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There is something about mathematics that is universal, irrespective of race, culture 

or social context. For instance, no mathematician will accept the following “proof”, 

offered as a “joke-proof” by Oscar Perron (1880-1975) but not without pedagogical 

purpose: 

“Theorem”:  1 is the largest natural number. 

“Proof”:  Suppose N is the largest natural number, then N
2
 

cannot exceed N, so NNNN  2)1(  is not positive. This 

means that 1N  is not positive, or that N cannot exceed 1. 

But N is at least 1. Hence, 1N .  Q.E.D. 

 

 

Likewise, well-known paradoxes on argumentation exist in both the Western and the 

Eastern world. The famous Liar Paradox, embodied in the terse but intriguing remark “I 

am a liar”, is ascribed to the 4
th

 century B.C.E. Greek philosopher Eubulides of Miletus. 

A similar flavour is conveyed in the famous shield-and-halberd story told by the Chinese 

philosopher Hon Fei Zi (Book 15, Section XXXVI, Hon Fei Zi, c.3
rd

 Century B.C.E.): 

“My shields are so solid that nothing can penetrate them. 

My halberds are so sharp that they can penetrate anything.” 

“How about using your halberds to pierce through your 

shields?” 

 

In the Chinese language the term “mao dun”, literally “halberd and shield”, is used to 

mean “contradiction”. Indeed, Hon Fei Zi used this story as an analogy to prove that the 



Confucianist School was inadequate while the Legalist School was effective and hence 

superior
1
. His proof is by reductio ad absurdum. 

 

In his book A Mathematician’s Apology, English mathematician Godfrey Harold 

Hardy (1877-1947) said that “reductio ad absurdum, which Euclid loved so much, is one 

of a mathematician’s finest weapons” (Hardy, 1940/1967, p. 94). Many people are led by 

this remark to see the technique of proof by contradiction as a Western practice, even to 

the extent that they wonder whether the technique is closely related to Greek, and hence 

Western, culture. I was once asked whether Chinese students would have inherent 

difficulty in learning proof by contradiction, because such argumentation was absent 

from traditional Chinese mathematics. My immediate response was that this learning 

difficulty shows up in a majority of students, Chinese or non-Chinese, and does not seem 

to be related to a student’s cultural background. Nonetheless, this query urged me to look 

for examples of proof by contradiction in traditional Chinese thinking. Since then, I have 

gathered some examples, many of which are in a non-mathematical context. One 

mathematical presentation that approaches a proof by contradiction is Liu Hui’s (c. 3
rd

 

century C.E.) argument in his commentary on Chapter 1 of Jiu Zhang Suan Shu (Nine 

Chapters on the Mathematical Art) explaining why the ancients were wrong in taking 3 

to be the ratio of the perimeter of a circle to its diameter (Siu, 1993, p. 348). Still, I have 

                                                 
1
 The Confucianist School  and the Legalist School were two streams of thought in ancient China, which 

would be too vast a subject to be explained, even in brief, here. If suffices to point out that the Legalist 

School maintained that good government was based on law and authority instead of on special ability and 

high virtue of the ruler who set an exemplar to influence the people. In particular, the story of shields and 

halberds was employed to stress that the two legendary leaders, Yao and Shun, whom the Confucianist 

School extolled as sage-kings, could not be both held in high regard.  



not yet found a written proof in an ancient Chinese text that recognizably follows 

prominently and distinctly the Greek fashion of reductio ad absurdum.  

 

However, the notion of a proof is not so clear-cut when it comes to different cultures 

as well as different historical epochs. Mathematics practiced in different cultures and in 

different historical epochs may have its respective different styles and emphases. For the 

sake of learning and teaching it will be helpful to study such differences.  

 

Unfortunately, many Western mathematicians have come to regard Eastern 

mathematical traditions as not ‘real’ mathematics. For example, take Hardy’s assessment: 

The Greeks were the first mathematicians who are still 

‘real’ to us to-day. Oriental mathematics may be an 

interesting curiosity, but Greek mathematics is the real 

thing. The Greeks first spoke a language which modern 

mathematicians can understand; as Littlewood said to 

me once, they are not clever schoolboys or ‘scholarship 

candidates’, but ‘Fellows of another college’. (Hardy, 

1940/1967, pp. 80-81) 

 

However, proper study of the different traditions leads one to disagree with Hardy’s 

assessment. 

 

A typical example of the cross-cultural difference in style and emphasis is the age-old 

result known in the Western world as Pythagoras’ Theorem. Compare the proof given in 

Proposition 47, Book I of Euclid’s Elements (c. 3
rd

 century B.C.E.) (Figure 1) and that 

given by the Indian mathematician Bhaskara in the 12
th

 century C.E. (Figure 2). The 

former is a deductive argument with justification provided at every step. The latter is a 



visually clear dissect-and-reassemble procedure, so clear that Bhaskara found it adequate 

to simply qualify the argument by a single word, “Behold!”  

 

 

 

 

Euclid’s proof of Pythagoras’ Theorem Bhaskara’s proof of Pythagoras’ Theorem 

Fig. 1 Fig. 2 

 

 

In her plenary address (this volume), Judith Grabiner noted how the notion of proof 

permeates other human endeavour in the Western world. Indeed, one finds the following 

passage in Book1.10 in Institutio Oratoria by Marcus Fabius Quintilianus (1
st
 century 

C.E.): 

Geometry [Mathematics] is divided into two parts, one 

dealing with Number, the other with Form. Knowledge 

of numbers is essential not only to the orator, but to 

anyone who has had even a basic education. (…) In the 

first place, order is a necessary element in geometry; is 

it not also in eloquence? Geometry proves subsequent 

propositions from preceding ones, the uncertain from 

the certain: do we not do the same in speaking? Again: 

does not the solution of the problems rest almost wholly 

on Syllogisms? (…) Finally, the most powerful proofs 

are commonly called “linear demonstrations”. And 

what is the aim of oratory if not proof? Geometry also 

uses reasoning to detect falsehoods which appear like 

truths. (…) So, if (as the next book will prove) an orator 

has to speak on all subjects, he cannot be an orator 

without geometry [mathematics]. (Quintilian, 2001, pp. 

231, 233, 237) 

 

Stephen Toulmin, in examining “how far logic can hope to be a formal science, and yet 

retain the possibility of being applied in the critical assessment of actual arguments” 



(Toulmin 1958, p.3), opines that one source from which the notion of proof arose is 

argument on legal matters. He propounds a need for a rapprochement between logic and 

epistemology, for a re-introduction of historical, empirical and even anthropological 

considerations into the subject which philosophers have prided themselves on purifying: 

The patterns of argument in geometrical optics, for 

instance (…) are distinct from the patterns to be found in 

other fields: e.g. in a piece of historical speculation, a 

proof in the infinitesimal calculus, or the case for the 

plaintiff in a civil suit alleging negligence. Broad 

similarities there may be between arguments in different 

fields, (…) it is our business, however, not to insist on 

finding such resemblances at all costs but to keep an eye 

open quite as much for possible differences. (Toulmin, 

1958, p. 256) 

 

 

 This year (2009) is the 200
th

 anniversary of the birth of the great English naturalist 

Charles Darwin (1809-1882) and the 150
th

 anniversary of the publication of On the 

Origin of Species (1859). Not many may have noted what Darwin once said in his 

autobiography about mathematics: 

I attempted mathematics, and even went during the 

summer of 1828 with a private tutor (a very dull man) 

to Barmouth, but I got on very slowly. This work is 

repugnant to me, chiefly from my not being able to see 

any meaning in the early steps in algebra. This 

impatience was very foolish, and in after years I have 

deeply regretted that I did not proceed far enough at 

least to understand something of the great leading 

principles of mathematics, for men thus endowed seem 

to have an extra sense. (Darwin, 1887, Chapter II, 

Volume I, p. 46) 

 

This kind of extra sense shows up in another important historical figure, the American 

polymath Benjamin Franklin (1706-1790). He thought in a precise, rational way even 



about seemingly non-mathematical issues and used mathematical argument for a social 

debate (Pasles, 2008, Chapter 1, Chapter 4).   

 

The same use of mathematical argument in other contexts also happens in the Eastern 

world. For example, the Indian-British scholar and recipient of the 1998 Nobel Prize in 

Economics, Amartya Sen, presents an interesting discussion of the case in India in his 

book The Argumentative Indian: Writings on Indian Culture, History and Identity (2005). 

 

Next, I draw your attention to two styles in doing mathematics, using terms borrowed 

from Peter Henrici (Henrici, 1974), who labels the two styles as “dialectic” and 

“algorithmic”. Broadly speaking, dialectic mathematics is a rigorously logical science, in 

which “statements are either true or false and objects with specified properties either do 

or do not exist.” (Henrici, 1974, p.80) On the other hand, algorithmic mathematics is a 

tool for solving problems, in which “we are concerned not only with the existence of a 

mathematical object but also with the credentials of its existence” (Henrici, 1974, p. 80). 

In a lecture (July, 2002), I attempted to synthesize the two aspects from a pedagogical 

viewpoint with examples from historical mathematical developments in Western and 

Eastern cultures. In this 19
th

 ICMI Study Conference, I reiterated this theme, focusing on 

proof, and discussed how the two aspects complement and supplement each other in 

proof activity (Siu, 2009b). A procedural (algorithmic) approach helps to prepare more 

solid ground on which to build up conceptual understanding; conversely, better 

conceptual (dialectical) understanding enables one to handle algorithms with more 

facility, or even to devise improved or new algorithms. Like yin and yang in Chinese 



philosophy, these two aspects complement and supplement each other, each containing 

some part of the other.  

 

Several main issues in mathematics education are rooted in understanding these two 

complementary aspects, “dialectic mathematics” and “algorithmic mathematics”.  Those 

issues include: (1) procedural versus conceptual knowledge; (2) process versus object in 

learning theory; (3) computer versus computerless learning environments; (4) “symbolic” 

versus “geometric” emphasis in learning and teaching; and (5) “Eastern” versus 

“Western” learners/teachers. In a seminal paper, Anna Sfard explicates this duality and 

develops it into a deeper model of concept formation through interplay of the 

“operational” and “structural” phases (Sfard, 1991).  

 

Tradition holds that Western mathematics, developed from that of the ancient Greeks, 

is dialectic, while Eastern mathematics, developed from that of the ancient Egyptians, 

Babylonians, Chinese and Indians, is algorithmic. Even if it holds an element of truth as a 

broad statement, under more refined examination this thesis is an over-simplification. 

Karine Chemla has explained this point in detail (Chemla, 1996). In this respect, the other 

two speakers in this plenary panel attend primarily to Chinese mathematical classics. For 

my part, I will discuss the issue with examples from Euclid’s Elements. 

Saul Stahl has summarized the ancient Greek’s contribution to mathematics:  

Geometry in the sense of mensuration of figures was spontaneously 

developed by many cultures and dates to several millennia B.C. The 

science of geometry as we know it, namely, a collection of abstract 

statements regarding ideal figures, the verification of whose validity 

requires only pure reason, was created by the Greeks. (Stahl 1993, p. 1) 



 

A systematic and organized presentation of this body of knowledge is found in Euclid’s 

Elements. 

 

Throughout history, many famed Western scholars have recounted the benefit they 

received from learning geometry through reading Euclid’s Elements or some variation 

thereof. For example, Bertrand Russell (1872-1970) wrote in his autobiography: 

At the age of eleven, I began Euclid, with my brother as tutor. This 

was one of the great events of my life, as dazzling as first love. (…) 

I had been told that Euclid proved things, and was much 

disappointed that he started with axioms. At first, I refused to 

accept them unless my brother could offer me some reason for 

doing so, but he said, ‘If you don't accept them, we cannot go on’, 

and as I wished to go on, I reluctantly admitted them pro temp. 

(Russell, 1967, p. 36) 

 

Another example, Albert Einstein (1879-1955), wrote in his autobiography:,  

At the age of twelve I experienced a second wonder of a totally different 

nature: in a little book dealing with Euclidean plane geometry, which 

came into my hands at the beginning of a school year. (…) The lucidity 

and certainty made an indescribable impression upon me. (…) it is 

marvelous enough that man is capable at all to reach such a degree of 

certainty and purity in pure thinking as the Greeks showed us for the first 

time to be possible in geometry. (Schilepp, 1949, pp. 9, 11) 

 

 

That axiomatic and logical aspect of Euclid's Elements has long been stressed. 

However, reasoning put forth by S.D. Agashe (1989) leads one to look at an alternative 

feature of the Elements; namely, right from the start metric geometry plays a key role, not 

just in the exposition but even in the motivation of the book’s design. In addition, there is 

a procedural flavour to the reasoning. 

 



For example, Proposition 14 of Elements, Book II proposes, “To construct a square 

equal to a given rectilineal figure.” The problem of interest is to compare two polygons. 

To achieve the one-dimensional analogue, comparing two straight line segments, is easy; 

one simply overlays one segment on the other and checks whether one segment lies 

completely inside the other or whether the two are equal. This is in fact what Proposition 

3 of Book I attempts: “Given two unequal straight lines, to cut off from the greater a 

straight line equal to the less.” To justify the result, one relies on Postulates 1, 2 and 3. 

The two-dimensional problem is not so straightforward, except for the special case when 

both polygons are squares; in this case, one can compare their areas through a 

comparison of their sides, by placing the smaller square at the lower left corner of the 

larger square. Incidentally, here one needs to invoke Postulate 4. What Proposition 14 of 

Book II sets out to do is to reduce the comparison of two polygons to that of two squares 

(Figure 3). 

 
Proposition 14 of Elements Book II 

Fig. 3 

 

The proof of Proposition 14 of Book II can be divided into two steps: (1) construct a 

rectangle equal (in area) to a given polygon (Figure 4); (2) construct a square equal (in 

area) to a given rectangle  (Figure 5). Note that (1) is already explained through 

Propositions 42, 44 and 45 of Book I, by triangulating the given polygon then converting 

each triangle into a rectangle of equal area. Incidentally, one has to rely on the famous 



(notorious?) Postulate 5 on (non-)parallelism to prove those results. To achieve the 

solution in (2), one makes the preliminary step of converting the given rectangle into an 

L-shaped gnomon of equal area. This is illustrated in Proposition 5 of Book II, “If a 

straight line be cut into equal and unequal segments, the rectangle contained by the 

unequal segment of the whole together with the square on the straight line between the 

points of section is equal to the square on the half.”  

 

  
Construction of a rectangle equal 

(in area) to a given polygon 
Squaring a rectangle 

Fig. 4 Fig. 5 
 

Proposition 5 of Book II asserts that a certain rectangle is equal (in area) to a certain 

gnomon which is a square ( 2c ) minus another square ( 2b ). To finalize step (2), one must 

construct a square ( 2a ) equal to the difference between two squares ( 22 bc  ); or 

equivalently, the square ( 2c ) is a sum of the two squares ( 22 ba  ). This leads naturally to 

Pythagoras’ Theorem, Proposition 47 of Book I, which epitomizes the interdependence 

between shape and number, between geometry and algebra. (For an enlightening 

exposition of Pythagoras’ Theorem in Clairaut’s Eléments de géométrie [1741,1753], see 

(Siu 2009a, pp.106-107.)) In studying this problem to compare two polygons we see how 

algorithmic mathematics blends in with dialectic mathematics in Book I and Book II of 

Elements. 



 

However, despite such evidence of parallels between the Western and Eastern 

mathematical traditions, some teachers hesitate to integrate history of mathematics with 

the learning and teaching of mathematics in the classroom. They cite their concern that 

students lack enough knowledge on culture in general to appreciate history of 

mathematics in particular. This is probably true, but one can look at the problem from the 

reverse, seeing the integration of history of mathematics into the day-to-day mathematics 

classes as an opportunity to let students know more about other cultures in general and 

other mathematical traditions in particular. They can thus come into contact with other 

variations in the development of proof and proving. Proof is such an important ingredient 

in a proper education in mathematics that we can ill afford to miss such an opportunity.  

 

Earlier, I suggested (Siu, 2008) four examples that might be used in such teaching. 

The first examines how the exploratory, venturesome spirit of the ‘era of exploration’ in 

the 15th and 16th centuries C.E. influenced the development of mathematical practice in 

Europe. It resulted in a broad change of mentality in mathematical pursuit, not just 

affecting its presentation but, more important, bringing in an exploratory spirit. The 

second example deals with a similar happening in the Orient, though with more emphasis 

on the aspect of argumentation. It describes the influence of the intellectual milieu in the 

period of the Three Kingdoms and the Wei-Jin Dynasties from the 3rd to the 6th 

centuries C.E. in China on mathematical practice as exemplified in the work of Liu Hui. 

The third example, the influence of Daoism on mathematics in ancient China, particularly 

astronomical measurement and surveying from a distance, examines the role religious, 



philosophical (or even mystical) teachings may play in mathematical pursuit. The fourth 

example, the influence of Euclid's Elements in Western culture compared to that in China 

after the first Chinese translation by the Ming Dynasty scholar-minister Xu Guang Qi 

(1562-1633) and the Italian Jesuit Matteo Ricci (1552-1610) in 1607 points out a kind of 

‘reverse’ influence; namely, how the mathematical thinking may stimulate thinking in 

other areas of human endeavour. As a ‘bonus’, these examples sometimes suggest ways 

to enhance understanding of specific topics in the classroom. 

 

Finally, one benefit of learning proof and proving is important but seldom 

emphasized in Western education, namely, its value in character building. This point had 

been emphasized in the Eastern world rather early, perhaps as a result of the influence of 

the Confucian philosophical heritage. 

 

In an essay on the Chinese translation of the Elements, the co-translator Xu wrote:  

The benefit derived from studying this book [the Elements] is 

many. It can dispel shallowness of those who learn the theory and 

make them think deep. It can supply facility for those who learn 

the method and make them think elegantly. Hence everyone in this 

world should study the book. (…) Five categories of personality 

will not learn from this book: those who are impetuous, those who 

are thoughtless, those who are complacent, those who are envious, 

those who are arrogant. Thus to learn from this book one not only 



strengthens one's intellectual capacity but also builds a moral base. 

(cited in (Siu, 2009a, p. 110)) 

 

Such emphasis on proof for a moral reason still sometimes echoes in modern times. 

As the late Russian mathematics educator Igor Fedorovich Sharygin (1937-2004) once 

put it, “Learning mathematics builds up our virtues, sharpens our sense of justice and our 

dignity, and strengthens our innate honesty and our principles. The life of mathematical 

society is based on the idea of proof, one of the most highly moral ideas in the world.” 

(cited in (Siu, 2009a, p. 110)) 
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