
1 

 

Kurtosis Analysis of Neural Diffusion Organization 

Edward S. Hui
a
, G. Russell Glenn

b,c
, Joseph A. Helpern

b,c,d
, Jens H. Jensen

b,d,*
 

 

a
Department of Diagnostic Radiology, The University of Hong Kong, Pokfulam, Hong Kong 

b
Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA 

c
Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA 

d
Department of Radiology and Radiological Science, Medical University of South Carolina, 

Charleston, SC, USA 

 

 

 

 

*Corresponding author at: Center for Biomedical Imaging, Department of Radiology and 

Radiological Science, Medical University of South Carolina, 96 Jonathan Lucas, MSC 323, 

Charleston, SC 29425-0323, USA 

E-mail address: jense@musc.edu (J. Jensen). 

E-mail address: edward.s.hui@gmail.com (E. Hui). 

E-mail address: glenng@musc.edu (G. Glenn). 

E-mail address: helpern@musc.edu (J. Helpern). 

Telephone: (843)876-2467 (J. Jensen). 

  

*7. Manuscript
Click here to view linked References

mailto:jense@musc.edu
mailto:edward.s.hui@gmail.com
mailto:glenng@musc.edu
mailto:helpern@musc.edu
http://ees.elsevier.com/ynimg/viewRCResults.aspx?pdf=1&docID=29618&rev=2&fileID=1237023&msid={0FEA83FD-10BC-41FB-B9F5-0230E40F091E}


2 

 

ABSTRACT 

A computational framework is presented for relating the kurtosis tensor for water diffusion in 

brain to tissue models of brain microstructure. The tissue models are assumed to be comprised of 

non-exchanging compartments that may be associated with various microstructural spaces 

separated by cell membranes. Within each compartment the water diffusion is regarded as 

Gaussian, although the diffusion for the full system would typically be non-Gaussian. The model 

parameters are determined so as to minimize the Frobenius norm of the difference between the 

measured kurtosis tensor and the model kurtosis tensor. This framework, referred to as kurtosis 

analysis of neural diffusion organization (KANDO), may be used to help provide a biophysical 

interpretation to the information provided by the kurtosis tensor. In addition, KANDO combined 

with diffusional kurtosis imaging can furnish a practical approach for developing candidate 

biomarkers for neuropathologies that involve alterations in tissue microstructure. KANDO is 

illustrated for simple tissue models of white and gray matter using data obtained from healthy 

human subjects.  
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Introduction 

 Non-Gaussianity of water diffusion within the brain can be quantified by the diffusional 

kurtosis tensor, which may be measured with MRI using diffusional kurtosis imaging (DKI) 

(Hori et al., 2012; Jensen and Helpern, 2010; Jensen et al., 2005; Lu et al., 2006; Poot et al., 

2010; Steven et al., 2014; Wu and Cheung, 2010). This kurtosis tensor allows a number of 

rotationally invariant diffusion metrics to be calculated, including the mean kurtosis (MK), the 

axial kurtosis, and the radial kurtosis. These metrics are believed to reflect the heterogeneity of 

the intra-voxel diffusion environment and are thus indicators of microstructural complexity. A 

number of studies have shown that kurtosis-based diffusion metrics are altered for a variety of 

neuropathologies, such as stroke (Cheung et al., 2012; Hui et al., 2012; Jensen et al., 2011), 

cancer (Raab et al., 2010; Van Cauter et al., 2012), Alzheimer’s disease (Benitez et al., 2014; 

Falangola et al., 2013; Fieremans et al., 2013; Gong et al., 2013), epilepsy (Gao et al., 2012; Lee 

et al., 2013; Lee et al., 2014; Zhang et al., 2013), Parkinson’s disease (Kamagata et al., 2014; 

Kamagata et al., 2013), attention deficit hyperactivity disorder (Adisetiyo et al., 2014; Helpern et 

al., 2011),  trauma (Grossman et al., 2012; Grossman et al., 2013; Zhuo et al., 2012), and autism 

(Lazar et al., 2014).   

 Since the kurtosis tensor is a pure diffusion measure, without any explicit connections to 

specific properties of brain tissue microstructure, a clear-cut biophysical interpretation of the 

information it provides for a particular circumstance (e.g., brain region or disease) is often 

challenging (Rudrapatna et al., 2014). It may therefore be useful to combine the kurtosis tensor 

with tissue models that relate the diffusion information of the kurtosis tensor to particular 

microstructural features of cellular compartments. With the help of such models, the biological 

significance of observed changes in kurtosis can be better understood. In addition, the model 
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parameters may serve as candidate biomarkers for microstructural alterations associated with 

disease.   

 One such tissue model for the kurtosis tensor has been previously proposed, although its 

applicability is limited to white matter for which the axons are largely unidirectional (Fieremans 

et al., 2011). An example of the relationships implied by this model is the formula 

3max

max




K

K
faxon ,                                                                                                                            (1) 

where axonf is the fraction of MRI-visible water contained within axons and maxK  is the maximum 

value of the diffusional kurtosis as a function of the diffusion direction. This model has already 

been applied to Alzheimer’s disease (Benitez et al., 2014; Fieremans et al., 2013), stroke (Hui et 

al., 2012), and autism (Lazar et al., 2014). 

 The purpose of this study is to develop a more general computational framework for 

relating the kurtosis tensor to tissue models of brain microstructure. This method, which we call 

kurtosis analysis of neural diffusion organization (KANDO), accommodates a variety of models 

that are suitable for both white matter and gray matter. The models are assumed to consist of 

ensembles of non-exchanging, Gaussian compartments. This is a plausible class of models that 

has been widely used to describe non-Gaussian diffusion in brain (Alexander et al., 2002; Assaf 

et al., 2004; Fieremans et al., 2011; Jespersen et al., 2007; Panagiotaki et al., 2009; Panagiotaki 

et al., 2012; Wang et al., 2011; White et al., 2013; Zhang et al., 2012). While the effects of water 

exchange between compartments are not incorporated explicitly, their consideration is important 

for a proper interpretation of these models.  

 The essence of KANDO is that the model parameters are determined by minimizing a 

cost function that corresponds to the square of the Frobenius norm (Signoretto et al., 2011) of the 
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difference between the measured kurtosis tensor and the model kurtosis tensor. This contrasts 

with the algebraic approach utilized by Fieremans and coworkers (Fieremans et al., 2011) in that 

KANDO requires nonlinear optimization. However, KANDO provides substantially more 

flexibility than is possible with purely algebraic methods, allowing for a much broader range of 

model types. Moreover, one can easily construct specific models for KANDO that yield results 

closely matching those of Fieremans and coworkers for white matter with unidirectional axons. 

In this sense, KANDO may be regarded as an extension of this prior work.  

 KANDO is quite analogous to the conventional method of fitting tissue models to the 

diffusion MRI (dMRI) signal (Assaf et al., 2004; Ferizi et  al., 2013; Jespersen et al., 2007; 

Panagiotaki et al., 2009; Panagiotaki et al., 2012; Wang et al., 2011; White et al., 2013; Zhang et 

al., 2012) with a key difference being that KANDO utilizes only the kurtosis and diffusion 

tensors as inputs, rather than the full dMRI signal, in order to facilitate a clearer biophysical 

interpretation of the kurtosis tensor information. KANDO is particularly suitable as an adjunct 

for DKI, which is specifically designed for estimating the kurtosis and diffusion tensors. One 

distinction between KANDO and tissue modeling based on fits to the dMRI signal is that 

KANDO does not require the specification of imaging parameters, such as diffusion gradient 

directions and b-values, which may help to reduce the dependence on experimental details of 

results obtained with KANDO. Nonetheless, KANDO estimates for model parameters may be 

indirectly affected by imaging parameters, as these can influence the accuracy of the measured 

diffusion and kurtosis tensors (Jensen and Helpern, 2010). As KANDO only includes 

information encompassed by the kurtosis and diffusion tensors, it may be insensitive to certain 

microstructural features that affect the full signal. 
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 The main goal of this article is to describe the general theory underlying KANDO. In 

addition, KANDO is illustrated for three simple models intended to represent white matter and 

gray matter. For these models, exemplary results are given based on DKI data obtained for 

healthy human volunteers. In addition, numerical simulations are described that examine 

potential sources of errors in parameter estimates obtained with KANDO.  

Theory 

General framework 

 A fundamental assumption of KANDO is that the tissue model consists of 1N  non-

exchanging water compartments. Each individual compartment is also assumed have Gaussian 

diffusion with its dynamics being completely determined by its diffusion tensor. Let the diffusion 

tensor for the nth compartment be indicated by )(n
D  and the corresponding water fraction by nf . 

Here the water fractions are relative only to water that is visible with dMRI. Thus some water 

pools with short T2, such as water within myelin (Stanisz et al., 1999), might be excluded from 

the model, depending on the echo time of the dMRI experiment. It should be noted that the total 

diffusion dynamics of a model with two or more Gaussian compartments will generally be non-

Gaussian, as the sum of two or more Gaussian distributions is a non-Gaussian distribution except 

for the special case that all the distributions are identical.  

 It is physically appealing to associate the model compartments with cellular 

compartments of the tissue microstructure, and this is generally justified for cells with low 

permeability plasma membranes. For example, water within myelinated axons has an exchange 

time with the surrounding extracellular space that is long compared to typical diffusion times 

used for dMRI (Nilsson et al., 2013), and thus this compartment can plausibly be approximated 

as non-exchanging. However, other cell types, such as astrocytes, may have substantially shorter 
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exchange times (Badaut et al., 2011; Solenov et al., 2004). When the exchange time is small 

compared to the diffusion time, a cellular compartment can be regarded as being in fast exchange 

with the extracellular space, and it is then effectively part of a larger composite compartment that 

includes the extracellular space and possibly other cellular compartments also in fast exchange. 

As there is currently limited knowledge of the exchange times for glial cells and unmyelinated 

neurites, the precise correspondence between model and cellular compartments may not always 

be self-evident. When the exchange and diffusion times are comparable, the model 

compartments can take on a more ambiguous “apparent” status.  

 The total diffusion tensor for the model is  





N

n

n

nf
0

)(
DD ,                                                                                                                              (2) 

where the 1N compartments are numbered from 0n  to Nn   and with the water fractions 

being normalized so that 





N

n

nf
0

1 .                                                                                                                                       (3)                                 

D  is regarded as a measured quantity that is a fixed input from a modeling perspective. It is 

convenient to introduce the “reduced” diffusion tensors defined by 

DD

n
n

)(
)(and

D
Δ

D
Δ  ,                                                                                                   (4) 

where 3/)(DTrD   is the mean diffusivity for the total system. These reduced tensors are 

dimensionless and serve to simplify the mathematical expressions that follow. In terms of the 

reduced tensors, Eq. (2) takes the form 
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



N

n

n

nf
0

)(
ΔΔ .                                                                                                                               (5) 

Since Δ  depends only on D , it is also a given input for KANDO.  

 Let us now assume that the reduced diffusion tensors for compartments Nn ,,2,1  , as 

well as their corresponding water fractions, are specified functions of a set of M  model 

parameters ),,,( 21 Maaa   so that we have  m

n a)(
Δ  and  mn af , for Nn ,,2,1  . These 

functions would be based on the biophysical assumptions for the water diffusion dynamics in 

brain tissue that one wishes to employ. By applying Eqs. (3) and (5), we also have 

   



N

n
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1

0 1 ,                                                                                                                 (6) 
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1

ΔΔ

Δ ,                                                                                               (7) 

which determines 0f and )0(
Δ in terms of the model parameters.  

 Here the compartment for 0n  plays a special role in that its properties are inferred 

from Eqs. (6) and (7) rather than being modeled directly. This “slack” compartment should be 

chosen so that its water fraction 0f  is unlikely to vanish, as that would lead to singularities in the 

KANDO optimization procedure described below. In addition, it may be convenient for the slack 

compartment to represent a component of brain tissue that is less amenable to detailed modeling 

(e.g., the extracellular space). 
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 As for D  and Δ , the measured kurtosis tensor for the total system, W , is considered to 

be a known quantity, as determined for example with DKI. On the other hand, the total kurtosis 

tensor for the model, mod
W ,  is related to the reduced diffusion tensors by (Lazar et al., 2008) 

                

 ,
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)()()()()()(mod
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klm
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ijmnmijkl aaaaaaafaW




                                (8)                    

with ij ,
)(n

ij , and 
mod

ijklW representing the components of Δ , )(n
Δ , and mod

W , respectively. The 

component indices for all the tensors run from 1 to 3. mod
W  is therefore a specified function of 

the model parameters ma . 

 The basic computational problem of KANDO is to optimize the model parameters ma  in 

order to minimize the cost function 

 
2

mod
3

1,,,

ijklmijkl

lkji

WaWC  


                                                                                                          (9) 

so that the model and measured kurtosis tensors are as “close” as possible. This cost function 

simply corresponds to the square of the Frobenius norm of the difference between the predicted 

and measured kurtosis tensors. The Frobenius norm is the natural extension to tensors of the 

familiar 2l vector norm (Signoretto et al., 2011).  

 Since the kurtosis tensor has 15 independent degrees of freedom, the number of model 

parameters should, in principle, be chosen to be no more than this. In practice, the number of 

model parameters would usually be substantially less. In most cases, minimization of C  

corresponds to a nonlinear optimization problem. If the number of model parameters is modest, 

such problems can often be conveniently solved using standard numerical algorithms, although 

computational challenges such as multiple local minima may well occur. For the special case of 
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completely isotropic tissue, the kurtosis tensor has only a single independent degree of freedom, 

and KANDO therefore can only support a single model parameter. The same can also hold true 

for nearly isotropic tissue, such as gray matter, as the observed anisotropy may largely reflect the 

effects of signal noise. 

 In order that the model parameters correspond to physically meaningful diffusion 

dynamics, the minimization of C  would usually be subject to constraints that ensure the reduced 

diffusion tensors )(n
Δ are semi-positive definite and that the water fractions lie in the range 

.10  nf  Imposing additional conditions, such as maximum values for diffusivities, may also 

be of value. 

 Because Eq. (5) is used in the construction of the function  mijkl aW mod
, the total diffusion 

tensor for the model will always be exactly equal to the measured diffusion tensor. The model 

prediction for the kurtosis tensor, however, will differ from the measured kurtosis tensor, except 

for the exceptional circumstance that the cost function can be reduced to zero.   

 From minimizing C , one obtains estimates for the model parameters ma , which by 

design should reflect certain microstructural tissue properties. In addition, KANDO yields 

estimates for the volume fractions of all the compartments, as well as their individual diffusion 

tensors. In this way, the microstructural organization of the diffusion dynamics is characterized. 

For well-conceived models, there should typically be a unique global minimum for C  that yields 

a unique set of model parameters.  

 In the above, we have used a finite number of compartments denoted with the discrete 

index n . However, it is straightforward to generalize this KANDO formalism to include an 



11 

 

infinite number of compartments denoted with a continuous index. This is useful, for example, in 

modeling neurites with a continuous distribution of orientations.  

Example 1: white matter with unidirectional axons 

 As a first example of KANDO, we consider a model for white matter with unidirectional 

axons, as illustrated in the first panel of Fig. 1. The physical assumptions underlying this model 

are essentially the same as those for the algebraic approach considered by Fieremans and 

coworkers (Fieremans et al., 2011) , who have provided a detailed discussion of their validity. 

 Since two compartments are considered, we have 1N . The slack compartment is taken 

to represent both water in the extracellular space and water in glial cells, which are treated as a 

single composite compartment, and the 1n  compartment is taken to represent water within 

axons. Water within myelin is assumed to not contribute significantly to the dMRI signal and is 

therefore neglected.  

 The intra-axonal water for the 1n  compartment is regarded as being confined to thin 

cylinders oriented parallel to the principal eigenvector, e , of the total diffusion tensor D . This 

principal eigenvector, corresponding to the largest eigenvalue of D , is normalized so that 1e . 

Because of the thin cylinder approximation, the reduced diffusion tensor components for the 

1n  compartment can be written as   

  jimij eeaa 1

)1(  ,                                                                                                                          (10) 

where ie  is a component of e . The intra-axonal diffusivity then vanishes for directions 

perpendicular to e , and the intrinsic intra-axonal diffusivity (i.e., the diffusivity along the 

cylinder axis) is *

1 DaD  . 
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 As discussed in the Appendix, the axonal water fraction for this model may be estimated, 

depending on which assumptions are made, from the total kurtosis maximized over either all 

diffusion directions or over just diffusion directions that are perpendicular to e , as indicated by 

Eqs. (A.22) and (A.23). Thus we set 

3
or

3 max,

max,

max

max
1








K

K

K

K
ff axon ,                                                                                        (11) 

with maxK being the global maximum for the total kurtosis and with max,K being the maximum 

over directions perpendicular to e . The option using maxK may at times be the more accurate 

estimate, as it represents the true global maximum, but the option using max,K is based on milder 

assumptions and is therefore potentially more foolproof (see last sentence of Appendix). While 

prior work has only utilized the maxK  option (Benitez et al., 2014; Fieremans et al., 2013; 

Fieremans et al., 2011; Gong et al., 2014; Hui et al., 2012; Lazar et al., 2014), we consider both 

in this study. Since maxK  and max,K  are determined by D  and W , these are known quantities, as 

then is 1f . As a consequence, this model has a single free model parameter, 1a , so that 1M . 

 From Eqs. (6) and (11), we have 

3

3
or

3

3
1

max,max

10



KK

ff ,                                                                                      (12) 

implying that 0f  is also independent of 1a , and from Eq. (7) we have 

    mm af
f

a )1(

1

0

)0( 1
ΔΔΔ  .                                                                                                      (13) 

Combining Eqs. (8), (10) and (13) then yields 
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eeeeafaW
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
               (14)                    

Thus mod
W  depends quadratically on 1a , and as then follows from Eq. (9), the cost function C  

is a quartic polynomial in 1a . Note that 1a  is the only degree of freedom for mod
W , with the 

other parameters in Eq. (14) being fixed by the measured diffusion and kurtosis tensors. In order 

to ensure that the reduced diffusion tensors for the two compartments are both semi-positive 

definite, the minimization of C  should be carried out subject to the constraint 

1

1
10

fD
a


 ,                                                                                                                               (15) 

where 1  is the largest eigenvalue of D .  

 An additional optional constraint is requiring the intrinsic intra-axonal diffusivity to be 

less than or equal to a set maximum value, *

maxD , which can be expressed as 

D

D
a

*

max
1  .                                                                                                                                   (16) 

For example, one could choose 0.3*

max D μm
2
/ms so as to be equal the free diffusivity of water 

at body temperature (Holz et al., 2000). This extra condition may be helpful in reducing outliers 

arising from noise, imaging artifacts, and partial volume effects.  

Example 2: white matter with crossing fibers 

 In white matter regions with crossing fibers, a single direction is inadequate to 

characterize the axonal geometry. By calculating the diffusion orientation distribution function 

(dODF), multiple fiber directions can be detected using dMRI, with the fiber directions 

corresponding to the dODF maxima (Lazar et al., 2008; Tuch, 2004; Wedeen et al., 2005). 
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Recently, an approximate analytical expression for the dODF in terms of the kurtosis and 

diffusion tensors has been derived (Jensen et al., 2014a). Fiber directions obtained with this 

“kurtosis dODF” may thus be incorporated into KANDO for the modeling of white matter with 

fiber crossings. 

 Here we consider the case where two fiber bundles intersect within a given voxel (see 

Fig. 1, second panel). Assume that the fiber directions are given by the vectors )1(
v and )2(v . As 

these can be determined from D  and W , via the kurtosis dODF, )1(
v and )2(v may be treated as 

fixed inputs for KANDO. The KANDO compartments are then the extra-axonal space (slack), 

axons oriented in the direction )1(
v ( 1n ) and axons oriented in the direction )2(v ( 2n ), and 

so we have 2N . Myelin water is neglected, as for Example 1. The magnitudes of both 

direction vectors are normalized to unity. We assume that the direction )1(
v corresponds to the 

larger of the dODF maxima and hence to the dominant fiber direction. Since the kurtosis dODF 

typically detects relatively few voxels with more than two intra-voxel fiber directions (Jensen et 

al., 2014a), this example is potentially applicable to many white matter regions. This is 

assuming, of course, that the kurtosis dODF provides an adequate description of the fiber 

architecture. 

 Again using the thin cylinder approximation, the components of the reduced diffusion 

tensors for compartments 1 and 2, are given by 

  (1)(1)

1

)1( vv jimij aa                                                                                                                        (17) 

and 

  (2)(2)

1

)2( vv jimij aa  ,                                                                                                                     (18) 
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where (1)vi  indicates a component of )1(
v and (2)vi indicates a component of )2(v . The intrinsic 

intra-axonal diffusivity is then 1

* aDD   for both compartments.  

 The total axonal water fraction, 21 ff  , is determined by the total kurtosis, K , in a 

direction orthogonal to both )1(
v and )2(v , as discussed in the Appendix. Specifically,  

3
21








K

K
fffaxon .                                                                                                              (19)                                                                                                         

as follows from Eq. (A.15). We can then choose 

  21 aaf m  ,                                                                                                                                  (20)                                                                                                         

which together with Eq. (19) implies that  

  22
3

a
K

K
af m 






                                                                                                                     (21)                                                                                                         

and that 2M . The water fraction for the slack compartment must be 

3

3
1 210




K
fff ,                                                                                                             (22)                                                                                                         

which is a fixed parameter, and the reduced diffusion tensor for the slack compartment is 

          mmmmm aafaaf
f

a )2(

2

)1(

1

0

)0( 1
ΔΔΔΔ  ,                                                                    (23) 

as follows from Eq. (7).  

 With these results and the help of Eq. (8), )(mod

maW  for this model is readily 

constructed, and its components are seen to be multivariate polynomials of degrees up to 4. This 

implies that the cost function C  is a multivariate polynomial of degree 8.  
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 In minimizing C , one should impose constraints to guarantee that the parameters 
1a  and 

2a are in physically allowed ranges. To specify these conditions, it is convenient to introduce the 

pair of vectors 



 


4

)2()1(
)( vv

v ,                                                                                                                         (24) 

where  

 )2()1(1
2

1
vv  .                                                                                                                   (25) 

One may easily verify that 1)( v  and 0)()(  
vv . Therefore, )(v and )(v  constitute a set of 

orthonormal basis vectors that span the plane containing )1(
v and )2(v . Let us also define 

  )()( 

  Δvv
T

,                  )()( 

  Δvv
T

 ,   and                   )()( 

  Δvv
T

.                 (26) 

The required constraints on 1a and 2a can then be written as 

0

1
1

0
f

a



  ,                                                                                                                      (27) 

02
0 1

2

1
fa

f



                                                                                                                    (28) 

and 

        0101

2

201 1121 fafaafa    .                                  (29) 

The lower bound of Eq. (28) is based on the assumption that )1(
v is the dominant fiber direction. 

The final condition of Eq. (29) is needed to ensure that 
)0(

Δ is semi-positive definite. The 

constraint of Eq. (16) may be additionally imposed to further restrict the allowed values of 1a . 
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 This model is also suitable for voxels with a single fiber direction, as this corresponds to 

the special case for which 02 f . However in such cases, 
K is not well defined, and so in 

Eq. (19), we use the maximum kurtosis sampled over all directions perpendicular to )1(
v  for 

estimating the axonal water fraction, rather than 
K .  

Example 3: gray matter 

For gray matter, we model the intra-neurite space (i.e., both axons and dendrites) with 

isotropically oriented thin cylinders (see Fig. 1, third panel). We thus have 

      ,,
*

),(

jimij uu
D

D
a  ,                                                                                                   (30) 

with   ,iu  being a component of the direction vector 

            cosˆsinsinˆcossinˆ, zyxu  .                                                                     (31) 

Here   ,  are spherical coordinates and  zyx ˆ,ˆ,ˆ  represent Cartesian unit vectors. In contrast to 

the previous two examples, the intrinsic intra-neurite diffusivity *D  is taken as a given. This is 

because, as previously noted, KANDO only supports a single model parameter for isotropic 

geometries and because 0f  cannot be determined directly from the measured kurtosis tensor as 

there is no direction perpendicular to all of the neurites. In Eq. (30), the discrete index n  has 

been replaced with the continuous variables   ,  in order to allow for a continuous angular 

distribution of orientations. Thus the intra-neurite space formally consists of an infinite number 

of Gaussian compartments. 

 For the neurite water fraction in a specified direction, we choose 

 



4

1
,

a
af m                                                                                                                                (32) 
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so that all directions have equal weight as appropriate for an isotropic tissue. For the slack 

compartment, Eq. (6) then yields 

  10 1 aaf m  ,                                                                                                                             (33) 

and Eq. (7) yields  

  










 ijijmij

D

Da

a
a 

31

1
Δ

*

1

1

)0( ,                                                                                                (34) 

where ij  is the Kronecker delta. In deriving Eqs. (33) and (34), the sums over the index n  have 

been replaced with an angular integration over the spherical coordinates   , .  

 By combining with Eqs. (33) and (34) with Eq. (8), we then obtain 
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                   (35)   

The KANDO optimization for this case will thus be the minimization of a rational function in the 

single parameter 1a . To guarantee a physical solution, we must impose the constraints 

10 1  a                                                                                                                                      (36) 

and  

*

3
1

3

D
a


 ,                                                                                                                                     (37) 

where 3  is the smallest eigenvalue of D .  
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Methods 

Subjects 

 For demonstrating KANDO, two healthy volunteers (male, 26 and 52 years old) were 

recruited. These subjects were scanned with informed consent approved by the Institutional 

Review Board of the Medical University of South Carolina.  

Magnetic resonance imaging 

 Both volunteers were scanned on a 3T Siemens TIM Trio MRI scanner (Siemens 

Healthcare, Erlangen, Germany) with a 32-channel transmit/receive head coil. Two sets of dMRI 

experiments were performed with 64 diffusion encoding directions using a vendor-supplied, 

single-shot, twice-refocused, spin-echo echo planar imaging sequence. Axial diffusion-weighted 

images (DWIs) were acquired with 3 b-values (0, 1000 and 2000 s/mm
2
) and number of 

excitations (NEX) = 1 (NEX = 10 for b = 0). Other imaging parameters were: slice thickness = 

2.7 mm (0 mm gap), number of slices = 40, repetition time/echo time = 5500/102 ms, field-of-

view = 222 × 222 mm
2
, acquisition matrix = 82 × 82, image resolution = 2.7 × 2.7 mm

2
, 

bandwidth/pixel = 1355 Hz, parallel imaging acceleration factor = 2 (phase encoding), and 

acquisition time ≈ 14 minutes. This corresponds to a standard DKI protocol (Jensen and Helpern, 

2010). 

Data processing 

 Diffusion and diffusional kurtosis tensors were calculated for each subject with the in-

house software Diffusional Kurtosis Estimator (Tabesh, 2012; Tabesh et al., 2011) on a voxel-

by-voxel basis by using the full set DWIs. Parametric maps for D , axial diffusivity || , radial 

diffusivity  , fractional anisotropy (FA), and MK were subsequently obtained from these 

tensors.  
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 All KANDO optimizations were performed on a voxel-by-voxel basis using MATLAB 

(Mathworks, Natick, MA, USA) for each of the three examples described above. In order to 

ensure that a global optimum was found, an exhaustive search strategy over the physically viable 

parameter space (as defined by the constraints) was employed for minimization of the cost 

function C . For Examples 1 and 3, C  was evaluated for 1000 parameter space points/voxel, 

while for Example 2, 10,000 points/voxel were used. To process the full dataset for one subject  

(i.e., 82×82×40 voxels) required about 500 s for Example 1, 7700 s for Example 2, and 400 s for 

Example 3, using a quad core, 2.2 GHz computer with 16 GB RAM. Example 2 was more 

computationally intensive due to the greater number of free parameters.  

 For Example 2, the kurtosis dODFs were evaluated with a radial weighting factor of 4  

(Jensen et al., 2014a). In voxels for which the dODF detected two or more fiber directions, the 

two directions corresponding to the largest dODF maxima were selected. In voxels for which the 

dODF detected a single direction, 2f  was set to zero, and to estimate 0f , K in Eq. (22) was 

replaced with the maximum kurtosis optimized over directions perpendicular to )1(
v . For both 

Examples 1 and 2, the additional constraint of Eq. (16) was imposed with 0.3*

max D μm
2
/ms in 

order to reduce outliers due to noise, imaging artifacts, and partial volume effects. For Example 

3, the intrinsic intra-neurite diffusivity was set to 0.1* D  μm
2
/ms, as this was considered to be 

a plausible value based on prior work (Fieremans et al., 2011).  

Region-of-interest analysis 

 Three multi-slice region-of-interests (ROIs) were identified to represent presumptive 

white matter with unidirectional axonal fiber bundles (ROI 1), white matter (ROI 2), and gray 

matter (ROI 3). ROI 1 was defined by 5.1D  μm
2
/ms, 15.0FA  , 0.1MK  and   3|| ; 
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ROI 2 was defined by 5.1D  μm
2
/ms, 15.0FA   and 0.1MK ; ROI 3 was defined by 

5.1D  μm
2
/ms, 15.0FA  and 0.1MK . Note that ROI 1 is a subset of ROI 2. ROI 1 was 

used for the analysis of Example 1, ROIs 1 and 2 were used for the analysis of Example 2, and 

ROI 3 was used for the analysis of Example 3. The restriction 5.1D  μm
2
/ms was imposed to 

exclude voxels containing substantial amounts of cerebral spinal fluid (CSF). All of the ROIs 

included voxels from 26 slices, for each subject, that covered the majority of the cerebrum. 

 In order to obtain mean values for the model parameters, the voxels from the two subjects 

were pooled and voxelwise averages were computed. ROI 1 included a total of 1064 + 1412 = 

2476 voxels from the two subjects, while ROI 2 had 13,156 + 12,178 = 25,334 voxels and ROI 3 

had 14,176 + 13,307 = 27,483 voxels. For ROI 1, the kurtosis dODFs detected three or more 

fiber directions in 2.0% of the voxels, while for ROI 2, 3.4% of the voxels had three or more 

directions. Thus, most of the voxels considered were consistent with the assumptions of 

Example 2. The standard deviations for the full set of voxels corresponding to a given ROI were 

used to indicate the uncertainties in the mean values.  

Numerical simulations 

 When the assumptions of a KANDO model differ from the true tissue properties, errors 

in the KANDO estimates for the model parameters can be expected. One such potential source of 

error is CSF contamination. To illustrate the potential effects of this, numerical simulations were 

performed for test models wherein CSF partial water fractions, CSFf , were added with values 

ranging from 0 to 0.3. The diffusion for the CSF component was assumed to be isotropic with a 

diffusivity of 3.0 μm
2
/ms. Three test models were constructed to be consistent with the 

assumptions of Examples 1, 2, and 3, except for the added CSF, and the model parameters were 
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then estimated using the KANDO method. In this way, the errors in the KANDO parameters 

caused by the CSF were determined.  

 For all three test models, *D was set to 1.0 μm
2
/ms. For the Example 1 test model, the 

three eigenvalues for 
)0(

D were chosen to be 2.0 μm
2
/ms, 0.8 μm

2
/ms, and 0.8 μm

2
/ms, while the 

water fraction for the slack compartment was set to 0.5 (when 0CSFf ). These values are 

similar to the results obtained by Fieremans and coworkers (Fieremans et al., 2011). For the 

Example 2 test model, the eigenvalues for 
)0(

D were chosen to be 1.4 μm
2
/ms, 1.4 μm

2
/ms, and 

0.8 μm
2
/ms, and the water fraction for the slack compartment was again set to 0.5. Two cases for 

Example 2 were considered, one in which )1(
v and )2(v had a relative angle of 90° (Case A) and 

one in which )1(
v and )2(v  had a relative angle of 75° (Case B). In applying KANDO, these 

vectors were estimated from the kurtosis dODF, which can potentially yield directions that differ 

somewhat from those specified (Jensen et al., 2014a). For Example 3, all three test model 

eigenvalues for 
)0(

D  were set to 1.2 μm
2
/ms, so that the slack compartment was isotropic. Two 

cases were analyzed for Example 3, one with the true slack compartment water fraction set to 0.5 

(Case A) and one with the slack compartment water fraction set to 2/3 (Case B). 

 For Example 3, as second set of simulations were performed in order to investigate the 

effect of a difference between the true and assumed values for intrinsic intra-neurite diffusivity

*D . For the test model, we set **

testDD   and considered values for *

testD ranging from 0 to 

2 μm
2
/ms. In applying KANDO, the assumed value for *D was 1 μm

2
/ms, so that errors in the 

KANDO parameter estimates could be expected whenever 1* testD . As for the first set of 

simulations, the test model eigenvalues for 
)0(

D  were assumed to be 1.2 μm
2
/ms. Both Case A, 

with the slack compartment water fraction set to 0.5, and Case B, with the slack compartment 



23 

 

water fraction set to 2/3, were analyzed. No CSF contamination was included for this second set 

of simulations. 

 A final set of simulations were performed for Example 3 in order to illustrate the 

difference between parameter estimates obtained with KANDO and those derived from a direct 

fit to the dMRI signal. The same two cases were examined, as for the simulation described above 

with a range of *

testD values. The exact signal  bS , for b-values of 0, 1000, and 2000 s/mm
2
, was 

calculated from 

         







 bD

bD
fDbfSbS test

test

e

*

*00 erf
4

1exp0


,                                                        (38) 

where eD  is the mean extra-neurite diffusivity (set, as above, to 1.2 μm
2
/ms) and the term with 

the error function gives the signal for the neurite compartment in the thin cylinder limit 

(Yablonskiy and Sukstankii, 2010). Note that this signal is isotropic so that just a single diffusion 

direction need be considered. The DKI estimates for the total diffusivity and kurtosis are given 

by 
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where 10001 b  s/mm
2
 and 20002 b  s/mm

2
 (Jensen and Helpern, 2010). These estimates 

based on Eqs. (39) and (40) were used in order to simulate a real experimental procedure. Since 

they only approximate the true total diffusivity and kurtosis, some inaccuracy in the model 
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parameter estimates may be attributable to errors in DKID and DKIK . However, this error could, in 

principle, be made arbitrarily small by adjusting the choice of b-values (Jensen and Helpern, 

2010). The KANDO analysis for Cases A and B was performed exactly as for the simulations 

described in the previous paragraph, with 1* D  μm
2
/ms, except that the prior calculations used 

exact rather than approximate values for the total diffusivity and kurtosis. The parameters 

estimates for a direct fit to the signal were obtained by minimizing 

         2

22mod

2

11mod bSbSbSbSCsignal  ,                                                                           (41) 

where 

         
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
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1exp0


.                                                        (42) 

The model signal  bSmod  differs from the exact signal of Eq. (38) in that the intrinsic intra-

neurite diffusivity has an assumed value of 1* D  μm
2
/ms, while for the exact signal, the intra-

neurite diffusivity ranges from 0* testD  to 2 μm
2
/ms. The minimization of signalC  has two free 

parameters, 0f and eD , and was performed by an exhaustive search of parameter space. The 

number of free parameters is greater for the direct signal model fit than for the KANDO analysis 

because of the introduction of the slack compartment for KANDO. 

Results 

Human data  

 Table 1 shows the mean values, with standard deviations, over the three ROIs of selected 

model parameters computed for Examples 1, 2, and 3 based on the human DKI data. In 

Example 1, results for both the maxK and max,K  options for calculating 1f  are given (see Eq. (11)). 

Also shown are results for ROI 1 obtained with the Fieremans model (Fieremans et al., 2011). 
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For all the models, the neurite water fraction is given by 01 f . For Examples 1 and 2, as well as 

for the Fieremans model, the neurite water fraction is the same as the axonal water fraction, as 

there are no dendrites in white matter.  For Example 1 and the Fieremans model, we also have 

01 1 ff  . The axonal water fraction for Example 1 with the maxK option is identical to the 

axonal water fraction for the Fieremans model. The extra-neurite mean diffusivities are 

calculated from 3/)( )0(
DTrDe  . For ROI 1, the extra-neurite axial diffusivity, ||,eD , is equal to 

the largest eigenvalue of 
)0(

D , while the extra-neurite radial diffusivity, ,eD , is the average of 

the two smaller eigenvalues of 
)0(

D . For ROI 2, ,eD  corresponds to the smallest eigenvalue of

)0(
D , so that it indicates the diffusivity in a direction that is approximately perpendicular to any 

fiber crossings. Representative parametric maps for a single axial slice are displayed in Fig. 2.  

 The voxelwise average over ROI 1 of the ratio for 1f  as obtained with Eq. (11) using 

maxK  to 1f  as obtained with Eq. (11) using max,K  is 1.007 ± 0.011, indicating that there is little 

difference for these two approaches in voxels with unidirectional axonal bundles. The 

corresponding voxelwise averages for *D , eD , ||,eD , and ,eD , as obtained using the Example 1 

model, are 1.007 ± 0.013, 1.004 ± 0.008, 1.002 ± 0.004, and 1.007 ± 0.015 respectively. This 

close agreement suggests that the condition of Eq. (A21) is indeed satisfied for most voxels 

within ROI 1. 

 Although the 1f  value obtained using maxK  in Eq. (11) is identical to the 1f  value for the 

Fieremans model, the *D , eD , ||,eD , and ,eD  values for Example 1, using the maxK  option, do 

differ somewhat from the predictions of the Fieremans model. The voxelwise averages over ROI 

1 of the *D , eD , ||,eD , and ,eD ratios for these two models are 0.864 ± 0.115, 1.040 ± 0.037, 
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0.993 ± 0.054,  and 1.113 ± 0.066. Thus the Fieremans model predicts higher *D and ||,eD values 

and lower eD  and ,eD values, as is also shown by Table 1. 

Numerical simulations 

 The effects of CSF contamination on the estimated neurite water fraction ( 01 f ), the 

intrinsic intra-neurite diffusivity ( *D ), and the mean extra-neurite diffusivity ( eD =MDe) are 

shown in Fig. 3. All of these parameters are altered by the presence of CSF, with the exception 

of *D for Example 3 which is constant by fiat. For the data plotted, the maximum absolute error 

for 01 f  is 0.136 while the maximum relative error is 39%, the maximum absolute error for *D  

is 0.221 μm
2
/ms while the maximum relative error is 22%, and the maximum absolute error for 

eD  is 1.388 μm
2
/ms while the maximum relative error is 116%. Thus of these parameters, the 

mean extra-neurite diffusivity is the most sensitive to CSF partial volume effects.  

 In Fig. 4, 01 f , *D , and eD  are plotted as functions of *

testD for Example 3. For *D =

*

testD = 1.0 μm
2
/ms, the KANDO estimates equal the true values. For the range 0.5 μm

2
/ms ≤ 

*

testD ≤ 1.5 μm
2
/ms, the maximum absolute error for 01 f is 0.143 while the maximum relative 

error is 29%, the maximum absolute error for *D is 0.5 μm
2
/ms while the maximum relative 

error is 50%, and the maximum absolute error for eD  is 0.215 μm
2
/ms while the maximum 

relative error is 18%. Not surprisingly, of the three estimated parameters, *D  has the largest 

relative error. 

 A comparison of 01 f  and eD  estimates for Example 3 as obtained with KANDO and 

with a direct fit to the signal model of Eq. (42) are shown in Fig. 5. The signal model estimates 

agree with the true values when ** DDtest  , but the KANDO estimates have small errors due to 



27 

 

the use of the approximations of Eqs. (38) and (39) for the total diffusivity and kurtosis. When 

** DDtest  , the estimates from both methods typically depart from the ideal values. The 

dependence of these errors on *

testD  is qualitatively similar for KANDO and the signal model fits, 

but is not identical due to the distinct mathematical formulations of the two approaches. 

Discussion 

 The biophysical interpretation of dMRI data from brain is a challenging inverse problem 

that has been the subject of numerous studies and has employed a variety of tissue models 

(Novikov and Kiselev, 2010; Panagiotaki et al., 2012; Yablonskiiy and Sukstanskii, 2010). In 

this work, the special case of interpreting the information provided by just the kurtosis and 

diffusion tensors has been considered, which is specifically relevant for DKI. In order to further 

this goal, we have proposed the KANDO method. KANDO is a general computational 

framework that can accommodate non-exchanging, multiple Gaussian compartment models, as 

long as the number of model parameters does not exceed the number of independent parameters 

for the kurtosis tensor (which is 15 unless reduced by symmetry). KANDO is similar to 

conventional approaches that utilize tissue models in order to derive microstructural information 

directly from the dMRI signal (Assaf et al., 2004; Ferizi et  al., 2013; Jespersen et al., 2007; 

Panagiotaki et al., 2009; Panagiotaki et al., 2012; Wang et al., 2011; White et al., 2013; Zhang et 

al., 2012). However, by applying modeling to the kurtosis tensor, rather than to the signal, 

KANDO facilitates the biophysical interpretation of this quantity, which may help to better 

understand the changes in kurtosis metrics that have been associated with neuropathology (Hori 

et al., 2012; Steven et al., 2014).  

 KANDO is an example of a modular approach to the modeling of dMRI data in that the 

acquisition of the signal and the tissue modeling are decoupled. The signal is used just to 
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estimate the kurtosis and diffusion tensors, which are well-defined physical quantities with no 

explicit connection to tissue microstructure. KANDO modeling then only uses these two tensors 

and does not directly involve imaging parameters, such as the diffusion gradient directions and 

b-values. Therefore results obtained with KANDO may depend less on the details of the imaging 

protocol and are potentially more reproducible between studies. Since the accuracy of the tensor 

measurements can be influenced by the choice of imaging parameters (Jensen and Helpern, 

2010), there is still an indirect effect of the details of the imaging protocol on KANDO parameter 

estimates, but this can, in principle, be made arbitrarily small. This modular approach also 

supports the independent optimization of data acquisition and tissue modeling. Such a modular 

approach to the modeling is commonly employed for white matter fiber tractography, where the 

diffusion tensor or the dODF is the physical quantity directly estimated from the dMRI signal 

(Lazar, 2010). However, modular approaches have been less frequently applied in the context of 

multiple Gaussian compartment modeling of the microscopic diffusion organization in neural 

tissue. Note that KANDO’s modular structure means that the components of measured diffusion 

and kurtosis tensors are distinguished from the model parameters and regarded as inputs for 

KANDO rather than adjustable parameters. By design, the number of model parameters for 

KANDO equals the number of adjustable parameters determined by minimizing the cost function 

of Eq. (9). 

 By only utilizing the kurtosis and diffusion tensors some of the information contained in 

the dMRI signal is in effect discarded from the analysis. However, the kurtosis and diffusion 

tensors contain the majority of the information obtainable with small diffusion weightings 

(Jensen and Helpern, 2010), and so this loss is likely to be minor when low b-value dMRI 

methods, such as DKI, are employed. In addition, by basing the modeling solely on these two 



29 

 

tensors, KANDO can benefit from the advanced post-processing methods already available for 

DKI (André et al., 2014; Ghosh et al., 2014; Glenn et al., 2014; Kuder et al., 2012; Tabesh et al., 

2011; Masutani and Aoki, 2014; Poot et al., 2010; Tax et al., 2014; Veraart et al., 2013; Veraart 

et al., 2011). 

 KANDO is closely related to the previously proposed method of Fieremans and 

coworkers (Fieremans et al., 2011) that utilizes DKI to model microstructure in white matter 

with unidirectional axons. Indeed, the results obtained with Example 1 are quite similar to those 

for the Fieremans method (see Table 1). Operationally, the Fieremans approach differs from 

KANDO in that it avoids nonlinear optimization by instead solving a set of algebraic equations, 

which leads to a simple and efficient numerical method. However, this algebraic technique is not 

readily generalizable to more complex cytoarchitectures, as found in white matter with fiber 

crossings and in gray matter, which is a primary motivation for developing KANDO. It should 

also be mentioned that in applying the Fieremans method, one typically obtains two formal 

mathematical solutions (one with 1

* D  and one with 1

* D ), with an independent argument 

being invoked to select one as the most likely to be physically relevant. With KANDO, such 

ancillary considerations are entirely avoided. The correctness of the chosen solution for 

Fieremans approach is supported by the close agreement between the Fieremans and KANDO 

results of Example 1.  

 In order to illustrate KANDO, we have given results for three simple models. Example 1 

is essentially a reformulation of the Fieremans white matter model in terms of KANDO and is 

only suitable for white matter regions, such as the corpus callosum, for which the axons are 

largely unidirectional. Example 2 is a more general model that allows for fiber crossings and is 

potentially applicable throughout much of the white matter. Example 3 assumes the intra-neurite 
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space is isotropic, as appropriate for many gray matter regions. The nonlinear optimization 

calculations for Examples 1 and 3 involve only a single free parameter, while the optimization 

for Example 2 involves two free parameters. Because of this small number of variables, the 

numerical minimization of the cost function can be easily accomplished with an exhaustive 

search of parameter space that mitigates potential issues with local minima. However, an 

exhaustive search might not be feasible for more complex models that require additional free 

parameters. In such cases, alternative optimization procedures may be needed. 

 For the white matter models of Examples 1 and 2, the small number of free parameters is 

partly due to the application of Eqs. (11) and (19) that give the axonal water fraction in terms of 

the kurtosis. As discussed in the Appendix, these formulae are a consequence of the thin cylinder 

approximation for axons, so that intra-voxel diffusivity perpendicular to the cylinder axis is taken 

to be zero. For voxels regarded as having a single fiber direction, there is a question as to 

whether it is best to use the maximum of the kurtosis over all directions or over just directions 

perpendicular to the cylinder axis, as discussed in the Appendix. For the algebraic approach of 

Fieremans, one may show that choosing the global maximum option is logically consistent with 

the aforementioned selection of one of two formal mathematical solutions. The same reasoning 

does not necessarily apply to the KANDO examples considered here, as the ancillary 

assumptions included with the Fieremans approach are absent from KANDO. For this reason, we 

have also considered the use of the kurtosis optimized over perpendicular directions. As 

demonstrated in the Appendix, the conditions for the validity of this alternative are less 

demanding than for the global option. One may hence suppose the perpendicular option to be the 

more robust choice for the KANDO white matter models of Examples 1 and 2. Nonetheless, our 
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Example 1 results for human brain show that there is little actual difference in the estimated 

axonal water fractions (see Table 1 and Fig. 2).  

 For the gray matter model of Example 3, it is not possible to predict the neurite water 

fraction directly from the kurtosis, as there is no direction that is orthogonal to all the neurites. 

Therefore, the neurite water fraction is treated as a free parameter that is determined from 

minimization of the cost function C . This is the only free parameter for Example 3, and in 

contrast to Examples 1 and 2, the intrinsic intra-neurite diffusivity *D  is regarded as a given 

input. Fixing the intrinsic intra-neurite diffusivity is necessary, because for isotropic geometries 

the information content of the kurtosis tensor drops from 15 independent parameters to just a 

single parameter (as the kurtosis is the same in all directions). For the results presented in this 

work, we set *D = 1.0 μm
2
/ms. However, future work may suggest alternative values. For 

example, one might set the gray matter *D equal to the value found with KANDO modeling in 

adjacent white matter regions, for which *D need not be set a priori. Ex vivo experiments 

suggest that *D may be similar for white and gray matter (Jespersen et al., 2007). However, for 

brain with focal gray matter pathology, the need specify a value for *D may preclude the use of 

models such as that of Example 3.  

 For Examples 1 and 2, it is probably well justified to regard water within myelinated 

axons to be part of the water pool captured by the parameter 01 f , as water exchange times for 

myelinated axons are likely to be long in comparison with typical dMRI diffusion times (Nilsson 

et al., 2013). However, some white matter axons are not myelinated, and it is less clear to what 

degree their water will contribute to 01 f . For gray matter, the situation is even more nebulous 

as little is known about water exchange times for dendrites and gray matter axons, which are 

mostly unmyelinated. Thus the neurite water fraction calculated with KANDO should be 
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interpreted as an effective water fraction representing water that remains inside the neurites 

during the diffusion time interval of the dMRI experiment. Indeed, our measured values for 

01 f  are significantly smaller than neurite volume fractions for gray matter determined from 

histology (Chklovskii et al., 2002). This could be due to a discrepancy between our choice for  

*D  and the true intra-neurite diffusivity, to water exchange between the intra- and extra-neurite 

spaces, or to a combination of these two possibilities. This illustrates the caution needed when 

interpreting parameter estimates obtained with KANDO, as with most other dMRI modeling 

methods.  

 Particular care should also be exercised when interpreting estimates of 
*D  for Examples 

1 and 2, as these may be affected by differences between the assumed and true axonal 

geometries. For instance, applying the model of Example 1 to a fiber bundle with significant 

curvature may yield systematically low values for 
*D , as axonal curvature can restrict the intra-

neurite diffusion in the direction of the principal diffusion tensor eigenvector.  

 Another assumption of the examples considered here is that the extra-neurite space can 

be treated as a single Gaussian compartment. This presupposes that the diffusion restrictions due 

to glial cell membranes are not sufficient to generate a substantial intrinsic kurtosis. Again there 

is limited hard evidence to support this, although astrocytes are known to express aquaporin 4, 

which may significantly increase their plasma membrane permeability (Badaut et al., 2011; 

Solenov et al., 2004). 

 The three specific models discussed in this paper were chosen primarily as simple 

illustrations of KANDO. The KANDO framework can also be applied to many other similar 

models, including a large fraction of those considered in prior studies. The main difference is 

that, with KANDO, the only experimental inputs are the kurtosis and diffusion tensors, while 
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most prior applications of multiple Gaussian compartment models have used fits to the full dMRI 

signal to determine the free parameters, as illustrated by the results of Fig. 5. Further 

comparisons of KANDO with conventional approaches based on the dMRI signal, for equivalent 

tissue models, would be an interesting topic of investigation. 

 A crucial issue for KANDO, as well as other dMRI modeling approaches, is independent 

validation of the model predictions. One method is to compare estimated compartmental water 

fractions with histologically determined volume fractions. For instance, the axonal water 

fractions obtained with Examples 1 and 2 should be approximately related to the axonal volume 

fraction by  

myelin

axon
axon

V

V
f




1
 ,                                                                                                                       (43)                                                                                                         

where axonV is the axonal volume fraction and myelinV  is the myelin volume fraction. The 

denominator in Eq. (43) is needed to take into account the fact that myelin water usually 

contributes little to the dMRI signal due to the short T2 of myelin (Stanisz et al, 1999). 

Stereological studies have estimated the myelinated axonal volume fraction in (human) white 

matter to be 0.33 ± 0.02 (Tang et al., 1997) and the myelin volume fraction in (rat) white matter 

to be 0.22 ± 0.02 (Yang et al., 2008). Applying these numbers to Eq. (43) yields 42.0axonf  ± 

0.03, which is indeed similar to the result of  01 ffaxon 0.405 ± 0.066 obtained here with 

KANDO for Example 2 and RO1 2 (see Table 1). Nevertheless, a direct comparison of KANDO 

estimates to histological results for the same brain tissue would be more compelling. 

 Aside from the compartment water fractions, the parameters estimated with KANDO all 

pertain to the microscopic organization of the diffusion environment, as encompassed by the 

compartmental diffusion tensors and associated quantities. Since these cannot be validated 
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directly with histology, alternative techniques are required. One method is to utilize numerical 

simulations to test the accuracy KANDO models, as illustrated by the results of Figs. 3 and 4. 

These calculations suggest, for example, that the effects of CSF partial voluming on KANDO 

parameter estimates are most pronounced for the extra-neurite diffusivity. Similar numerical 

methods have frequently been applied to the study of other dMRI tissue models (Fieremans et 

al., 2010; Jespersen et al., 2007; Novikov and Kiselev, 2010; Yablonskiy and Sukstanskii, 2010). 

Another approach is to experimentally test the model predictions for the dMRI signal behavior at 

higher b-values (typically b ≥ 3000 s/mm
2
) than those used for obtaining the kurtosis and 

diffusion tensors (Fieremans et al., 2011). However, if standard single pulsed dMRI is employed, 

disparate tissue models can yield similar or, in principle, even identical dMRI signals for the full 

range of b-values. As a consequence, consistency between a model’s predictions and high b-

value data alone may not always provide a satisfactory level of verification. For additional 

validation of KANDO, double pulsed dMRI could be employed (Jensen et al., 2014b; Lawrenz 

and Finsterbusch, 2013; Shemesh et al., 2010). Double pulsed dMRI yields independent 

diffusion information not obtainable with single pulsed dMRI and is particularly sensitive to 

microscopic anisotropy, as can result from fiber crossings.  

Conclusion 

 KANDO is a computational framework for tissue modeling that uses the kurtosis and 

diffusion tensors as inputs. It accommodates non-exchanging, multiple Gaussian compartment 

models and may help to delineate the microscopic diffusion organization of neural tissue. 

KANDO is particularly suitable as an adjunct to DKI and can be applied to improve the 

biophysical interpretability of DKI-derived diffusion metrics. In addition, parameters estimated 
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with KANDO may serve as candidate biomarkers for neurological disorders in which neural 

microstructure is altered.  
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Appendix 

 Here we derive general results for the water fraction of a diffusion compartment with a 

vanishing diffusivity for at least one direction. These are applicable to white matter models for 

which the axons idealized as thin cylinders and are assumed to have coplanar orientations within 

each voxel. 

 Consider a system consisting of two non-exchanging, but not necessarily Gaussian, 

compartments A and B, with diffusivities  nAD  and  nBD  and kurtoses  nAK  and  nBK  for 

the diffusion direction n . Let us also define moments for compartments A and B as 

   
A

AM


 nrn ,                                                                                                                   (A.1)                                                                                                         

and 

   
B

BM


 nrn ,  ,                                                                                                                (A.2)                                                                                                         

where r  is a diffusion displacement vector and the angle brackets 
A

  and 
B

 represent an 

averaging over the ensemble of water molecules in compartments A and B, respectively. The 

moments for the total system are related to the compartmental moments by 

         nnnrn BAAA MfMfM ,, 1 



  ,                                                                     (A.3)                                                                                                         
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with 
Af being the water fraction for compartment A and with   representing an averaging 

over the full ensemble of water molecules.  

 The compartmental diffusivities and kurtoses are defined by these moments according to  

   nn AA M
t

D ,2
2

1
  ,                                                                                                                 (A.4)                                                                                                         

   nn BB M
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  ,                                                                                                                 (A.5)                                                                                                         
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and 
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where t  is the diffusion time (Jensen and Helpern, 2010). Similarly, the total diffusivity and 

kurtosis are defined by 

   nn 2
2

1
M

t
D                                                                                                                         (A.8)                                                                                                         

and 
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As a consequence, one may easily verify that 

       nnn BAAA DfDfD  1                                                                                               (A.10)                                                                                                         

and that 

                   222
3133 nnnnnn BBAAAA DKfDKfDK  .                         (A.11)                                                                                                         
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 If we assume that  nAD  vanishes for a particular diffusion direction nn  , then 

Eqs. (A.10) and (A.11) in this direction reduce to  

     nn  BA DfD 1                                                                                                              (A.12)                                                                                                         

and  

             22
313 nnnn  BBA DKfDK .                                                               (A.13)                                                                                                         

This in turn implies 

   
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A .                                                                                                               (A.14)                                                                                                         

For the special case that compartment B is Gaussian, we then have   0nBK  and 

 
  3




n

n

K

K
f A .                                                                                                                        (A.15)                                                                                                         

By regarding compartment B as the slack compartment for KANDO, Eq. (A.15) forms the basis 

of Eqs. (11) and (19). Note that compartment A is here taken to represent the ensemble of all the 

KANDO compartments with 1n . 

 For white matter models that idealize axons as thin cylinders, the n direction should be 

chosen so as to be perpendicular to all the axons, as the diffusivity is formally zero in this 

direction due to the thin cylinder approximation. If there are two crossing fiber directions, then 

n is the unique direction orthogonal to both of these directions.  

 When only a single fiber direction is detected, the best choice of n  is not completely 

clear-cut, since there are infinitely many directions orthogonal to the fiber bundle for which 

Eq. (A.15) could, in principle, be applied. To motivate a specific n  for practical calculations, 
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we set   0nBK , as is appropriate for the slack compartment, in which case Eq. (A.11) reduces 

to 

                222
1333 nnnnn BAAAA DfDKfDK  .                                           (A.16)                                                                                                       

By using Eq. (A.10) to eliminate  nBD , one finds 
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This is easily rearranged to give 
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If  nAD  is near zero, then Eq. (A.18) has the linear approximation  
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Thus in the neighborhood of nn  , there is a local maximum in the total kurtosis given by 
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max .                                                                                                                       (A.20)                                                                                                         

Moreover, this will also be a global maximum provided 
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for all directions n . If the kurtosis for compartment A is small in comparison to one, as would be 

the case if A consists thin cylinders that are all nearly aligned with each other, then the condition 

of Eq. (A.21) is essentially    nn DDA 2 , which may be normally expected to hold in white 

matter, as the intra-axonal diffusivity has usually been estimated as small or comparable to the 

total diffusivity. By inverting Eq. (A.20), one finds 
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3max
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
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K

K
f A ,                                                                                                                         (A.22)                                                                                                         

which matches the result of Eq. (1) and has been previously applied by Fieremans and coworkers 

(Fieremans et al., 2011). More conservatively, one could use the maximum perpendicular 

kurtosis, max,K , obtained by only considering directions orthogonal to the estimated fiber 

direction, which leads to the estimate 

3max,

max,








K

K
f A .                                                                                                                       (A.23)                                                                                                         

Applied to KANDO modeling of white matter, Eqs. (A.22) and (A.23) should, in most cases, 

give comparable results. However, Eq. (A.23) may be more foolproof, since the condition of 

Eq. (A.21) is less likely to be violated due to  nAD  generally being small for all orthogonal 

directions.  
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Figure captions 

Figure 1: Schematic illustrating the fiber orientations utilized for Examples 1, 2 and 3. For 

Example 1, the axonal fibers within a given voxel are taken to be unidirectional. Intersecting 

fiber bundles are allowed in Example 2, with up to two distinct directions as determined from the 

kurtosis dODF. An isotropic distribution of axon and dendrite orientations is assumed for 

Example 3, so that all directions are equally probable.   

 

Figure 2: Standard DKI images and KANDO maps for a single axial slice. The first row shows 

the T2-weighted (b = 0) image together with the mean diffusivity (MD = D ), FA, and MK maps. 

The second row shows the total neurite water fraction for Examples 1, 2, and 3. The results 

obtained using both maxK  (Ex1a) and max,K (Ex1b) to estimate 1f  are given with Example 1.  

For these same four cases, the third row shows the intrinsic intra-neurite diffusivity, and the 

fourth row shows the extra-neurite mean diffusivity (MDe = eD ). In Example 1, voxels included 

in ROI 1 are displayed in color; in Example 2, voxels included in ROI 2 are displayed in color; in 

Example 3, voxels included in ROI 3 are displayed in color. The maps for Ex1a and Ex1b are 

nearly identical, demonstrating that choice of whether to use maxK  or max,K  to estimate 1f  is of 

minor practical significance. The intrinsic intra-neurite diffusivity in Example 3 is set a priori to 

a value of 0.1* D  μm
2
/ms. The other KANDO maps are calculated by minimizing the cost 

function of Eq. (9). The calibration bars for the diffusivities are in units of μm
2
/ms, while the 

remaining quantities are dimensionless. 
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Figure 3: Effect of CSF contamination on KANDO estimates of the total neurite water fraction  

( 01 f ), intrinsic intra-neurite diffusivity (
*D ), extra-neurite mean diffusivity (MDe = eD ), as 

derived from numerical simulations. When CSF volume fraction CSFf  vanishes, the plots give 

the true model parameters. As CSFf  increases, the KANDO estimates typically differ from the 

true values, except for 
*D  in Example 3, which is assumed to be fixed. For Example 2, Case A 

corresponds to a fiber crossing angle of 90°, while Case B corresponds to a crossing angle of 

75°. For Example 3, Case A corresponds to 210 f  when 0CSFf , while Case B corresponds 

to 320 f  when 0CSFf . The behavior of estimated neurite water fraction is identical for 

Example 1 and both cases of Example 2; the behavior of 
*D  is identical for both cases of 

Example 3. The effect of CSF partial voluming is most pronounced for MDe. 

 

Figure 4: Effect for Example 3 of a difference between the assumed value of the intrinsic intra-

neurite diffusivity (
*D ) and its true value ( *

testD ) on KANDO estimates of 01 f , 
*D , and MDe, 

as derived from numerical simulations. The solid circles indicate ideal values for **

testDD  . 

Case A corresponds to 210 f  when **

testDD  , while Case B corresponds to 320 f  when 

**

testDD  . The plot of 
*D vs. *

testD  is trivial, as 
*D  is assumed to be fixed for this KANDO 

example. 

 

Figure 5: Comparison of parameter estimates for Example 3 as obtained for KANDO and for a 

direct fit to the signal model of Eq. (42). In all simulations, the assumed intrinsic intra-neurite 

diffusivity was set to 1* D  μm
2
/ms, while the true value varied from 0* testD to 2 μm

2
/ms. 
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Cases A and B are the same as in Fig. 4. The solid circles indicate the ideal values. Estimates 

derived from the direct fit match the exact values for ** DDtest  . The KANDO predictions, 

however, have small errors for ** DDtest  , as the KANDO analysis used approximate values for 

the total diffusivity and kurtosis obtained from the signal, as would be done in a real DKI 

experiment. (The KANDO predications based on the exact diffusivity and kurtosis are given by 

Fig. 4.) When ** DDtest  , the KANDO and signal model predictions deviate from the ideal 

values in distinct but qualitatively similar ways. 
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Table 1 

Estimates (with standard deviations) for selected KANDO parameters obtained from in vivo 

human DKI data.  

 

ROI 1 

Example 1 

with maxK  

ROI 1 

Example 1 

with max,K  

ROI 1 

Fieremans 

model 

ROI 1 

Example 2 

 

ROI 2 

Example 2 

 

ROI 3 

Example 3 

 

1f  
0.515 

(0.079) 

0.512 

(0.079) 

0.515 

(0.079) 

0.492 

(0.085) 

0.357 

(0.101) 
– 

01 f  "  "  "  0.501 

(0.077) 

0.405 

(0.066) 

0.302 

(0.068) 

*D  
[μm

2
/ms] 

1.021 

(0.281) 

1.015 

(0.283) 

1.174 

(0.256) 

1.036 

(0.314) 

0.639 

(0.297) 

1.0 

(assumed) 

eD  

[μm
2
/ms] 

1.527 

(0.205) 

1.520 

(0.206) 

1.467 

(0.193) 

1.488 

(0.217) 

1.358 

(0.149) 

1.089 

(0.324) 

||,eD  

[μm
2
/ms] 

2.638 

(0.445) 

2.633 

(0.444) 

2.655 

(0.420) 

2.584 

(0.461) 
– – 

,eD  

[μm
2
/ms] 

0.971‡ 

(0.155) 

0.965‡ 

(0.156) 

0.874‡ 

(0.143) 

0.940‡ 

(0.170) 

0.891† 

(0.168) 
– 

‡Based on average of two smallest eigenvalues of 
)0(

D . †Based on smallest eigenvalue of 
)0(

D . 

8. Table
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