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ABSTRACT 
Photodynamic therapy (PDT) was employed as a cancer therapy with photosensitizer (PS)-loaded cancer cells, 

eradicated by the reactive oxygen species after light activation. Cyclo-oxygenase 2 (COX2) is an enzyme expressed in 

80% of colon adenocarcinoma and is one of the targets for effective cancer treatment. There is also uprising evidence 

that the human telomerase reverse transcriptase (hTERT), a catalytic component of telomerase, is reported as a promising 

indicator for monitoring cancer treatment.  

In this study, NPe6 mediated PDT on COX2 induced apoptosis in HT-29 was investigated. The cell cycle changes was 

analysed by flow cytometry and the hTERT expression at pre and post PDT was evaluated at transcription level by 

Taqman real time PCR.  

NPe6-PDT in HT-29 cells demonstrated anti-proliferating effect in a drug and light dose dependent manner. LD50 was 

achieved at 16μg/mL and 2J/cm2 at 4 hour-post treatment with a significant down-regulation of COX2 expression at 

LD30 and LD50 by immunohistochemical staining (IHC) (p<0.05, One-Way ANOVA). Membrane blebbing was detected 
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in over 60% of cells. 35.2% of treated cells arrested in S-phase at LD50 after 24 hours by flow cytometry. A 0.25- and 

0.6-fold down-regulation of hTERT mRNA expression was achieved at LD30 and LD50 respectively by TaqMan real-time 

PCR. 

To summarize, NPe6 mediated PDT down-regulated COX2 expression and triggered cell apoptosis. The hTERT can 

serve as an indicative marker for monitoring NPe6-PDT cancer treatment efficacy.  
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1 INTRODUCTION 
Photodynamic therapy (PDT) is a disease site-specific treatment modality. It involves the local or systemic 

administration of a photosensitizer followed by irradiating the targeted disease site with non-thermal visible light of 

appropriate wavelength(s). In the presence of molecular oxygen, the light illumination of photosensitizer and energy 

transfer can lead to a series of photochemical reactions and generation of reactive oxygen species, and consequently 

induce apoptosis and necrosis of targeted cells and tissues [1-2]. 

 

Mono-L-aspartylchlorin-e6 (NPe6) is one of the promising second-generation photosensitizers. NPe6 is a hydrophilic 

chlorine derived from chlorophyll a and has exhibited promise at in vitro and in vivo studies due to its excellent 

photosensitizing properties [3-6]. NPe6-PDT has currently applied in advanced-stage clinical trials for cancer treatment 

due to its great depth-of-light penetration and rapid clearance rate in normal tissues [7-9]. However, there are still 

underlying mechanisms mediated by NPe6-PDT on cancer cells remain unknown. 

 

Colon cancer is the third most prevalence cancer and the second leading cause of cancer related mortality worldwide [10]. 

In Hong Kong, colon cancer is the second most common cancer type and the second death-leading cancer [11]. First line 

treatment for colon cancer is the combination of 5-fluorouracil based adjuvant chemotherapy with improved overall 

survival. Besides, different standard treatment approaches have been applied for colon cancer including surgery, 

radiotherapy and chemotherapy [12]. Surgery is the most common treatment for all stages of colon cancer; however, it is 

traumatic to patients. Both chemotherapy and radiotherapy are not cancer-selective causing side-effects. Therefore, PDT 

can be an alternative treatment modality for colon cancer.  

 

Cyclo-oxygenase (COX) is an enzyme that catalyzes the oxidative conversion of arachidonic acid to prostaglandins, 

which take place in most tissues under both physiological and pathogenetic condition [13]. There are two isoforms of 

COX enzyme, COX1 and COX2. COX2 is commonly found in normal cells, such as endothelial cells, osteoblasts, 
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fibroblasts, and macrophages [14]. It is also found that COX2 is over-expressed in about 80% of human colon cancers [13]. 

Recent research suggested that the COX2 protein facilitates cancer cells growth, invasion and metastasis. Up-regulation 

of COX2 could promote angiogenesis by initiating cancer cell proliferation and inhibit apoptosis [15]. These implying that 

COX2 pathway could be the potential target for effective colon cancer treatment, thus inhibiting COX2 protein 

expression may induce apoptotic cell death in colon cancer cells.  

 

Tumor therapies targeting telomerase represent an efficient way to specifically suppress tumor cell growth in telomerase 

over-expressed tumors. Studies have reported that applications of telomeres and telomerase can act as markers for cancer 

diagnosis and prognosis, especially through the measurements of the catalytic component of telomerase (hTERT – human 

telomerase reverse transcriptase) as a means of monitoring tumor response to therapy [16]. Several reports have revealed 

that hTERT could serve as a potential indicator for monitoring tumor treatments in medulloblastoma, uterine sarcoma, 

ovarian cancer and hepatoma tumor cells [17-20]. 

 

In this study, we aimed to investigate the efficacy of NPe6 mediated PDT on colon cancer cells (HT-29). The cell death 

mechanism, the modulation of COX2 expression and the regulation of hTERT mRNA expression by NPe6-PDT in HT-29 

cells were evaluated by cell cycle progression, immuno-histochemical staining (IHC) and the relative quantitation of 

TaqMan real-time PCR respectively. 

 

2 METHODOLOGY 

2.1 Cell cultures and growth conditions  
HT-29 was purchased from American Type Culture Collection (ATCC) is a human colon carcinoma cell line derived 

from colon epithelial cells obtained from a 44-years-old Caucasian female with colorectal adenocarcinoma. The cells 

were grown in RPMI 1640 medium supplemented with 10% fetal bovine serum (FBS) and 1% antibiotics PSN (50 IU/ml 

penicillin, 50 μg/ml streptomycin and 100 μg/ml neomycin) (Gibco TM Invitrogen Corporation, Carlsbad, CA, USA). The 

cells were incubated at 37.0ﾟC with 5% CO2.  

 

2.2 Photosensitizer 

Mono-L-aspartylchlorin-e6 (NPe6) was provided by Light Sciences Oncology in powder form. The stock solution 

(1mg/mL) was prepared by dissolving the powder in PBS and then diluted into appropriate concentrations for subsequent 

experiments and was stored at 4°C in dark. 

 

2.3 Uptake kinetic of NPe6 in HT-29 cells 
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HT-29 cells (1 × 106 cells per dish) were seeded overnight in 60 mm culture dishes. After rinsing the cells with 

phosphate buffered saline (PBS), addition of NPe6 of different concentrations (0, 8, 12, 16 μg/ml) to the cells for 

different incubation time (0, 2, 4 and 6 hours). The cells were then kept at 37°C with 5% CO2 in dark. Following 

appropriate incubation time with NPe6, the cells were centrifuged washed with PBS, followed by trypsinization and re-

suspension in 500 μL PBS. The cellular fluorescence emitted by NPe6 was quantified using flow cytometry (FC500, 

Beckman Coulter, USA). The total events were recorded for each sample and NPe6 concentrations were expressed as the 

fluorescence intensity. 

 

2.4 Trypan blue exclusion assay by automated cell viability analyzer 
HT-29 cells (1×106 cells/dish) were incubated with NPe6 at 0, 2, 4, 8, 12, and 16 μg/ml in 60mm culture plates. The cells 

were incubated with NPe6 for 4 hours at 37°C with 5% CO2. The sensitized cells were then exposed to light (1 or 2 J/cm2) 

as described previously [21]. The phototoxicity was determined at 4 hours post-PDT using an automated cell viability 

analyzer – Vi-CellTM (Beckman Coulter). Control cells without drug and light treatment and dark control (without light 

irradiation) were included. All results were presented as mean±S.D. from 4 independent experiments. 

 

2.5 Morphological changes of HT-29 cells after NPe6-PDT by microscopic examination 
HT-29 cells were seeded a 96-well plate (1X104 cells /well), at LD30 and LD50 conditions, and the morphological changes 

of cells at different time (0, 4, 10 and 24 hours after light treatment) were observed under light microscope (Leica CTR 

4000) and images were taken (Leica Application Suite Version 2.4.0.). 1000 cells per sample were counted and the 

percentage of cells with characterized membrane blebbing was calculated. Six independent experiments in triplicate were 

conducted. 

 

2.6 NPe6-PDT induced cell cycle progression in HT-29 cells by flow cytometry 
After NPe6-PDT treatment, 1X106 treated and untreated HT-29 cells were harvested at different time points (0, 4, 8, 15 

and 24 hours). The cells were trypsinized and washed in cold PBS with 1% FBS, then fixed in 80% ethanol at 4°C for 

overnight. After washing the cells in cold PBS with 1% FBS, the cells were incubated in 250 μL of propidium iodide (PI) 

staining solution (40 μg/mL PI and 4 μg/mL RNAse A) for 1 hour at 37°C in dark. The fluorescence signal of the cells 

was quanitated by flow cytometry (FC500, Beckman Coulter, USA). Modfit LT 2.0 software was used for cell cycle 

analysis. 

 

2.7 NPe6-PDT modulated COX2 protein expression by immunohistochemical (IHC) staining  
The COX2 protein expression on the HT-29 cells response to NPe6-PDT was demonstrated using COX2 antibody and 

Avidin Biotin Complex (ABC) Immunohistochemical (IHC) DAB staining (VECTOR ABC Elite Kit). 
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Diaminobenzidine tetrahydrochloride (DAB) acted as chromogen to localize peroxidase in cells as reddish brown 

precipitate. Briefly, the treated (LD30 and LD50), untreated and dark control cells were harvested at 4-hour-post-PDT. 

Cells were re-suspended in 500 ul RPMI. The cell suspension were loaded and spin at 800rpm for 3 minutes, after 

disassemble the cassette, the slides were air dried, and fixed in cold methanol for 20 minutes at -20°C. All the procedures 

were followed as described by the manufacturer. Internal negative control was included using PBS instead of the primary 

COX2 antibody.  

After the IHC staining, the slides were observed under light microscope (Nikon ECLIPSE 80i). A Color Mosaic 14.2 

camera and Spot Insight 4.6 acquisition software (Diagnostic Instruments, Sterling Heights, MI) were used to capture the 

images under 100X. The images were analyzed by an image analysis software (i-Solution, IMT, Daejeon, Korea). The H-

score system was used to evaluate the DAB color intensity developed in cells by grading as 0 (negative or very weak 

staining), 1+ (weak staining), 2+ (distinct staining), or 3+ (intensive or strongly staining). The percentages of cells in the 

four categories were recorded. For each slide, the H-Score value was calculated by summing the percentages of cells (P) 

multiplied by the weighted intensity and the maximum value of H-score was 300 [22-23]. All results were presented as 

mean±S.D. from 3 independent experiments. 

 

2.8 Quantitation of hTERT mRNA expression mediated by NPe6-PDT using TaqMan real-time PCR 
A more sensitive real-time PCR analysis to hTERT mRNA quantitation in HT-29 cells after NPe6-PDT was performed 

by pre-designed gene-specific primers and probe sets of TaqMan® Gene Expression Assay for hTERT and for GAPDH 

(as an endogenous control) together with the TaqMan® Universal PCR Master Mix (without AmpErase UNG) using a 

7500 Real-Time PCR System (Applied Biosystems, CA, USA). In brief, the total RNA of the controls and the treated 

samples (dark control, LD30 and LD50) were extracted as described above using the High Pure RNA Isolation kit (Roach 

Diagnostics, Switzerland). The cDNA were reverse-transcribed using the RevertAidTM H Minus First Strand cDNA 

synthesis kit (Fermentus, Life Sciences, Canada). For TaqMan assay, a 20 μl PCR reaction mixture of each sample 

contained TaqMan universal master mix, each primer pair, probes, and a 20 ng cDNA template. Following the 

denaturation, annealing and extension procedures of PCR cycling procedures, fluorescent data were collected. A total of 

eight reaction tubes were required for each sample, four replicates for hTERT and another four for GAPDH. The above 

reaction mixtures and PCR conditions were used as recommended by the manufacturer. The comparative threshold cycle 

(CT) method (ΔΔCT method) was used to calculate the amount of hTERT mRNA that normalized to the endogenous 

reference (i.e. GAPDH). 

 

2.9 Data analysis 
The GraphPad Prism Version 4.0 was used to analyze the results obtained. All data were presented as mean and standard 

error (S.D.). P value smaller than 0.05 (P < 0.05) was considered significant.  
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3 RESULTS 

3.1 Uptake kinetics of NPe6 by HT-29 cells 
The uptake of NPe6 was determined by the qantitation of the intracellular fluorescence intensity using flow cytometry, 

since the intracellular fluorescent intensity of NPe6 inside the HT-29 cells was directly proportional to the amount of 

NPe6 uptake by the cancer cells. From the results in Figure 1, the uptake of NPe6 in HT-29 cells was found to be time- 

and drug-dosage dependent. Maximum uptake was obtained at 6 hours, while the fluorescence intensity reached maximal 

of 12 μg/mL, and remained in plateau with 16 μg/mL of NPe6.  

 

 

 

 

 

 

 

 

 
Figure 1 Uptake of NPe6 by HT-29 colon cancer cells 

The HT-29 cells were incubated with different concentrations of NPe6 at 8, 12 and 16 μg/mL under different incubation times at 0, 2, 

4 and 6 hours. The uptake of the NPe6 by HT-29 was in a time-dependent and drug-dosage-dependent manner. Data were expressed as 

mean ± SD of three independent experiments.   
 

3.2 Phototoxicity of NPe6-PDT on HT-29 cells 
Phototoxicity of NPe6-PDT on HT-29 cells was determined after 4 hours incubation time by the trypan blue exclusion 

assay using the Vi-CellTM cell viability analyzer (Beckman Coulter, USA). Figure 2 showed the phototoxicity of HT-29 

cells treated with NPe6-PDT at different concentrations (2, 4, 8, and 16 µg/ml), and different light doses (1 and 2 J/cm2). 

Dark control (without light treatment) and control (without both NPe6 and light treatment) were included. The results 

showed that the dark toxicity was negligible while significant phototoxicity was observed in NPe6-PDT treated cells in 

drug- and light-dosage dependent manners. Lethal doses were investigated that LD30 was obtained with 8 µg/ml of NPe6 

at 2 J/cm2; while LD50 was obtained at 16 µg/ml of NPe6 at 2 J/cm2, which were employed for subsequent experimental 

investigation. 
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Figure 2 Phototoxicity of NPe6-PDT on HT-29 cells 

The cells were incubated for 4 hours with different NPe6 concentrations (0, 2, 4, 8, and 16 µg/ml) and illuminated with different light 

doses (0, 1 and 2 J/cm2). Phototoxicity was determined by Vi-cell analysis followed by PDT. It was found that the percentage of 

phototoxicity increased significantly with increasing NPe6 concentrations and light doses (p<0.01, two-way ANOVA). The 

phototoxicity was in drug- and light-dosage dependent manners. All the results were presented as mean±SD in duplicate from four 

independent experiments.  

 

3.4 Microscopic Examination of Morphological Changes induced by NPe6-PDT in HT29cells 
Cell shrinkage and membrane blebbing were the typical characteristics of apoptotic cells. The microscopic examination 

was employed to qualify any morphological changes of the cells after NPe6-PDT. At LD30 4-hours post-PDT, over 30% 

cell shrinkage occurred; whereas at LD50 4-hours post-PDT, there were over 60% of cells with typical membrane 

blebbing characteristics. The data indicated were from four individual experiments in triplicate. These results showed 

that NPe6-PDT induced apoptotic cell death in HT-29 cells (data not showed).  

 

3.5 Cell Cycle Analysis by Flow Cytometry 
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For cell cycle analysis, percentage of HT-29 cells in S phase increased when the cells were treated at LD30 and LD50 24-

hour-post-PDT (Table 1). At LD30, the S-phase was shifted from 20.53% to 25.24%; while at LD50, the S-phase was 

shifted from 20.53% to 35.20%. The percentage of cells in G0/G1 phase decreased at the same time. At LD30, the G0/G1 

phase was shifted from 60.39% to 52.13%; while at LD50, the G0/G1phase was shifted from 60.39% to 40.76%. The data 

indicated that the NPe6-PDT induced S-Phase arrest and decreased G0/G1 phase in HT-29 cells.  

 
Table 1: Percentage of cell cycle phases after NPe6-PDT in HT-29 cells  

At LD50, NPe6-PDT induced S-Phase arrest and decreased G0/G1 phase of the cell cycle. Data presented were from three independent 

experiments in triplicate. 

Samples 
Cell cycle phases (%) 

Sub G1 G0/G1 S G2/M 

Control 0.14 ± 0.03 63.39 ± 0.04 20.53 ± 0.05 16.08 ± 0.08 

Dark control 0.07 ± 0.02 61.03 ± 0.06 23.16 ± 0.17 15.08 ± 0.11 

LD30 (8 ug/ml, 2J/cm2) 0.26 ± 0.21 52.13 ± 0.12 25.24 ± 0.03 22.63 ± 0.09 

LD50 (16 ug/ml, 2J/cm2) 0.77 ± 0.33 40.76 ± 0.42 35.20 ± 0.28 23.81 ± 0.14 

 

3.6 NPe6-PDT down-regulated COX2 protein expression in HT-29 cells 
In the study, the COX2 protein expression modulated by NPe6-PDT on HT-29 cells was investigated by the IHC staining. 

The images acquired and analyzed using H-Score systems. At LD50, the COX2 protein expression was significantly 

down-regulated by NPe6-PDT (One-way ANOVA, p<0.05) when compared with the control and dark control cells 

(Figure 3). 
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Figure 3 Down-regulation of COX2 protein expression by NPe6-PDT in HT-29 cells 

The COX2 protein expression was significantly down-regulated with the H-score decreased from 200 to 20 in the control cells and 

LD50 respectively after NPe6-PDT in HT-29 cells (One-way ANOVA, p<0.05).  Data showed as mean±SD in four independent 

experiments in triplicate. 

 

3.7 Modulation of hTERT mRNA expression by NPe6-PDT in HT-29 cells 
The NPe6-PDT modulated hTERT mRNA expression in HT-29 cells was quantitated by TaqMan real-time PCR. There 

was an intensive down-regulation of hTERT mRNA expression at LD50 (One-way ANOVA; p<0.01) in HT-29 cells, 

indicating that this colon cancer cells were sensitive to the PDT treatment by NPe6 at sub-lethal doses (Figure 4). This 

implied that the hTERT could serve as an indicative marker for monitoring NPe6-PDT cancer treatment efficacy in colon 

cancer.  

 

 

 

 

 

 

 
Figure 4 Down-regulation of hTERT mRNA expression by NPe6-PDT using TaqMan real-time-PCR 

After normalization with corresponding GAPDH mRNA expression of each sample in HT-29 cells, down-regulation of hTERT mRNA 

expression was mediated by NPe6-PDT at both LD30 and LD50 using TaqMan real-time-PCR (One-way ANOVA, p<0.01). When 

compared with the control, there were about 0.6-fold reduction of hTERT mRNA expression obtained at LD50 after NPe6-PDT. 

Concentrations of the mRNA expressions were represented in Log10. 

 

4 DISCUSSION 
Studies have demonstrated that NPe6-PDT was effective for cutaneous tumor cell disruption in vitro and in vivo [6, 24]. 

Due to the improved properties of NPe6, NPe6-PDT has also being applied clinically with promising results in skin and 

lung cancer patients [7, 25]. However, the detailed cell death mechanisms of NPe6-PDT in tumor cells remained to be 

explored. 

 

Our study aims to elucidate the cell death mechanism induced by NPe6-PDT in a colon carcinoma cell line in vitro. In 

summary, this study reveals an effective and responsive PDT treatment of a colon carcinoma cell line (HT-29) with NPe6. 

Encouraging evidence is shown in this study that NPe6-PDT not only acted as a COX2 inhibitor, but also down-

regulated the hTERT mRNA expression, which can be a marker for PDT monitoring. 

Control Dack Control LD30 LD50

-1.00

-0.75

-0.50

-0.25

0.00

Lo
g 1

0

Figure 4 

Proc. of SPIE Vol. 7380  738065-9

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/29/2014 Terms of Use: http://spiedl.org/terms



 

 

 

The HT-29 colon tumor cells were responsive to NPe6-PDT in the drug- and light-dose-dependent manner for the NPe6 

uptake kinetics (Figure 1) and the NPe6-PDT mediated efficacy (Figure 2). There is only negligible dark toxicity. It was 

reported that the effectiveness of NPe6 was related to plasma level and progressive uptake of NPe6 by the target cells 

could be obtained over several hours implying that high plasma concentrations of this photosensitizer were associated 

with toxicity [26-27]. Therefore, the lower concentrations of NPe6 (8 µg/ml and 16 µg/ml) at 4 hours sensitization were 

recommended in the subsequent study to potentiate the effects of the drug on the proposed colon cells.  

 

For the determination of cell death mechanism, our results revealed that there was 30% to 60% morphological cell 

shrinkage at 4 hour-post NPe6-PDT in HT-29 cells by the microscopic examination (data not shown). Confirmation of 

the apoptotic events and cell cycle progression mediated by NPe6-PDT in HT-29 cells were further quantitated by 

propidium iodide staining using flow cytometry.  Our pioneer report demonstrated that NPe6-PDT induced S phase arrest 

of cell cycle in HT-29 cells (Table 1) indicating the NPe6-PDT inhibited the tumor cells to undergo DNA synthesis and 

chromosome replication, in turn prohibited tumor cell division and proliferation. However, changes in cell cycle proteins, 

such as cyclin and cyclin dependent kinases, deserved to be investigated at pre- and post-NPe6-PDT. 

 

From the results in Table 1, apoptotic events could not be quantitated in the sub-G1 phase of the NPe6-PDT-treated cells 

thus apoptosis might not the dominant cell death mechanism mediated by NPe6-PDT in HT-29 cells. This result was in 

line with previous finding that NPe6, being a lysosomal photosensitizer, although, caused photodamage in murine tumor 

models but lack of a more substantial apoptotic response to PDT when lysosomes were the initial PDT target [28-29]. 

Therefore, NPe6-PDT modulated apoptotic protein expression related to lysosomes, such as caspase 3, could further be 

studied.  

 

As over 80% of human colon tumors with COX2 over-expression, this study also evaluated the regulation of COX2 

protein expression by NPe6-PDT in HT-29 cells [13]. Ferrario et al demonstrated that down-regulation of COX2 

expression by PDT enhanced the efficacy of PDT in tumor killing [30]. In our study, there was a significant 4-fold down-

regulation of COX2 protein expression by NPe6-PDT in HT-29 cells at LD50 (Figure 3) indicating the inhibition of 

COX2 protein expression by NPe6-PDT could further prohibit tumor cell growth and thus might enhance the tumoricidal 

effects of PDT in colon tumors.    

 

Having elucidated the cell cycle progression and down-regulation of COX2 expression by NPe6-PDT on HT-29 cells, 

another well-known marker, hTERT mRNA expression for monitoring PDT treatment was quantitatively studied at pre- 

and post-NPe6-PDT in the proposed cells. Our results significantly demonstrated there was a 0.6-fold in hTERT mRNA 
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expression at LD50 post-PDT when compared with the control cells and GAPDH acted as the internal control (Figure 4). 

This was similar to our previous findings that hexyl-ALA-PDT could also reduce the hTERT mRNA expression in both 

uterine sarcoma cell lines (>50% reduction) and medulloblastoma cell line (30% reduction) [17-18]. The results suggested 

that hTERT mRNA expression could be a marker for monitoring NPe6-PDT in colon tumors in future clinical setting.  

 

5 CONCLUSION 
In conclusion, NPe6-PDT is effective for HT-29 colon cancer cells with its ability to induce phototoxicity to the cancer 

cells and causing cell cycle arrest in S-phase. Although, apoptosis was not the dominant cell death mechanism triggered 

by NPe6-PDT in HT-29 cells, the COX2 and hTERT mRNA expression were down-regulated by NPe6-PDT suggesting 

NPe6-PDT pave the way in future alternative treatment for colon cancers in clinical settings.   
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