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Investigation of transient heat current from first principles using complex absorbing potential
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We report on a first-principles investigation of transient heat current through molecular devices under steplike
pulse of external and gate voltages. Using the nonequilibrium Green’s function (NEGF) approach, an exact
solution of transient heat current is obtained that goes beyond the wide-band limit. Combining with density-
functional theory (DFT), we propose a time-dependent NEGF-DFT formalism to study the transient heat current
under a steplike pulse for molecular devices from first principles. Anticipating the huge computational cost in
the transient regime, we develop an algorithm to speed up the calculation using the complex absorbing potential
(CAP). By adding the CAP to replace the Hamiltonian of leads, the effective self-energy of the Green’s function
becomes independent of energy, allowing analytic calculation of the triple integrations in the exact solution
of transient heat current using the theorem of residue. With this linear scaling algorithm, the computational
complexity is greatly reduced, and a first-principles calculation of transient heat current of molecular devices
becomes possible. As an example, we apply our NEGF-DFT-CAP formalism for a molecular device, the Di-thiol
benzene molecule connected by two semi-infinite aluminum leads, and we calculate the transient heat current
under an upward gate voltage pulse. The enhancement of heat current is observed.
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I. INTRODUCTION

With the rapid development of nanotechnology, various
unique quantum phenomena of nanomaterials have been
discovered both experimentally and theoretically, leading to
a fascinating prospect in the field of nanoelectronics [1–3].
The thermoelectric effect of molecular devices is one of the
interesting issues in nanoelectronics due to its potentially
wide applications [4–7]. Recently, the stationary Seebeck
coefficient was observed in many low-dimensional nanos-
tructures, such as silicon nanowires and carbon nanotubes
[8–10]. Therefore, it is important to study the thermoelectric
effect, including the heat current of nanosystems, in order to
understand how heat energy carries through and is distributed
by electronic current flow. In dc transport, the well-known
Landauer-Büttiker formalism used for electrical conductance
has been successfully extended to thermal transport [11,12].
In nanoelectronics, many theoretical studies focus on the first-
principles quantum transport properties of molecular devices
based on the nonequilibrium Green’s function (NEGF) method
combined with the density-functional theory (DFT) [13–15],
which is a powerful tool in predicting the transport properties
of new nanomaterials. Moreover, the quantum transport of a
dc steady state calculated using this first-principles NEGF-
DFT method can give good agreement with experimental
data [16–18]. Despite all these efforts, less attention has been
paid to time-dependent thermal transport, especially from a
first-principles standpoint.

In nanoelectronics, one of the key issues is to understand
the response time of nanodevices upon turning them on/off,
which is an important performance indicator of nanodevices,
and one that has been studied extensively [19–29]. The
time-dependent electric current of such a transient process

*jianwang@hku.hk

has been solved exactly within the wide-band limit (WBL)
using the NEGF method by sending a steplike pulse into
the system [19]. It has been numerically demonstrated that
in order to investigate transient current in nanodevices from
a first-principles standpoint, one has to abandon the WBL
approach [26]. In fact, an exact solution of the transient electric
current beyond the WBL has been obtained [22]. However,
it is numerically a big challenge to implement this exact
solution within the framework of NEGF-DFT for nanodevices.
This is because there is a triple energy integration in the
expression of transient electric current. In addition, due to
the existence of sharp resonant states, there are many poles in
the complex energy plane that are close to the real energy axis,
making the convergence of triple integration extremely diffi-
cult. Alternatively, iterating the time-dependent Schrödinger
equation within time-dependent density functional theory has
been proposed, and details of this implementation have been
outlined [21,23]. An approximated scheme based on the exact
NEGF solution has been proposed that reproduced the result
of an exactly solvable model beyond the WBL, and it was
implemented within NEGF-DFT to calculate the transient
current in nanodevices [26]. Very recently, a linear scaling
scheme to calculate the time-dependent transient current by
combining the complex absorbing potential (CAP) method
within the framework of NEGF-DFT has been developed
and implemented in first-principles transport calculation in
nanodevices, which significantly reduces the computational
complexity [30]. With these technical developments, it is
conceivable that the first-principles transient calculation of
heat current in nanodevices is within reach.

For the time-dependent heat current due to electrons, the
transient heat current has been investigated for a quantum
dot under an upward pulse of gate voltage within the WBL
where the enhanced thermal power was observed [31]. It
is desirable to study the transient heat current when the
external bias is switched on. More importantly, in order to
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investigate transient heat current from first principles, we need
a theoretical formalism going beyond the WBL. Furthermore,
how to calculate transient heat current from first principles for
molecular devices is another important issue. It is the purpose
of this paper to address these issues.

In this paper, we present an exact solution for transient heat
current based on NEGF theory that goes beyond the WBL. The
transient heat current can be switched on by either external
bias or gate voltage in the presence of dc external bias. We
have also implemented this theory within the NEGF-DFT-CAP
framework, and we developed an algorithm for first-principles
calculation of transient heat current in molecular junctions;
CAP is the key ingredient of our approach. The idea of CAP
was first introduced in the time-dependent wave propagation
calculation to eliminate reflection from boundaries [32], and
it was then widely used to tackle time-dependent problems in
many quantum-mechanical systems [33–36]. Recently, CAP
has been used to deal with quantum transport within the NEGF
formulation, and it showed an excellent performance in many
quantum transport problems [37,38]. The basic idea of CAP is
to replace the self-energy of the lead by the transmission-free
CAP. Then the transport problem of an open system becomes
a scattering problem of a finite closed system. Using CAP, we
are able to cast the exact solution of heat current into a wide-
band form (the effective self-energy in the Green’s function is
energy-independent), allowing us to use the theorem of residue
to reduce the triple energy integrations into a single energy
integration, thereby significantly speeding up the calculation.
We note that for transient electric current, it is enough to
calculate the diagonals of a lesser Green’s function G<(t,t)
in the time domain [21,30]. For the transient heat current,
off-diagonals of a lesser Green’s function G<(t,t ′) must be
calculated, making it more difficult to calculate the transient
heat current. As an application of this formalism, we have
calculated the transient heat current under an upward gate
voltage pulse through a molecular device of Di-thiol benzene
(DTB) connected by two Al leads. It is found that the transient
gate voltage greatly enhances the heat current, in agreement
with a previous study on a quantum dot system.

The paper is organized as follows. In Sec. II, we first present
the exact solution of time-dependent heat current under the
steplike pulse of external bias and gate voltage using the NEGF
method, which can be coupled with DFT for first-principles
heat transport calculation. Then the CAP method is introduced
to solve the transient heat current of molecular devices. In
Sec. III, the numerical calculation of transient heat current of
an Al-DTB-Al molecular device under an upward gate voltage
is presented. Finally, a discussion and conclusion are given in
Sec. IV.

II. THEORETICAL FORMALISM

A. Exact solution of time-dependent heat current
under steplike gate voltage

For a general two-probe system, the full Hamiltonian reads

H =
∑
kα

εkα(t)c†kαckα +
∑

n

εn(t)d†
ndn

+
∑
kαn

[Vkαn(t)c†kαdn + V ∗
kαn(t)d†

nckα], (1)

where the first two terms are Hamiltonians of the isolated
leads and the scattering region. The last term describes the
coupling between the leads and the scattering region. Here c†α
and d

†
n are the creation operators of the electron on the lead α

(α = L,R) and the central scattering region, respectively; εn is
the energy level of the central scattering region, which depends
on time due to the time-dependent gate voltage, while εkα(t) =
ε

(0)
kα + vα(t) is the energy level in lead α in the presence of

external bias and ε
(0)
kα is the bare energy levels. We will assume

e = � = 1 from now on. We assume that the bias voltage is
vα(t) = v0α + ṽα(t) and ṽα(t) = vαθ (t) while the gate voltage
is Vg(t) = vgθ (t) so that the transient behavior can be studied.
Here v0α is the dc bias and vα is the amplitude of the steplike
pulse in the lead α.

The time-dependent heat current through the lead α is
defined as [31]〈

Ih
α (t)

〉 = 〈
IE
α (t)

〉 − μα(t)
〈
I e
α(t)

〉
, (2)

where 〈IE
α (t)〉 is the energy current, 〈I e

α(t)〉 is the particle
current, and μα(t) = EF + vα(t) is the chemical potential of
lead α.

The energy current is related to the time deriva-
tive of the Hamiltonian describing the leads by IE

α =
−Ḣα [39]. Since the Hamiltonian of the lead depends
on time explicitly, we make a gauge transformation U =
exp[i

∫ t

0 dτ
∑

kα ṽα(τ )c†kαckα] [40]. The operator â and the
Hamiltonian will transform accordingly: â → U †âU and
Ĥ → U †ĤU + i(∂tU

†)U . After this transformation, the ex-
plicit time dependence of Hα is eliminated while the hopping
strength acquires a phase factor: exp[i

∫ t

0 dτ ṽα(τ )].
From the Heisenberg equation of motion, Ḣα = −i[Hα,H ],

the average energy current is written as

〈
IE
α (t)

〉 = −2 Re

[∑
kn

εkα(t)Vkαn(t)G<
n,kα(t,t)

]
, (3)

where G<
n,kα(t,t ′) ≡ i〈c†kα(t ′)dn(t)〉 and the coupling strength

Vkαn(t) depends on time explicitly due to the gauge transfor-
mation. The particle current is given by [18]

〈
I e
α(t)

〉 = −2 Re

[∑
kn

Vkαn(t)G<
n,kα(t,t)

]
. (4)

From Eq. (2) we have the heat current,

〈
Ih
α (t)

〉 = −2 Re

[∑
kn

(
ε

(0)
kα − EF

)
Vkαn(t)G<

n,kα(t,t)

]
. (5)

After analytic continuation, the average heat current be-
comes

Ih
α (t) = −2 Re

∫
dt1Tr

[
Gr (t,t1)�̆<

α (t1,t)

+G<(t,t1)�̆a
α(t1,t)

]
, (6)

where

�̆γ
α (t1,t) =

∑
k

(
ε0

kα − EF

)
�

γ,0
kα (t1 − t)ei

∫ t

t1
ṽα (τ )dτ

, (7)

115428-2



INVESTIGATION OF TRANSIENT HEAT CURRENT FROM . . . PHYSICAL REVIEW B 90, 115428 (2014)

with γ = r,a, < and �
γ,0
kα (t1 − t) being the nonequilibrium

self-energy due to the lead in the absence of an ac pulse [41].
Introducing spectral functions,

Aα(ε,t) =
∫ t

−∞
dt ′eiε(t−t ′)Gr (t,t ′)ei

∫ t

t ′ ṽα (τ )dτ (8)

and

	α(ε,t) =
∫ t

−∞
dt ′eiε(t−t ′)G<(t,t ′)ei

∫ t

t ′ ṽα(τ )dτ . (9)

We then obtain the heat current〈
Ih
α (t)

〉 = −2
∫

dε

2π
Im Tr{(ε − μα)�α(ε)

× [fα(ε)Aα(ε,t) + 	α(ε,t)]}. (10)

Since the lesser Green’s function satisfies the Keldysh equa-
tion,

G<(t,t ′) =
∫

dt1

∫
dt2G

r (t,t1)�<(t1,t2)Ga(t2,t
′)

= i
∑

α

∫
dε

2π
e−iε(t−t ′)fα(ε)Aα(ε,t)�α(ε)

×A†
α(ε,t ′)ei

∫ t ′
t

ṽα (τ )dτ , (11)

we have

	α(ε,t) = i
∑

β

∫
dε1

2π
ei(ε−ε1)t fβ(ε1)Aβ(ε1,t)�β(ε1)

×
∫ t

−∞
dt ′ei(ε1−ε)t ′A

†
β(ε1,t

′)ei
∫ t

t ′ [ṽα (τ )−ṽβ (τ )]dτ .

(12)

Note that we have two types of bias in the system: dc and ac
(steplike pulse) biases. The dc bias v0α is manifested in the
Fermi distribution function fα(E) = f (E − v0α) while the ac
bias appears as a phase factor exp[i

∫ t

t ′ ṽα(τ )dτ ] in Eqs. (8)
and (12). The general solutions of Aα(ε,t) and 	α(ε,t) for
upward and downward steplike pulses as well as a square
pulse can be obtained in a similar fashion as Ref. [22]. For
instance, for an upward steplike pulse, we have

Aα(ε,t) = Ḡr (ε + vα)

−
∫

dω

2πi

e−i(ω−ε)t Ḡr (ω + vα)

ω − ε + vα − i0+

[
vα

ω − ε − i0+

+
(

vg −
∑

β

vβYαβ(ε,ω)

)
G̃r (ε)

]
, (13)

with

Yαβ(ε,ω) = �̃r
β(ε) − �̃r

β(ω + vα − vβ)

ε − ω − vα + vβ

. (14)

Here, G̃r (ω) = [ωS − H̃ − �̃r (ω)]−1 and H̃ are, respectively,
the retarded Green’s function and the Hamiltonian of the
initial state at t = 0−, while Ḡr (ω) = [ωS − H̄ − �̄r (ω)]−1

and H̄ corresponds to the retarded Green’s function and the
Hamiltonian of the final state at t = +∞, respectively, and S

is the overlap matrix if nonorthogonal basis. In the case of an

upward steplike pulse, G̃r (ω) is the Green’s function with the
dc bias v0α applied on both leads, and Ḡr (ω) is the Green’s
function with the dc bias v0α + vα . The solution of 	α(ε,t) is
given by

	α(ε,t) = i
∑

β

∫
dε1

2π
ei(ε−ε1+vα−vβ )t fβ(ε1)Aβ(ε1,t)

×�β(ε1)

[
iG̃a(ε1)

ε − ε1 + i0+ + B
†
αβ(ε,ε1,t)

]
, (15)

with

Bαβ(ε,ε1,t) = expc(ε − ε1 + vα − vβ |t)Ḡr (ε1 + vβ)

−
∫

dω

2πi

expc(ε − ω + vα − vβ |t)
ω − ε1 + vβ − i0+

× Ḡr (ω + vβ)

[
vβ

ω − ε1 − i0+

+
(

vg −
∑

ν

vνYβν(ε1,ω)

)
G̃r (ε1)

]
, (16)

and

expc(z|t) = eizt − 1

i(z − i0+)
. (17)

In the following numerical calculation, we will focus on the
case in which vα = 0 while vg 	= 0, i.e., the response of the
system when a time-dependent steplike pulse of gate voltage
is applied at time t = 0. In this case, Aα(ε,t) and 	α(ε,t) do
not depend on α and are reduced to

A(ε,t) = Ḡr (ε) − vg

∫
dω

2πi

e−i(ω−ε)t

ω − ε − i0+ Ḡr (ω)G̃r (ε) (18)

and

	(ε,t) = i
∑

β

∫
dε1

2π
ei(ε−ε1)t fβ(ε1)A(ε1,t)�β(ε1)

×
[

iG̃a(ε1)

ε − ε1 + i0+ + B†(ε,ε1,t)

]
, (19)

where

B(ε,ε1,t) = expc(ε − ε1|t)Ḡr (ε1)

− vg

∫
dω

2πi

expc(ε − ω|t)
ω − ε1 − i0+ Ḡr (ω)G̃r (ε1).

(20)

In the next section, we will apply this theory to study the
transient behavior of heat current for molecular devices from
first principles.

B. The calculation of time-dependent heat current under
steplike gate voltage within the CAP method

In this subsection, we present an algorithm to study transient
heat current through molecular devices from first principles. To
investigate the transient heat current, we have to numerically
calculate the Green’s function as a function of time. Although
the exact solution is available, it is extremely time-consuming
to perform the energy integral in Eqs. (10) and (18)–(20) for the
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following reason. It is a triple integral in the energy axis. Due
to the existence of the long lifetime of resonant states, many
of them are below the Fermi level. There are many poles in the
complex energy plane close to the real energy axis, making
the convergence of a numerical integral extremely difficult.
If we can take the WBL, then the energy integration can be
performed analytically since the pole of the Green’s function
can be found. Since the WBL is an approximation that neglects
the band structure of the lead, we wish to go beyond it in
this work. In the non-WBL, the poles of Green’s function
cannot be obtained since the self-energy is a complicated
matrix that depends on energy. In view of the success of
CAP in the scattering problems, we decide to employ such
an approach [30,37]. The basic idea of CAP is to replace the
semi-infinite lead by a complex absorbing potential so that
there is no reflection at the interface between CAP and the
scattering region. Using CAP, the scattering of an open system
is mapped to that of a close system of finite size. It has been
shown in Ref. [30] that using the energy independence of CAP,
the retarded Green’s function can be cast into a wide-band
form, meaning that the effective self-energy within CAP is
energy-independent. This can reduce the numerical calculation
of transient properties drastically, as demonstrated in Ref. [30].
To calculate the transient heat current, we use the optimized
transmission-free CAP proposed in Ref. [42] as

W (z) = �
2

2m

(
2π

�z

)2

f (z), (21)

with

f (z) = 4

c2

[(
�z

z2 − 2z1 + z

)2

+
(

�z

z2 − z

)2

− 2

]
. (22)

Here �z = z2 − z1 is the range of CAP along the transport
direction z. z1 and z2 are the staring and ending points of the
CAP region, respectively. c is a constant set to be 2.62 in this
calculation.

In the first-principles calculation, the total Hamiltonian
of the system, including the scattering region and the CAP
regions, can be represented by the following matrix:⎡

⎣HLL HLC 0
HCL HCC HCR

0 HRC HRR

⎤
⎦, (23)

where, the subscript L (R) and C represent the left (right) CAP
region and the central scattering region, respectively. Within
the CAP method, the retarded Green’s function of lead α can
be written as [37]

gr ′
αα(ε) = (εI − H

′
αα)−1, (24)

where H
′
αα = Hαα − iWα , and Wα is given by Eq. (21).

Therefore,

Gr ′
(ε) =

(
εI − H + i

∑
α

Wα

)−1

. (25)

Following Ref. [30], we still use the concept of self-energy
and obtain the effective retarded Green’s function of the central
region within the CAP method as

Gr ′
CC(ε) = (εI − HCC + �r ′

)−1. (26)

The self-energy and the linewidth function can be presented
as [38]

�r ′
(ε) =

∑
α

HCαgr ′
αα(ε)HαC, (27)

�′
α(ε) = 2HCαgr ′

αα(ε)Wαga′
αα(ε)HαC. (28)

Now the transmission coefficient can be calculated within the
CAP method by [38]

T (E) = 4 Tr[W ′
LGr ′

W ′
RGa′

]. (29)

Within the NEGF-DFT-CAP formalism, we rewrite the heat
current in Eq. (10) as

〈
Ih
α (t)

〉 = −2
∫

dε

2π
ImTr{(ε − μα)�′

α(ε)

× [fα(ε)A′
CC(ε,t) + 	 ′

CC(ε,t)]}, (30)

where

	 ′
CC(ε,t) = 2i

∑
β

∫
dε1

2π
ei(ε−ε1)t

∫ t

−∞
dt ′ei(ε1−ε)t ′fβ(ε1)

× [A′(ε1,t)WβA′†(ε1,t
′)]CC. (31)

Substituting Eqs. (18) and (19) into the above equation, the
heat current under the CAP method can be finally written as

〈
Ih
α (t)

〉 = −2
∫

dε

2π
(ε − μα)Tr Im[fα(ε)�′

α(ε)A′
CC(ε,t)]

− 4
∑

β

∫
dε

2π

∫
dε1

2π
(ε − μα)Tr

× Re

{
ei(ε−ε1)t fβ(ε1)�′

α(ε)

×
[
A′(ε1,t)Wβ

(
iG̃a′

(ε1)

ε − ε1 + i0+ + B ′†(ε,ε1,t)

)]
CC

}
,

(32)

with

A′(ε,t) = Ḡr ′
(ε) − vg

∫
dω

2πi

e−i(ω−ε)t

ω − ε − i0+ Ḡr ′
(ω)G̃r ′

(ε),

(33)

B ′(ε,ε1,t) = expc(ε − ε1|t)Ḡr ′
(ε1)

− vg

∫
dω

2πi

expc(ε − ω|t)
ω − ε1 − i0+ Ḡr ′

(ω)G̃r ′
(ε1).

(34)

To reduce the triple energy integration in the second term
of the heat current into a single integral, we first complete the
integration over ε in Eq. (32) using a theorem of residue. To
do that, we note that the linewidth function �′

α(ε) in Eq. (28)
consists of the Green’s functions of the lead, which can be
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expanded using their eigenstates as follows:

gr ′
αα(ε) =

∑
m

|ψαm〉〈φαm|
ε − εαm

, (35a)

ga′
αα(ε) =

∑
m

|φαm〉〈ψαm|
ε − ε∗

αm

, (35b)

where the eigenstates are defined as

[Hαα − iW ]|ψαm〉 = εαm|ψαm〉, (36a)

[Hαα + iW ]|φαm〉 = ε∗
αm|φαm〉. (36b)

Due to the time-dependent factor ei(ε−ε1)t in the second term
of Eq. (32), the integration of �′(ε) can be done analytically
by choosing a complex contour in the upper half-plane. The
heat current is simplified as

〈
Ih
α (t)

〉 = −2
∫

dε

2π
Tr Im[(ε − μα)fα(ε)�′

α(ε)A′
CC(ε,t)]

− 8
∫

dε

2π
Tr Im

⎧⎨
⎩

∑
β

∑
m

(ε∗
αm − μα)fβ(ε)HCαgr ′

αα

× (ε∗
αm)Wα|φαm〉〈ψαm|HαC

[
A′(ε,t)Wβ

×
(

iei(ε∗
αm−ε)t G̃a′

(ε)

ε − ε∗
αm

− C ′(ε∗
αm,ε,t)

)]
CC

}
, (37)

with

C ′(ε∗
αm,ε,t) = ei(ε∗

αm−ε)t − 1

i(ε∗
αm − ε)

Ḡa′
(ε) − vgG̃

a′
(ε)

×
∫

dω

2π

ei(ω−ε)t − ei(ε∗
αm−ε)t

(ω − ε∗
αm)(ω − ε + i0+)

Ḡa′
(ω).

(38)

Note that if we set (ε − μα) and (ε∗
αm − μα) equal to 1 in

Eq. (37), it will give the expression of the time-dependent
electric current under the steplike pulse of gate voltage within
the CAP approximation.

The quantity A′(ε,t) in Eq. (37) can be calculated analyti-
cally using the same method. We first express Ḡr ′

(ε) using its
eigenstates [30],

Ḡr ′
(ε) =

∑
n

|	n〉〈�n|
ε − εn

, (39)

where the eigenvalues and eigenstates are defined similar to
Eq. (36). After applying the theorem of residue, we find

A′(ε,t) = Ḡr ′
(ε) − vg

∑
n

ei(ε−εn)t

ε − εn

|	n〉〈�n|G̃r ′
(ε) (40)

and

C ′(ε∗
αm,ε,t) = ei(ε∗

αm−ε)t − 1

i(ε∗
αm − ε)

Ḡa′
(ε) + vgG̃

a′
(ε)

×
∑

n

ei(ε∗
n−ε)t − ei(ε∗

αm−ε)t

i(ε∗
n − ε∗

αm)(ε∗
n − ε)

|�n〉〈	n|. (41)

To summarize, in order to calculate the transient heat
current under a steplike pulse of gate voltage, we first perform
two separate dc calculations using the NEGF-DFT method
with and without the gate voltage applied to obtain the
Hamiltonian and Green’s function of the initial and final states.
For the transient calculation, we add the CAP matrix to replace
the Hamiltonian of the lead so that our problem becomes
the time-dependent evolution of a finite system. To make
sure the CAP matrix is accurate enough, we must compare the
transmission coefficient of the open system with that obtained
from the CAP method. The accuracy can be systematically
improved by increasing the length of the CAP region. Once
this comparison is done, we can numerically calculate the
time-dependent heat current from Eqs. (37), (40), and (41).
Since the final expression of transient heat current contains
a single energy integral with all the poles calculated, it can
be calculated numerically again using the theorem of residue.
This makes our method an order N in time, which reduces the
computational cost drastically.

Before we end this section, we discuss the advantages and
disadvantages of the CAP method. The advantage of the CAP
method is its accuracy, which can be improved in a controlled
way. In addition, there is no complication implementing the
CAP method. The disadvantage of the method is that the
system size is increased due to the CAP layer. In this paper, we
have used 30 lead units of CAP for left and right buffer regions
in order to reproduce the transmission coefficient. We note that
the CAP buffer region can be drastically reduced if the CAP is
well-designed. For example, there are only six lead units for the
calculation of seven-atom monatomic carbon wire sandwiched
between Al (100) electrodes in Ref. [37]. Currently, we are still
trying to optimize CAP for our atomic basis set. Importantly,
the strength of the CAP approach lies in the simulation for a
large scattering region. In the large molecular devices that we
are aiming to study, there can be a thousand or more atoms in
the system. Therefore, comparing with the central molecular
device region, the buffer lead region including the CAP region
becomes a small portion. Therefore, adding the CAP region
does not slow the calculation down very much.

III. NUMERICAL RESULTS

In this section, we present the numerical results of the
time-dependent heat current response to an upward pulse of
gate voltage for the Al-DTB-Al system under a constant dc
bias. The two-probe structure of Al-DTB-Al is shown in
the inset of Fig. 1. The Al(100) nanowire is used for the
semi-infinite electrode, which is needed for the dc NEGF-DFT
calculation for the potential profiles. The distance between the
electrode and the sulfur atom is set to be 1.6 Å. Our first-
principles transport calculation is implemented in the NEGF-
DFT quantum transport package MATDCAL [43,44]. The linear
combination of atomic orbitals (LCAO) is employed to solve
the Kohn-Sham equation. The local density approximation
is adopted for the exchange-correlation potential [45], and
the nonlocal norm-conserving pseudopotential [46] is used to
describe the atomic core. The total energy and Hamiltonian is
converged with a tolerance of 10−5 eV.

For the NEGF-DFT-CAP method, we replace the semi-
infinite lead by CAP and leave a buffer region between CAP
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FIG. 1. (Color online) Transmission coefficient of Al-DTB-Al
by using the exact method and the CAP method. Inset: Schematic
diagram of the two-probe Al-DTB-Al molecular device. The purple
shadows present the leads. The pink, gray, yellow, and white
balls represent the aluminum, carbon, sulfur, and hydrogen atoms,
respectively.

and the DTB molecule. We use 30 unit cells of Al(100) in the
CAP region along the transport direction. We first compare the
transmission coefficient of Al-DTB-Al calculated by the exact
method and the CAP method, as shown in Fig. 1. Both cases
show that the transmission coefficient is about 0.04 around
the Fermi level, which exhibits weak metallic characteristics.
Overall, the transmission coefficient calculated from the CAP
method shows good agreement with that of the exact method,
although the CAP method cannot capture the very sharp
transmission peak at 1.65 eV. Therefore, we believe that the
CAP we constructed is reasonably good.

The time-dependent electric current under the upward
steplike gate voltage pulse is then calculated within the first-
principles NEGF-DFT-CAP framework. Figure 2 shows the

FIG. 2. (Color online) Time-dependent electric current for each
lead of Al-DTB-Al under a bias of 0.1 V with an upward gate voltage
pulse of 1 V.

transient electric current of Al-DTB-Al under a dc bias voltage
of 0.1 V (v0L = −v0R = 0.05 V) and an upward transient
gate voltage of 1 V (vg = 1 V). The initial current of the
left (right) lead without gate voltage is 0.13 μA (−0.13 μA),
so that the dc current is conserved. The switch-on time [48],
describing how fast a device can be turned on, is roughly 5 fs
for the electric current under the gate voltage pulse. Once
the gate voltage switches on, the currents of both the left
and the right lead decrease quickly and eventually saturate
at a dc limit of t = +∞. Specifically, the current of the left
lead changes from positive to negative because the occupied
molecular energy levels shift higher than the chemical potential
of the left lead due to the sudden increase of the gate voltage.
The electrons then flow from those molecular energy levels to
the left lead, giving rise to the negative current. After about
80 fs, the currents begin to increase again and eventually
approach the dc steady-state value that can be calculated from
the Landauer-Büttiker formula in the long-time limit, which
is ±0.11 μA for each lead. The relaxation times [49], namely
the elapsed time it takes for the device to achieve a new steady
state after the bias is abruptly turned on, are estimated to be
about 600 and 420 fs for the transient current of the left and
right lead, respectively.

Figure 3 depicts the transient heat current of the Al-DTB-Al
molecular junction with the same dc bias and steplike gate
voltage as in Fig. 2. The heat current of the initial state is −6.6
and −6.4 meV μA for the left and right lead, respectively.
The difference is the joule heat originating from their different
chemical potentials. The transient heat currents of both leads
switch on at about 5 fs, which is the same as that of the electric
current. Then they increase to a high positive value with slight
oscillations. The time-dependent heat current of the left lead
is always larger than that of the right lead at any time. After
about 50 fs, the heat currents reach their maximum values and
start to decrease and approach the dc values of the final state
calculated within the Landauer-Büttiker formula. Similar to
the electric current case, the relaxation time of the heat current
of the left lead is longer than that of the right lead, which are

FIG. 3. (Color online) Time-dependent heat current for each lead
of Al-DTB-Al under a bias of 0.1 V with an upward gate voltage pulse
of 1 V. Inset: time-dependent heat current compared with the dc steady
state in the long-time limit.
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roughly about 810 and 720 fs, respectively. In addition, the
heat current needs much more relaxation time than the electric
current. The final state of the heat current under the upward
gate voltage is about −5.0 and −5.4 meV μA for the left and
right lead, respectively, which is higher than those of the initial
state. The difference between the heat current of the left and
right lead at the final state is double that of the initial state. It
implies a higher Peltier coefficient [47], i.e., the thermopower
of this system is enhanced by the gate voltage, which agrees
well with previous theoretical research [31].

IV. CONCLUSION

We have obtained an exact solution for heat current in the
presence of a steplike external and gate voltage pulse as well as
dc bias. Our theory is based on NEGF theory and goes beyond
the WBL. We have also proposed a first-principles NEGF
formalism for transient heat current of molecular devices under
the steplike pulse. An algorithm has been developed within the
CAP method. By adding the CAP to replace the Hamiltonian
of leads, the transport problem of an open system becomes that
of a close system. Due to CAP, the non-wide-band problem can
be transformed into a wide-band form so that the triple energy
integration in the formalism of time-dependent heat current
can be calculated using the theorem of residue, which reduces
the computational complexity drastically. Our formalism has
been applied to study the transient heat current of a molecular
junction, Al-DTB-Al molecular device. An enhancement of
heat current is observed. Our NEGF-DFT-CAP formalism can
also be extended to other transport problems such as steady-
state ac heat transport.

Now we discuss the limitation of our formalism. For
nonequilibrium quantum transport of charge, the most impor-
tant quantity is the nonequilibrium density matrix, which is

usually obtained using the NEGF-DFT formalism [13]. In this
formalism, the density matrix or charge density is constructed
at nonequilibrium using the nonequilibrium Green’s function
within the DFT framework in the dc transport. This procedure
applies to the ac case as well except that one has to use the
time-dependent DFT (TDDFT). To reduce the computational
complexity while still capturing the essential physics, people
usually use the adiabatic local density approximation (ALDA)
for the exchange and correlation functionals in TDDFT.
Recently, the applicability of DFT in open systems has been
examined on a rigorous basis by Stefanucci and Almbladh [50].
They have shown that using TDDFT to evolve the density
matrix from ∞ to time t , based on the fundamental Runge-
Gross theorem, gives the same result as that from the NEGF-
DFT approach.

For transport of heat current, we still used the NEGF-DFT
approach where our DFT is implemented using the ALDA
approximation for the exchange and correlation functionals
in TDDFT. We note that a Runge-Gross-like theorem for the
energy density matrix does not yet exist. It is desirable to
establish such a theorem to put the NEGF-DFT formalism for
heat transport on a more rigorous theoretical footing.

Recently, a formalism has been proposed by Eich et al. [51]
to consider heat current due to the external bias and tem-
perature gradient using the NEGF approach, which could be
extended for DFT calculation. We note that in the absence of
a temperature gradient, their approach is the same as ours.

ACKNOWLEDGMENTS

This work was financially supported by the Research Grant
Council (Grant No. HKU 705212P), the University Grant
Council (Contract No. AoE/P-04/08) of the Government of
HKSAR, and NSF-China under Grant No. 11374246. Y.X. is
supported by NSF-China under Grant No. 11174032.

[1] J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, Science
286, 1550 (1999).

[2] C. Joachim, J. K. Gimzewski, and A. Aviram, Nature (London)
408, 541 (2000).

[3] J. R. Heath and M. A. Ratner, Phys. Today 56(5), 43 (2003).
[4] G. D. Mahan and L. M. Woods, Phys. Rev. Lett. 80, 4016 (1998).
[5] F. J. DiSalvo, Science 285, 703 (1999).
[6] A. Majumdar, Science 303, 777 (2004).
[7] Y. Dubi and M. Di Ventra, Rev. Mod. Phys. 83, 131 (2011).
[8] R. Scheibner, H. Buhmann, D. Reuter, M. N. Kiselev, and L. W.

Molenkamp, Phys. Rev. Lett. 95, 176602 (2005).
[9] A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang,

E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature
(London) 451, 163 (2008).

[10] G. U. Sumanasekera, B. K. Pradhan, H. E. Romero, K. W. Adu,
and P. C. Eklund, Phys. Rev. Lett. 89, 166801 (2002).

[11] P. N. Butcher, J. Phys. Condens. Matter 2, 4869 (1990).
[12] U. Sivan and Y. Imry, Phys. Rev. B 33, 551 (1986).
[13] J. Taylor, H. Guo, and J. Wang, Phys. Rev. B 63, 245407 (2001).
[14] M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, and

K. Stokbro, Phys. Rev. B 65, 165401 (2002).

[15] A. R. Rocha, V. M. Garcı́a-Suárez, S. Bailey, C. Lambert,
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