  is given by Equation (A.3). 

 

The total net utility of the commuters departing from home at any time ),[~ e
M

o
M ttt   is 
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Hence, we obtain the difference of the total net utilities as follows: 

      
( )

( ) ( ) ( ) ( ) ( ) ( )
e d d
M w w

e
M M

t t te e e
M h w M w M M M Mt t t T t

U t U t u t dt u t t dt u t t T t dt T t t t T t


               
       

  

   ( )

( ) 1
( ) ( ) ( ) ( ) ( )

e d e d
M w M w M

e e
M M M

t t t t t T t e
h w w M M Mt t t t T t

u t dt u t dt u t dt T t t t T t
  

  
         

 

  
   .  (A.17) 

According to Equation (A.1) for [ , )o e
M Mt t t , the term ( )

e
Mt

ht
u t dt  in Equation (A.17) can be 

expressed as 

   ( ) ( ) 1 ( )
e e e
M M Mt t td e

h w w w Mt t t
u t dt u t t dt u t t dt t t              

  

 ( ) ( )
d e e e
w M M M

d
w

t t t t e
w w Mt t t t

u t dt u t dt t t
 

 
        

 .  (A.18) 

From Equations (A.17) and (A.18) we obtain 

  

   
( )

( ) 1
( ) ( ) ( ) ( ) ( )

d d
w w M

M

t t t t T te
M w w Mt t t T t

U t U t u t dt u t dt T t
  

  
       

  

   
  .  (A.19) 

According to Equations (A.10) and (A.19) we have 

  

   
( )

( ) 1
( ) ( ) ( ) 0

d d
w w M

M

t t t t T t

w w Mt t t T t
u t dt u t dt T t

  

  
      

  

   
 .  (A.20) 

 

However, by the equilibrium condition 0)~()(  tUtU e
M  we have 
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  
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M
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w w Mt t t T t
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      

  

   
 .  (A.21) 

Consequently, we obtain 

),[~for    ,0)~( e
M

o
MM ttttT  .  (A.22) 

This condition contradicts the assumption that a queue exists at the bottleneck. 

 

(Sufficiency) We need to prove that Equation (18) implies that there is a queue at the 

bottleneck. Again, the contradiction method is used. Suppose that no queue appears at the 

bottleneck for any ),( e
M

b
M ttt , i.e., 0)( tTM , ),( e

M
b
M ttt . Two cases are discussed as 

follows. 

 

(1) Case 1: ],( o
M

b
M ttt  

Referring to Equation (A.5), if there is no bottleneck congestion (i.e., ( ) 0MT t  ), then the 

difference in the total net utilities of the commuters departing at t~  and b
Mt  is 

   ( ) ( ) ( ) ( )
d d
w w

b b
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t t tb b b
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 ( ) ( ) ( )
d b
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b b b d
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h w w Mt t t t t
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 
      

  


 .  (A.23) 

According to Equation (A.8), Equation (A.23) can be further written as 

   ( ) ( ) ( ) ( ) 1 ( )
b b b
M M M

t t tb d b
M h w w w Mt t t

U t U t u t dt u t t dt u t t dt t t           
  

   

  ( ) ( ) 1 ( )
b
M

t d
h w w wt

u t u t t u t t dt        


.  (A.24) 

At the equilibrium state, )()~( b
MtUtU   holds. Thus, we have 

 ( ) ( ) 1 ( ) 0d
h w w wu t u t t u t t           .  (A.25) 

This condition contradicts the assumption that  ( ) ( ) 1 ( )d
h w w wu t u t t u t t         . 

 

(2) Case 2: ),[ e
M

o
M ttt   

According to Equation (A.17), when there is no bottleneck congestion (i.e., ( ) 0MT t  ), the 

difference in the total net utilities of the commuters departing at times t~  and e
Mt  is 
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 .  (A.26) 

 

From Equation (A.18), Equation (A.26) can be rewritten as 

   ( ) ( ) ( ) ( ) 1 ( )
e e e
M M Mt t te d e

M h w w w Mt t t
U t U t u t dt u t t dt u t t dt t t                

   

  ( ) ( ) 1 ( )
e
Mt d

h w w wt
u t u t t u t t dt           .  (A.27) 

By the equilibrium condition )()~( e
MtUtU  , we obtain 

 ( ) ( ) 1 ( ) 0d
h w w wu t u t t u t t           .  (A.28) 

This condition contradicts the assumption that  ( ) ( ) 1 ( )d
h w w wu t u t t u t t          .  

 

This completes the proof of this proposition. 
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Figure 1. The setting of the model. 
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Figure 2. An example of the net utility function with constant marginal activity utilities. 

 

 

 

 

 

 

 

 

 

 

(a)                                       (b) 

 

Figure 3. Utilities of home and work activities against morning departure-time choices: (a) 

 wh uu ; (b)  wh uu . 
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Figure 4. Constant marginal utilities for home and work activities. 
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(b) 

 

Figure 5. Cumulative departures and arrivals over times of a day: (a) activity-based model; (b) 

trip-based model. 
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Figure 6. Linear marginal utility functions for home and work activities (see Jenelius et al., 

2011 and Jenelius, 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Effects of marginal utility of work activity on total queuing-delay costs at the 

bottleneck in the morning and evening peaks. 
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Figure 8. Queue lengths over times of a day under activity- and trip-based approaches. 
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Figure 9. Linear marginal utilities for home and work activities. 
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Figure 10. Numerical solutions for Scenario 1 at different levels of precision. 
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Figure 11. Departure flow rates in the morning and evening peaks and net utility for different 

flexibility parameters. 
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Figure 12. Queue lengths during morning and evening commutes for different flexibility 

parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Effects of flexibility parameter on performance of transportation system.
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Table 1 Input data for the model parameters. 

Symbol Definition 
Baseline 

value 

N number of commuters 5,000 

S capacity of bottleneck (veh/h) 2,000 

*a
wt  preferred arrival time at work in the morning 09:00 

*d
wt  preferred departure time from work in the evening 17:00 

wu  constant marginal utility of work activity ($/h) 11.0 

hu  constant marginal utility of home activity pre-work ($/h) 8.0 

hu


 constant marginal utility of home activity post-work ($/h) 10.0 

  unit cost of travel time ($/h) 10.0 

  unit cost of arriving early ($/h) 6.0 

  unit cost of arriving late ($/h) 19.0 

  unit cost of departing early ($/h) 19.0 

  unit cost of departing late ($/h) 6.0 
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Table 2 Analytical solutions for time allocation under activity- and trip-based approaches. 

 Activity-based approach Trip-based approach 

Average travel 

time in the 

morning peak 

MATT  (h) 

  
  2

h w w h

h

u u u uN

S u

     

    
  2

N

S


   

 

Average travel 

time in the 

evening peak 

EATT  (h) 

  
  2

h w w h

h

u u u uN

S u

     
    

 

   2

N

S


   

 

Average duration 

for morning home 

activity ,h MAD  (h) 
  

  

* 2 2

2

2

a h w
w

h w w h

h

u uN
t

S

u u u uN

S u

     
     

     


    

  
*

2
a
w

N
t

S

   


   
 

Average duration 

for evening home 

activity ,h EAD  (h) 

* 2 2
24

2
d w h
w

u uN
t

S

    
 

  


 *24

2
d
w

N
t

S

  
 

  
 

Average duration 

for work activity 

wAD  (h) 
  

  

* *

2

2

d a w h
w w

h w h w

h

u uN
t t

S

u u u uN

S u

  
 

  

       


    

 



 
 
 

* * 2

2
d a
w w

N N
t t

S S

   
  

      
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Table 3 Analytical solutions for system performances under activity-based and trip-based 

approaches. 

 Activity-based approach Trip-based approach 

Total travel-time 

cost in the 

morning peak 

MTTC  ($) 

  
  

2

2
h w w h

h

u u u uN

S u

     
    

 
2

2

N

S


  

 

Total travel-time 

cost in the 

evening peak 

ETTC  ($) 

  
  

2

2
h w w h

h

u u u uN

S u

     
    

 

  
2

2

N

S


  

 

Total 

schedule-delay 

cost in the 

morning peak 

MSDC  ($) 

 
    

2
2 2

2
2

w h h w

N
u u u u

S
        

  
 

2

2

N

S


  

 

Total 

schedule-delay 

cost in the 

evening peak 

ESDC  ($) 

  
  
  

2
2

2 22

w h w

h w w h

u u uN

S u u u u

       
 
            



   
2

2

N

S


  

 

Total utility of 

morning home 

activity ,h MTU  

($) 

  
  

* 2 2

2

2

a h w
w

h
h w w h

h

u uN
t

S
Nu

u u u uN

S u

         
      
       

 
 

*

2
a

h w

N
Nu t

S

    
      

Total utility of 

evening home 

activity ,h ETU  

($) 

* 2 2
24

2
d w h

h w

u uN
Nu t

S

     
     


  *24

2
d

h w

N
Nu t

S

   
     

  

Total utility of 

work activity 

wTU  ($)   
  

* *

2

2

d a w h
w w

w
h w h w

h

u uN
t t

S
Nu

u u u uN

S u

        
        
       

 



  
 

* *

2

2

d a
w w

w

N
t t

S
Nu

N

S

      
    
      

 

Total net utility 

of the system 

during a day ($) 
, ,h M h E w M E M ETU TU TU TTC TTC SDC SDC       
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Table 4 The relationship between a
wt  and d

wt . 

a
wt  belongs to 

d
wt  belongs to 

[0, ]a
wt t   [ , ]a a

w wt t t t     [ , 24]a
wt t   

[0, ]a
wt t   √ √ √ 

[ , ]a a
w wt t t t      √ √ 

[ , 24]a
wt t     √ 

 

 

Table 5 Time allocation under activity- and trip-based approaches. 

 Activity-based 

approach 

Trip-based 

approach 

Average travel time in the morning peak (h) 0.18 0.57 

Average travel time in the evening peak (h) 0.25 0.57 

Average duration for morning home activity (h) 7.87 7.78 

Average duration for evening home activity (h) 6.25 6.35 

Average duration for work activity (h) 9.45 8.73 

 

 

Table 6 System performances under activity- and trip-based approaches. 

 Activity-based 

approach 

Trip-based 

approach 

Total travel-time cost in the morning peak ($) 9,167 28,500 

Total travel-time cost in the evening peak ($) 12,500 28,500 

Total schedule-delay cost in the morning peak ($) 30,750 28,500 

Total schedule-delay cost in the evening peak ($) 27,500 28,500 

Total utility of morning home activity ($) 314,667 311,200 

Total utility of evening home activity ($) 312,500 317,500 

Total utility of work activity ($) 519,750 480,150 

Total net utility of the system during a day ($) 1,067,000 994,850 
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Table 7 Effects of flexibility parameter on time allocation and average net utility per commuter during a day. 

 
Flexibility parameter   

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Average queuing time in the 

morning peak (h) 
0.26   0.30 0.31 0.32 0.31 0.29 0.25 0.20 0.17 0.13 0.10 

Average queuing time in the 

evening peak (h) 
0.46 0.42 0.38 0.35 0.30 0.26 0.21 0.16 0.14 0.14 0.16 

Average queuing time 

during a day (h) 
0.72 0.72 0.69 0.67 0.61 0.55 0.46 0.36 0.31 0.27 0.26 

Average duration for 

morning home activity (h) 
7.82   7.86 7.89 7.90 7.91 7.89 7.87 7.84 7.83 7.84 7.84 

Average duration for 

evening home activity (h) 
6.50 6.42 6.34 6.24 6.17 6.08 6.00 5.94 5.96 5.98 6.02 

Average duration for home 

activities during a day (h) 
14.32 14.28 14.23 14.14 14.08 13.97 13.87 13.78 13.79 13.82 13.86 

Average duration for work 

activity (h) 
8.96 9.00 9.08 9.19 9.31 9.48 9.68 9.86 9.90 9.91 9.88 

Average net utility per 

commuter during a day ($) 
188.72 191.12 192.69 192.97 192.43 190.67 188.03 184.27 178.96 173.25 167.05 

 


