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Abstract 

In transportation and traffic planning studies, accurate traffic data are required for 
reliable model calibration to accurately predict transportation system performance and ensure 
better traffic planning. However, it is impractical to gather data from an entire population for 
such estimations because the widely used loop detectors and other more advanced wireless 
sensors may be limited by various factors. Thus, making data inferences based on smaller 
populations is generally inevitable. Linear data projection is a commonly and intuitively 
adopted method for inferring population traffic characteristics. It projects a sample of 
observable traffic quantities such as traffic count based on a set of scaling factors. However, 
scaling factors are subject to different types of variability such as spatial variability. Models 
calibrated based on linearly projected data that do not account for variability may introduce a 
systematic bias into their parameters. Such a bias is surprisingly often ignored. This paper 
reveals the existence of a systematic bias in model calibration caused by variability in the 
linear data projection. A generalized multivariate polynomial model is applied to examine the 
effect of this variability on model parameters. Adjustment factors are derived and methods 
are proposed for detecting and removing the embedded systematic bias. A simulation is used 
to demonstrate the effectiveness of the proposed method. To illustrate the applicability of the 
method, case studies are conducted using real-world global positioning system data obtained 
from taxis. These data calibrate the Macroscopic Bureau of Public Road function for six 1x1 
km regions in Hong Kong. 

Keywords: Systematic Bias; Model Calibration; Linear Data Projection; Macroscopic Bureau of Public Road; 
GPS  

 
1. Introduction 

Reliable model calibration is crucial in transportation studies as it helps to establish a 
better understanding of the interactions between transportation infrastructure, vehicles and 
road users. Accurate model calibration leads to better urban and traffic planning and the 
implementation of traffic management and control measures. Consequently, it helps to 
develop a less congested and more efficient network, keeps a city more economically 
competitive and decreases traffic emissions. In addition, due to the irreversible patterns of 
development restricted by infrastructures and the critical role of infrastructure in promoting 
economic growth (Carlsson et al., 2013), careful planning with the support of reliable model 
calibration is essential for preventing the misuse of the public budget and resources. 
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The accurate measurement and estimation of traffic quantities result in reliable model 
calibration. Technological advancements have improved the accuracy and efficiency of traffic 
data collection methods over the past decades. Hand tally measurement has gradually been 
replaced by automatic systems such as inductive loop sensors, radar and television cameras. 
In addition to point measurement, methods for measuring along a length of road and the 
collection of data by a moving observer have also been developed. The rapid development of 
intelligent transportation systems has made it possible to conduct measurements over a wide 
area at a relatively low cost. 

On-road fixed detectors such as inductive loop sensors are still the most commonly 
adopted means of collecting traffic data for important roadways, as such methods provide an 
acceptable level of accuracy with minimal effort. However, high installation and maintenance 
costs sometimes make it impractical or economically unviable to ubiquitously deploy these 
sensors on all highways and the entire arterial network (Herrera and Bayen, 2010, Herrera et 
al., 2010). Hence, the coverage is normally limited to a subset of links (Caceres et al., 2012).   

Given that vehicle movement can be interrupted by signals, the travel time estimates 
of loop detectors could be inaccurate. In principle, a vehicle re-identification system can 
improve the accuracy as follows. Sensors installed at the two ends of a selected arterial link 
record the times when a vehicle passes by and measure its signature. The travel time of the 
vehicle is calculated when the signature is matched at the two consecutive locations of the 
link (Kwong et al., 2009). The radio frequency identification (RFID) transponders (Wright 
and Dahlgren, 2001, Ban et al., 2010), license plate recognition (LPR) systems (Herrera et al., 
2010) and other unique tags are readily available utilities for this scheme. However, in 
addition to raising privacy concerns, these systems are similarly limited by the cost of sensor 
deployment over the entire arterial network, thus restricting coverage. Kwong et al. (2009) 
presented a scheme based on matching signatures measured by wireless magnetic sensors 
installed at the two ends of the arterial link. Although this scheme is able to avoid the risk of 
privacy issues, it fails to resolve cost and coverage problems. More recently, the Bluetooth 
Media Access Control Scanner (BMS) was proposed as a complementary traffic data source 
(Bhaskar and Chung, 2013). However, Jie et al. (2011) identified the poor quality of its data 
and the uncertainty surrounding its identification of Bluetooth device carriers (i.e., whether a 
carrier belongs to a vehicle, a cyclist or a pedestrian).  

Cellular systems were introduced a decade ago (Bolla and Davoli, 2000, Ygnace and 
Drane, 2001, Zhao, 2000) to overcome the limitations imposed by expensive implementation 
costs and the limited coverage of stationary roadside equipment (Herrera et al., 2010) in 
systems such as loop detectors and vehicle re-identification systems. However, because the 
use of cell phones while driving disrupts drivers’ attention (Liang et al., 2007), it is prohibited 
or discouraged in many countries, thus limiting the application of the proposed models. 
Moreover, flow measurements from cellular systems follow an aggregate format for each 
group of links intercepting the corresponding inter-cell boundary (Caceres et al., 2012), 
making it impossible to estimate traffic flow for any individual link. 
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Advancements in global positioning systems (GPSs) have made it possible to collect 
data from GPS-equipped vehicles. These systems have been widely adopted to extend the 
coverage of data collected from stationary roadside equipment to almost the entire network at 
a relatively low cost (Miwa et al., 2013). Many recent travel time estimation studies have 
been based on GPS probe vehicle data (Nanthawichit et al., 2003, Hofleitner et al., 2012, Peer 
et al., 2013, Herring et al., 2010, Jenelius and Koutsopoulos, 2013, Zheng and Van Zuylen, 
2013, Zhan et al., 2013). Although they lend potential to future global coverage, these probe 
vehicle data come from various sources that present specific challenges. First, fleet data 
(FedEx, UPS, taxis, etc.) (Moore et al., 2001, Schwarzenegger et al., 2008, Bertini and 
Tantiyanugulchai, 2004; Wong et al., 2014) pose bias problems due to the operational 
constraints and specific travel patterns involved. Second, participatory sensing data taken 
from industry models (INRIX, Waze, etc.) are unpredictable, and no single company has 
ubiquitous coverage (Hofleitner et al., 2012). Moreover, the added cost of equipping every 
vehicle with GPS trackers coupled with potential privacy issues prevent this system from 
being applied on a global scale, making direct measurement of total traffic flows implausible. 

Despite the advancement of technologies, the collection of traffic data via different 
devices remains limited by various factors. Mathematical techniques used for traffic data 
estimations, such as sampling methods, filtering algorithms and data scaling, offer possible 
solutions to the problems presented by data acquisition. Linear data projection is a prevalent 
data scaling method that infers population traffic characteristics by projecting the observable 
traffic characteristics of a smaller population via the mean of a set of scaling factors.  

The scaling factors used in linear data projections vary by situation. Example scaling 
factors include traffic composition ratios and passenger car units (PCUs). The factor is 
usually a random variable that is subject to variability and assumed to follow a distribution, 
rather than a constant. Depending on the sampling method used, the variance of the sampled 
scaling factor measures different types of variability, such as spatial and temporal variability. 
If traffic composition ratios are sampled across a network, then the variance measures spatial 
variability. Contrary to the usual assumption, a PCU is not essentially static (Chandra et al., 
1995). Thus, if it is selected as the scaling factor, its variance during different time points at 
the same site measures temporal variability. Because the mean of the distribution is the most 
probable observed scaling factor, it is usually adopted in linear data projections. 

Linear data projections are especially useful for traffic data estimations in situations 
where direct measurement is not possible such as the lack of spatial coverage of sensors. For 
instance, a linear data projection can be adopted to estimate an hourly total traffic flow on a 
link where on-road fixed detectors are not installed. Assuming that occupied taxi flow is 
observable on every roadway in a network and that total traffic flow is only observable on a 
subset of links outfitted with detectors in the network, the total traffic-to-occupied-taxi ratio 
can be the chosen scaling factor, and is assumed to follow a distribution over a region due to 
geographical proximity. Scaling factors can be sampled at sites outfitted with detectors. The 
mean of the sampled scaling factors is the expected total traffic-to-occupied-taxi ratio across 
that region in the long run. The variance of the sampled scaling factors measures the spatial 
variability of the total traffic-to-occupied-taxi ratio within this network. If the hourly 
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occupied taxi flow on the link of interest is 10 veh/h and the mean of scaling factors sampled 
at the nearby sites is 100, the hourly total traffic on this link can be estimated by the product 
of the mean of the scaling factors and the occupied taxi flow, which is 1000 veh/h in this case. 
In their study of urban-scale macroscopic fundamental diagrams, Geroliminis and Daganzo 
(2008) leveraged the notion of linear data projection to infer the total traffic flow of sites 
without loop detector installations from the flow of a small group of GPS-equipped taxis, 
using the traffic composition ratio as the scaling factor. This scaling method is not limited to 
projecting traffic flow. It can also be used to infer other quantities such as trip completion 
rates, vehicular accumulations and space-mean speeds (Geroliminis and Daganzo, 2008).  

Due to its simple concept, linear data projection has been widely adopted in many 
real-world situations that necessitate data scaling via scaling factor. However, scaling factors 
such as traffic composition ratios and PCUs are random variables with variations rather than 
absolute constants. Systematic bias may be embedded in the parameters of a model calibrated 
based on linearly projected data because the variance, skewness, kurtosis and even higher-
ordered moment of the distribution of the scaling factor are not captured in the linear data 
projection.  

 This embedded systematic bias remains unexplored in the field, as it is not easily 
evident. To reveal and demonstrate the existence of the bias, a numerical example of the 
calibration of a simple polynomial model simulating a linear data projection is presented as 
follows: 

�	 = � + �	�� = � + �		
��� 

where � is the observable independent variable; 
 is the scaling factor of �; � = 
� is the 
projected value; �  is the observable dependent variable; and �, �  and �  are the model 
parameters. 

Ten thousand data points of �, which serve as the observed data for the independent 
variable, are sampled from a uniform distribution with a domain from 0 to 1. Because scaling 

factors are generally positive, a lognormal distribution with 
̅ =	1 and �� =	0.2 is chosen to 

sample the corresponding scaling factors for the 10,000 samples of � . 
̅  and ��  are 

respectively the mean and standard deviation of the scaling factor 
 . Depending on the 
sampling method used, both the standard deviation ��  and variance ���  can measure 

variability such as the spatial variation or temporal variation of the scaling factors across the 
dimension under consideration. Assuming that a =	1, b =	1 and n =	3, the corresponding 
10,000 points of � and � = 
� , which serve as the observed data for the dependent and 
projected independent variable, can be calculated based on the assumed values of the 
parameters and sampled � and 
.  

Suppose that the values of all individual � are no longer available and can only be 

estimated via a linear projection function based on the mean value of 
, 
,̅ a common real-
world occurrence. Regression analysis is then conducted between � and the linearly projected �. The calibrated values of the parameters are �� =	0.999 and �� =	1.130. It is obvious that �� 
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is close to the assumed true value. However, the calibrated value of �  is apparently 

overestimated. The overestimation of �� (+13.0%) reveals the existence of systematic bias due 
to the ignorance of scaling factor variability in the linear data projection. A linear data 
projection provides good estimates of unobservable independent variables because it captures 
the first moment of the scaling factor that carries most of the information. However, such 
point estimates are not sufficient for reliable model calibration. 

Models depicting the characteristics and performance of a network use fundamental 
diagrams and both link- and area-based cost-flow functions. These models such as volume 
delay functions (e.g., Spiess, 1990, Akcelik, 1978, Tisato, 1991, Davidson, 1966, Akçelik, 
1980) and speed-density relationships (e.g., Jayakrishnan et al., 1995, Kerner and Konhäuser, 
1994, Drake et al., 1967, Drew, 1965, Munjal and Pipes, 1971, Pipes, 1967, MacNicholas and 
Board, 2008, Del Castillo and Benitez, 1995a, Del Castillo and Benitez, 1995b, Van Aerde, 
1995) require traffic speed, flow and density data, the three most important quantities in 
transportation. However, if a non-negligible subset of links within a network is not equipped 
with adequate instruments for direct traffic data measurement, which is usually the case in 
urban transportation network (Lederman and Wynter, 2011), a linear data projection may be 
leveraged using the observable traffic data of a smaller population to estimate traffic data. 
Models calibrated based on these linearly projected data may be systematically biased. To 
remove this bias, information provided by the scaling factor variability should be 
incorporated into the calibration of the model. 

This paper fills the aforementioned knowledge gap by proposing the incorporation of 
adjustment factors that capture scaling factor variability into the model calibration process. 
We derive global adjustment factors that correct the calibrated sensitivity parameters of 
chosen generalized multivariate models in polynomial form. The Bureau of Public Roads 
(BPR) function adopted in the Highway Capacity Manual (Transportation Research Board, 
2000) is a polynomial function that can model the relationship between travel time and the 
traffic volume in a link. It is commonly used in many European countries and the United 
States (Dowling et al., 1998, Lum et al., 1998) and plays an important role in static user 
equilibrium analysis (García-Ródenas and Verastegui-Rayo, 2013). The case studies section 
presents calibrations of Macroscopic Bureau of Public Roads (MBPR) functions using real-
life GPS data and demonstrates the application of the derived global adjustment factor. The 
main contribution of the proposed global adjustment factor is that it can remove the 
systematic bias introduced in the calibrated parameters and hence ensure more accurate 
model calibration. 

The remainder of this paper is structured as follows. In Section 2, the existence of the 
systematic bias embedded in parameters calibrated from linear projected data is proven based 
on a Taylor series expansion. In Section 3, the adjustment factor for models in generalized 
multivariate polynomial form is derived. The metric measuring the extent of the systematic 
bias, factors affecting the extent of the embedment of the systematic bias and the method for 
removing the bias embedded in the calibrated sensitivity parameters are also presented in 
Section 3. Section 4 presents a simulation to illustrate the significant correction power of the 
derived global adjustment factors for multivariate functional models, and demonstrates that 
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the applicability of the global adjustment factor is not restricted to the magnitudes of the 
mean and coefficient of variation (CV) of the scaling factor. In Section 5, real-world taxi 
GPS data are used to calibrate the macroscopic cost-flow function, and the derived global 
adjustment factor is applied in an illustrative case study. Finally, Section 6 summarizes the 
findings of the paper and discusses possible future research directions. 

 

2. Existence of systematic bias 

This section reveals the necessary and sufficient condition for the introduction of 
systematic bias into the calibrated model parameters arising from linearly projected data, and 
thereby proves its existence. The origin of the systematic bias is then discussed. 

2.1 Necessary and sufficient condition for the introduction of systematic bias 

Consider a function � = �	�� of any form, where � is constituted by the sum of the 
products of a set of scaling factors and a set of observable independent variables, i.e., � = ∑ 
������� ; �� is the observable independent variable; 
� is the scaling factor of ��, which 

is assumed to follow any distribution with mean 
 ̅and variance ���; and � is the number of 

terms used to construct the quantity, �. 

In most cases, it is impossible or impractically expensive and labor-intensive to 
collect data for � compared with ��. In practice, data for the observable variable, ��, can be 
collected in relatively cheaper ways. It is assumed that the scaling factor, 
� , of each 
individual �� follows a distribution. In theory, the scaling factor, 
�, can be assumed to follow 
any distribution. However, the chosen distribution depends on the properties of the scaling 
factor. For instance, if the scaling factor is a non-negative random variable with a lower 
relative frequency at high values, then lognormal distribution is an assumed candidate 
distribution. The first and second moments of the distribution can be estimated from another 
set of scaling factors collected from another source under similar conditions. Each set of 
observable variable, ��, can be scaled by the estimated mean of the scaling factor, 
̅, i.e., ∑ 
�̅����� , as an estimate of the target variable,	�. The calibrated model based on the linearly 

projected data is � !"# , which may be a model calibrated with systematically biased 

parameters. Proposition 1 states the necessary and sufficient condition for the introduction of 
systematic bias. In other words, if the following conditions (the model to be calibrated is a 
non-linear function of the scaling factor and the scaling factor is subject to variability) are not 
satisfied, the calibrated model is unbiased even the linear data projection is employed. 

Proposition 1:  
Systematic bias is embedded in the calibrated parameters of models calibrated from linearly 
projected data, regardless of the distribution of the scaling factor and the form of the model �	��, as long as it is a non-linear function of the scaling factor and the scaling factor is 
subject to variability. 
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Proof: Approximate � by a Taylor series expansion with the center at 
� = 
,̅ ∀% ∈ ℕ( 

													� = � !"# +)*� !"#*
�
�

���
 
� − 
#̅ + 12))*�� !"#*
�
.  
� − 
#̅ 
. − 
#̅ +⋯

�

.��

�

���
															1� 

 

Ignoring higher order terms and taking the expectation on both sides, 

									0	�� = � !"# +)*� !"#*
�
�

���
0 
� − 
#̅ + 12))*�� !"#*
�
. 0[ 
� − 
#̅ 
. − 
#̅]

�

.��

�

���
												2� 

 

where 0	
�� = 
,̅ 0 
� − 
#̅ = 0. Assuming that 
� , ∀% ∈ ℕ( are independent of each other, 

04 
� − 
#̅ 
. − 
#̅5 = 0, ∀%, 6 ∈ ℕ(\[% = 6] and 0 8 
� − 
#̅�9 = ���. It follows that 

																																																						0	�� = � !"# + 12��� )*��	!"�
*
��

�

���
																																																3�	 

  

Thus, both the mean of the scaling factor, 
,̅ and the variance of the scaling factor, ���, contribute to the expectation of �. 

0	�� ≠ � !"# 
⟺										 12 ��� )*��	!"�

*
��
�

���
≠ 0 

⟺										 ��� ≠ 0										��=											)*�� !"#
*
��

�

���
≠ 0 

∎ 

Systematic bias may be introduced if �	�� is a nonlinear function of the scaling factor. 
However, �	��  is unrestrictive to any kind of model form. In particular, according to 

Equation (3), if � !"# is a factor of ∑ ?@A	!"�
?�B@

���� , then the variance of the scaling factor can be 

easily grouped with the model parameters. The model parameters affected by the variance of 
the scaling factor and the effect of the variance on those parameters can be easily identified. 
Examples of such models are generalized multivariate polynomial models, the exponential 
function and some trigonometric functions such as the sine and cosine functions. This paper 

examines the generalized multivariate polynomial model. If � !"#  is not a factor of 
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∑ ?@A	!"�
?�B@

���� , then the effect of the scaling factor variance on the model parameters is fuzzy, as 

the variance of the scaling factor cannot be easily fused with the model parameter.  

 

2.2 Origin of systematic bias 

Embedded systematic bias stems from uncaptured scaling factor variability. Equation 
(3) demonstrates that the second moment of a scaling factor distribution also plays a role in 
contributing the mean of the response variable. Direct model calibration based on linearly 
projected data implies an ignorance of the information provided by the second moment. The 

discrepancy between the true model, 0	�� or �	��, and the calibrated model, � !"#, is the 

second term on the right-hand side of Equation (3), and undesirably remains in the error 
component. This unexplained and hidden contribution to the mean value of the response 
variable, which is a function of the independent variable, is then captured by the error 
distribution mean. The violation of the mean zero-error distribution results in a systematically 
biased calibrated model. 

Adopting linear data projection, i.e., replacing each individual scaling factor, 
�, in ∑ 
�������  with 
,̅ leads to translational movements and the systematic scattering of the data 
points of the true model along the independent variable space. This data point distortion is 
equivalent to shifting the entire distribution of data points at each observation along the 
dependent variable space, such that the most probable observed value differs from the true 
value by the exact value of the second term in Equation (3). Linear data projection generates 
systematically distorted data points. Furthermore, calibrating a model with systematically 
distorted data points naturally creates a systematically biased model.  

 

3. Global adjustment factors for generalized multivariate polynomial models 

The paper uses a generalized multivariate polynomial model to examine the effect of 
the ignorance of scaling factor variability in model calibration. The goal of this section is to 
derive the global adjustment factors that capture scaling factor variability. A metric 
measuring the extent of the embedment of systematic bias is proposed, and the factors 
affecting the amount of introduced systematic bias are discussed. A method for incorporating 
the captured variability to correct the calibrated parameters is then introduced. 

 

3.1 Derivation of global adjustment factors 

Consider the following model in polynomial form with n + 1 terms: 

																																																									� = �C + ��� + ���� +⋯+ ����																																												4� 

where � = ∑ 
������� ;�C, ��, ��, …,��E� and �� are the parameters to be calibrated. 
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Thus, the preceding model can be generalized in a multivariate functional form as 
follows: 

																											� = �C + �� F)
���
�

���
G + �� F)
���

�

���
G
�
+⋯+ �� F)
���

�

���
G
�
																				5� 

 

Proposition 2 stated below presents a global adjustment factor for the calibrated 
sensitivity parameter, ��I , of the JKL  term with exponent J . Each calibrated sensitivity 
parameter of the generalized multivariate polynomial function has its own global adjustment 
factor and can be corrected independently. The global adjustment factor is expressed in terms 
of the scaling factor variance, and hence is able to capture the lost variability information in 
linear data projection. 

Proposition 2:  
The global adjustment factor, M"I, for the calibrated sensitivity parameter, ��I, of the JKL term 
with exponent J is given by 

M"I = 1 + NJ	J − 1�2 O N	��
̅ ��O N
∑ �P��P��	∑ �P��P�� �
"""""""""""""O 

 
 
Proof: Consider the JKL term with exponent J,QI = �I	∑ 
������� �I:  

*QI*
. = �IJ R) 
���
�
��� SIE� �. 

*�QI*
.� = �IJ	J − 1� R) 
���
�
��� SIE� �.� 

 

 Using Equation		3�, 
0	�� = �C + �� F)
�̅�

�

���
G + �� Z1 + 	2 ∙ 1���� ∑ �������

2	∑ 
�̅������ � \ F)
�̅�
�

���
G
�
+⋯ 

																																																																													+�� Z1 + �	� − 1���� ∑ �������
2	∑ 
�̅������ � \ F)
�̅�

�

���
G
�
 

 

Hence, ∀J ∈ ℕC, and 
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																															0	�� = )�I Z1 + J	J − 1���� ∑ �������
2	∑ 
�̅������ � \ F)
�̅�

�

���
G
I�

I�C
																																	6� 

 

Again, the mean value of � is dependent on both the mean and variance of the scaling 
factor. However, in practice, the collected data of the observable independent variable are 
normally linearly projected using the mean of the scaling factor, and the information provided 
by the scaling factor variance is ignored in the model calibration. Thus, systematic biases are 
introduced into some of the sensitivity parameters. 

In Equation (6), the variance of the scaling factors is taken out from each scaling 
factor, 
�, and absorbed by the sensitivity parameters of each term. Comparing Equation (6) 
with the original model in Equation (5), we can define the local adjustment factor, MI, for the 
calibrated sensitivity parameter, ��I, of the JKL term with exponent J as follows: 

																																																								MI = 1 + J	J − 1���� ∑ �������
2	∑ 
�̅������ � 																																																			7� 

or 

																																												MI = 1 + NJ	J − 1�2 O N	��
̅ ��O N
∑ �������	∑ ������� �O																																												8� 

 

The adjustment factor for each calibrated sensitivity parameter is dependent on the 

exponent, J , the CV of the scaling factor, 
`a�̅ , and 

∑ bB@cBde	∑ bB�cBde @ , where ��  are the collected 

observable independent variables. The adjustment factor is localized because 
∑ bB@cBde	∑ bB�cBde @  is 

dependent on each set of collected observable independent variables, ��, ��, … , ��. 

According to the Cauchy-Schwarz inequality, ∀��, �� ≥ 0, 

0 ≤ F)����
�

���
G
�
≤ F)���

�

���
GF)���

�

���
G 

Setting all �� = 1, 

0 ≤ F)��
�

���
G
�
≤ F)���

�

���
G� 

Given that ∑ �� ≠�� 0, 
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1� ≤ ∑ �������	∑ ������ �� 

 

The equality of the lower bound holds when �� =	�� = ⋯ = �� . As � → ∞, the lower 
bound 1 � → 0⁄ . Furthermore, 

F)��
�

���
G
�
= )���

�

���
+ 2)���.

�

�l.
 

≥ )���
�

���
 

Thus, 

																																																																		 1� ≤ ∑ �������	∑ ������� � ≤ 1																																																														9� 
 

The equality of the upper bound holds when all of the observed independent variables but one 
are equal to zero. 

In general, as � increases, 
∑ bB@cBde	∑ bB�cBde @ decreases, and the adjustment factor moves closer 

to 1. In other words, the systematic bias decreases because the random effects among 
different scaling factors cancel one another out as � increases. In the limiting case, 

																																																																			 n%��→o
∑ �������	∑ ������� � = 0																																																											10� 

 

Hence, the adjustment factor, MI, tends to 1. In such a case, no adjustment is necessary. 

A local adjustment factor is determined by each set of collected observable 

independent variables, ��, ��, … , ��. A distribution of 
∑ bB@cBde	∑ bB�cBde @ with a lower bound = 

�
� and 

an upper bound = 1 is formed by all of the sets of collected observable independent variables. 

In practical terms, 
∑ bB@cBde	∑ bB�cBde @ varies across different observations. In this paper, this effect is 

represented using the mean value of all of the individual observations, 
∑ bp@cpde	∑ bp�cpde @""""""""""

, based on 

which a global adjustment factor, M"I, is defined for the calibrated sensitivity parameter, ��I, of 
the JKL	term with exponent J: 
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																																																		M"I = 1 + NJ	J − 1�2 O N	��
̅ ��O N
∑ �P��P��	∑ �P��P�� �
"""""""""""""O																																				11� 

∎ 

Note that when � decreases to 1, the multivariate polynomial function decreases to a 
polynomial function of a single variable. The global adjustment factor for each sensitivity 

parameter is exactly the same as the local adjustment factor, as 
∑ bp@cpde	∑ bp�cpde @""""""""""

 = 1. 

The derived global adjustment factors capture the scaling factor variability 
information, which is normally ignored in model calibration and can be used to remove the 
systematic bias as shown in Section 3.3.  

 

3.2 Extent of embedded systematic bias 

The global adjustment factor captures the ignored scaling factor variability. Hence, it 
contains information related to the extent of the embedded systematic bias it causes. The 
percentage of embedded systematic bias in the calibrated sensitivity parameter, ��I, is defined 
as  

																																																											q	��I� = 	M"I − 1� × 100%																																																					12� 
where q	��I� is the percentage of embedded systematic bias in the calibrated parameter, ��I. 

A zero value of q	��I� indicates an unbiased calibrated parameter. If it is positive, 
overestimation of the calibrated parameter is anticipated. Underestimation of the calibrated 
parameter is expected when q	��I� is negative in value. 

The extent of the embedded systematic bias is governed by the exponent, J, the CV of 

the scaling factor, 
`a�̅ , and

∑ bp@cpde	∑ bp�cpde @""""""""""
. For a given value of 

∑ bp@cpde	∑ bp�cpde @""""""""""
, e.g., 0.5, Figure 1 shows the 

relationship between the extent of the embedded systematic bias and the CV of the scaling 
factor, ranging from 0 to 1, at different exponents: J = 0,	J = 0.5, J = 1, J = 2, J = 3 and J = 4. Figure 2 reveals the relationship between the extent of the embedded systematic bias 

and the exponent, which ranges from 0 to 2, at different CVs: 	�� 
̅⁄ �� = 0, 	�� 
̅⁄ �� = 0.5 

and 	�� 
̅⁄ �� = 1.0.  



13 
 

 

Figure 1. Variation of the global adjustment factor against the CV of the scaling factor. 

 

 

Figure 2. Variation of the global adjustment factor against the exponent. 
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When the CV of the scaling factor is 0, suggesting zero variability in the scaling 
factor, no systematic bias is introduced into the calibrated parameter regardless of the value 
of the exponent, as shown in Figure 1, because the scaling factor for scaling the observable 
independent variable is exact without any loss of information. Except for J = 0 and J = 1, 
the extent of embedded systematic bias increases with the CV. If the model to be calibrated is 
a linear model with the exponent J = 0 or J = 1, q	��I� decreases to 0, indicating that the 
sensitivity parameters of the linear terms in the model do not need to be adjusted because the 
variation of the scaling factor does not alter the calibration of the linear term parameters.  

When the exponent is greater than 1, q	��I� is always positive, as shown in Figure 2, 
implying that the calibrated sensitivity parameter of the corresponding non-linear term is 
always overestimated in the long run, and the calibrated parameter must be scaled down. For 
each fixed value of the CV with an exponent greater than 1, the extent of the embedded 
systematic bias increases with the exponent. If the exponent is smaller than 1 but greater than 
0, the calibrated sensitivity parameters of the non-linear terms are expected to be 
underestimated in the long run because q	��I� are evaluated to be negative. 

 

3.3 Removal of systematic bias 

In this subsection, a method for decreasing the systematic bias introduced by the 
derived global adjustment factor is proposed. The calibrated sensitivity parameter can be 
corrected by absorbing the variance of the scaling factor. To do so, the calibrated parameter 
must be divided by the global adjustment factor. The biased parameter, ��I, associated with 
the JKL term with exponent J can be corrected as follows: 

																																																																													�"I = ��IM"I 																																																																					13� 
where �"I is the globally corrected sensitivity parameter of the JKL term with exponent J. 

 

4. Simulation 

In this section, simulations are performed using sampled scaling factors from 100 
lognormal distributions with different combinations of means and standard deviations, and 
hence different CVs, to demonstrate the correction power and efficiency of the derived global 
adjustment factor, M"I. The association between the correction power and magnitudes of the 
mean and CV of the scaling factor is also investigated to illustrate the applicability of the 
global adjustment factor. Assuming that �C =  3,�� =  0, �� =	1, � =	2 and � =	5, the 
multivariate polynomial model chosen for the simulation is 

																																																			� = 3 + �� = 3 + F)
���
t

���
G
�
																																																		14� 
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where � = ∑ 
���t��� . 

 

4.1 Data generation 

As the chosen � =	5, 5 sets of 10,000 observable independent variables, ��, which 
serve as the observed data throughout the 100 simulations, are sampled from a negative 
exponential distribution with a mean of 0.2. In transport studies, many observable quantities 
are assumed to follow a negative exponential distribution. One example is the traffic flow of 
a particular fleet of vehicles, such as private cars and taxis. Due to the small volume of traffic 
flow of any particular type of vehicle at dawn, the distribution resembles a negative 
exponential. Thus, a negative exponential distribution is chosen to generate the data for the 

observable independent variable in this simulation. The value of 
∑ bp@cpde	∑ bp�cpde @""""""""""

 in this set of 

samples, ��, is 0.333. 

Because scaling factors are normally positive values, a lognormal distribution is 
chosen for the sampling. To formulate 100 simulations and examine the relationship between 
the correction power of the adjustment factor and the magnitude of the mean and CV of the 
scaling factor, scaling factors are sampled from 100 distributions with different combinations 
of means and standard deviations, such that both the mean and CV of the scaling factors 
range from 0.1 to 1.0 in steps of 0.1. 

The corresponding 100 sets of dependent variables, � , serving as the observed 
dependent variables are then calculated based on the chosen polynomial using the assumed 
parameters, sampled scaling factors and observed independent variables. 

 

4.2 Model calibration and parameter correction 

Assuming that the means and variances are the only known information about the 
distributions of the scaling factors in these 100 simulations, then the observed independent 
variables can only be linearly projected by the corresponding mean of the scaling factors in 
each of the simulations. Regressions of the observed dependent variables on the linearly 
projected observed independent variables are performed to obtain 100 sets of calibrated 
parameters, ��C and ���. 

Scaling factor variability is not expected to influence the calibration of parameter �C, 
and �� is likely to be overestimated in the long run because the exponent of the non-linear 
term is greater than 1. The global adjustment factors, M"I, for each simulation are evaluated 

from the exponent, the CV and 
∑ bp@cpde	∑ bp�cpde @""""""""""

 of the sampled independent variables, and applied to 

the calibrated ��� for correction. 
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4.3 Results 

Because the mean value of ��C in the 100 simulations is 3.001(+0.1%), no adjustment 
is required, as expected. In contrast, the mean value of ��� is 1.127, which is 12.7% greater 
than the true value. The graph of the calibrated model shown in Figure 3 reveals a 
discrepancy between the true and calibrated models, and the distance between them increases 
with �. The mean value of the global adjustment factor, M"�, is 1.128, which is greater than 1 
as expected and suggests an overestimation of ���in the long run due to the loss of information 
about the scaling factor variance during calibration. This is consistent with the result obtained. 
The detected bias embedded in ���, q	����, is +12.8%. After adjustment, the mean value of the 
adjusted parameter �"� is 0.999, which is only 0.1% less than the true value. The graph of the 
corrected model illustrates that the derived global adjustment factor is capable of scaling 
down the overestimated calibrated model toward the true model. This demonstrates the 
significant correction power of the global adjustment factor. 

 

 

Figure 3. Demonstration of the correction power of the global adjustment factor. 
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Figure 4. Distributions of the unadjusted and adjusted error in���. 

 
The mean and variance of the adjusted error can be used to assess the correction 

power of the global adjustment factor. The distribution of the error, centered at zero with a 
small standard deviation, represents the unbiased efficient estimation of the parameter in the 
long run because the central tendency has zero error and minimal dispersion. Figure 4 
illustrates the correction power of the adjustment factor due to the shifting and narrowing of 
the distribution of the unadjusted errors. Before adjustment, the mean of the distribution of 
the unadjusted error in ��� deviates to the right of zero by 0.127. This provides an indication 
of the extent of the embedded systematic bias due to the linear data projection. Application of 
the adjustment factor shifts the distribution of the unadjusted error by 0.128, so that it 
deviates from zero by only -0.001. This shifting of the central tendency indicates the 
significant correction power of the adjustment factor. The narrowing of the distribution 
shows that the adjustment factor is also capable of confining the spread of the error. The 
correction decreases the standard deviation of the unadjusted error from 0.123 to 0.047. This 
reduction in the error spread demonstrates that the proposed global adjustment factor 
improves the efficiency of the parameter estimation in the long run.  

 

4.4 Applicability of the global adjustment factor 

The adjusted errors are regressed on the mean and CV of the scaling factor to 
investigate whether the applicability of the global adjustment factor is restricted to the 
magnitudes of each and to study the associations between them. 
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																																																												uvw. = xC + x�
̅ + x� ��
̅ 																																																								15� 
where uvw. is the error of the calibrated parameter. 

The calibrated parameters of the mean and CV of the scaling factor, xy� and xy�, are     -
0.001 and 0.001, with p-values of 0.931 and 0.957, respectively. There is no evidence that the 
error is correlated with the mean and CV of the scaling factor. It is apparent that the 
applicability of the global adjustment factor is not likely to depend on these factors.  

 

5. Case studies 

To illustrate the application of the derived global adjustment factor for generalized 
multivariate polynomial model in Section 3, case studies using real-world data were 
conducted in relation to the model calibration of Macroscopic Bureau of Public Road (MBPR) 
function for six 1 km x 1 km regions in Tin Hau, Ma Tau Wai, Fortress Hill, Admiralty, 
Jordan and Kowloon Tong, Hong Kong. The MBPR function, which is in generalized 
multivariate polynomial form, is an essential input for the continuum modeling of urban cities 
(Ho and Wong, 2006,  Ho et al., 2013, Wong, 1998, Yang and Wong, 2000, Yin et al., 2013). 

5.1 Databases 

These case studies modeled the travel time and total traffic flow relationship 
macroscopically using one-year travel time and traffic volume data associated with six 
selected 1x1 km regions obtained from the Annual Traffic Census (ATC) (Transport 
Department, 2010) and 480 GPS-equipped taxis. 

The ATC provides detailed traffic data from over 1,500 stations covering 87% of 
trafficable roads in Hong Kong (Lam et al., 2003, Tong et al., 2003). The average annual 
daily traffic (AADT) across each of the stations where on-road fixed detectors are installed 
can be obtained from the ATC report. 

The taxi GPS database stores detailed travel information about the 480 taxis over the 
course of 2010. Each of the 480 probe vehicles reported their real-time locations, expressed 
in terms of WGS84 (ITRF96 reference frame) in decimal degrees, and the dates, times, 
traveling directions and instantaneous speeds and occupancies to the traffic control center at a 
rate of twice per minute. Due to the full coverage of the taxi data over the entire road network, 
occupied taxi flow on any road segment can be easily counted. The travel time and taxi flow 
data were extracted from the 480 GPS-equipped taxis. 
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5.2 Necessity of linear data projection and adjustment of calibrated parameters 

The MBPR function is a monotonically increasing non-linear model with a 
generalized multivariate polynomial form depicting the sensitivity of the travel time per unit 
distance to the increase in traffic volume associated with a defined studied region.  

Hourly total traffic flow, which was calculated as the sum of hourly traffic flow 
entering the arbitrarily defined studied region through the roadways intercepting the defined 
boundaries, was the target independent variable. However, a non-negligible subset of urban 
network links was not outfitted with inductive loop detectors for direct and accurate 
measurements of traffic flow through these roadways, making the hourly total traffic flow 
entering the studied regions unobservable. As taxi GPS data were available with 
approximately full coverage, the occupied taxi flow on any street was readily attainable. A 
data scaling method such as linear data projection with a total-traffic-to-occupied-taxi ratio as 
the scaling factor could be leveraged to project the occupied taxi flows through the roadways 
diverting traffic into the studied regions as estimates of the hourly traffic flows. 

Given the geographical proximity of the roadway within the network, the same set of 
vehicles should have more or less circulated within the network for each period. However, 
due to the heterogeneities of the road hierarchy and land use of different lots affecting the 
travel pattern, a homogenous traffic mix was not an entirely valid assumption. Thus, the 
traffic composition ratio across the network of the studied region could generally be assumed 
to follow a distribution subject to a certain level of spatial variability. With the availability of 
AADT data, ATC stations within the studied regions served as the sampling sites for the 
scaling factors. The distribution mean, which was the most likely traffic composition ratio, 
was estimated using the sampled scaling factors and used in the linear data projection. 

As the scaling factors were subject to spatial variation and MBPR was a nonlinear 
function of the scaling factor, according to Proposition 1, systematic bias might have been 
introduced into the calibrated parameters due to the linear data projection. The variance of the 
scaling factor accounting for spatial variability was estimated using the sampled scaling 
factors. Furthermore, because the MBPR was a generalized multivariate polynomial, the 
derived global adjustment factor shown in Proposition 2 and proposed methodology were 
adopted to correct the systematically biased parameter and improve the reliability of the 
calibrated model. 

 

5.3 Data extraction 

The travel time and total traffic flow associated with the studied region were the 
essential ingredients in these case studies. Assuming that occupied taxis possess similar travel 
characteristics and behavior to those of other types of vehicles, only occupied taxis are 
considered in this paper. Figure 5 shows the normalized patterns of the hourly occupied taxi 
flows and hourly traffic flows at a few of the locations for which hourly counts were 
available within the studied regions.  
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Figure 5. Normalized hourly occupied taxi flow and hourly total traffic flow patterns at several locations within 
the studied regions: (a) Tin Hau; (b) Ma Tau Wai; (c) Fortress Hill; (d) Admiralty; (e) Jordan; (f) Kowloon Tong. 

 

Although both the normalized occupied taxi flows and normalized total traffic flows 
of the six studied regions varied throughout the day, their patterns remained remarkably 
similar, suggesting that the proposed assumption was reasonably valid. In other words, the 
hourly total traffic flows entering a studied region were inferred from the occupied taxi flows 
using the mean of the scaling factors. 
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Figure 6. Schematic diagram showing the locations of ATC stations and boundary stations in the 1x1 km studied 
regions: (a) Tin Hau; (b) Ma Tau Wai; (c) Fortress Hill; (d) Admiralty; (e) Jordan; (f) Kowloon Tong. 
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Figure 6 is a schematic diagram showing the network skeletons of the six chosen 
studied regions, the locations of the ATC stations and the distributions of the boundary 
stations surrounding the 1x1 km boundaries. The ATC stations within each of the studied 
regions were the selected sampling sites for the scaling factors, which were the traffic 
composition ratios of total traffic to occupied taxi flows. The daily occupied taxi flows across 
each of the ATC stations were counted using the taxi GPS data. Dividing the AADT obtained 
from the ATC report by the average daily occupied taxi flow of each ATC station gave a 

sampled scaling factor. A mean 
̅  was an estimate of the average number of vehicles 
represented by each occupied taxi in that studied region. A standard deviation �� measured 

the spatial variation of the scaling factor across the network concerned. The means and 
standard deviations of the distributions of the scaling factors of the six studied regions were 
estimated from the sampled scaling factors, and are shown in the following table. 

Table 1 
Estimates of the mean and standard deviation of the scaling factor distributions for each studied region 

Studied Region Number of ATC stations !"  z! 

Tin Hau 31 193.4 74.0 

Ma Tau Wai 18 193.9 81.9 

Fortress Hill 25 232.2 93.8 

Admiralty 15 211.2 71.4 

Jordan 31 157.4 69.2 

Kowloon Tong 13 193.4 45.4 

 

Tin Hau, Ma Tau Wai and Kowloon Tong exhibited similar sampled scaling factor 
means. The traffic composition ratios were about 193, meaning that each occupied taxi 
roughly represented 193 vehicles in the three regions. Compared with other regions, occupied 
taxis comprised even smaller vehicular populations in Fortress Hill and Admiralty. Thus, 
each occupied taxi represented over 200 vehicles in these two regions. On the contrary, there 
were more occupied taxis in Jordan, with each occupied taxi representing about 157 vehicles. 
Because the scaling factors were sampled at different road segments and locations within the 
studied regions, the scaling factor standard deviation is a measure of the spatial variation of 
the traffic composition ratio that is the dispersion of the scaling factor across the network 
spatially. Among the six regions, the scaling factor standard deviation in Fortress Hill was the 
highest at 93.8, and the lowest was 45.4 in Kowloon Tong. Both the means and standard 
deviations of the scaling factors in each region could have resulted from factors such as the 
land use patterns, demography and household wealth of the corresponding regions.  

For each of the studied regions, the hourly occupied taxi flows across the boundary 
stations were projected linearly using the corresponding scaling factor means as the estimates 
of the hourly traffic flows across these boundary stations. The total hourly traffic flow 
entering the studied region was the sum of these estimates. 
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Because the occupied taxis interacted with the surrounding vehicles as they travelled 
within the network of the studied regions, both types of vehicles should have travelled at 
similar speeds. Therefore, the speed of the occupied taxis was considered an unbiased 
estimate of the speed of the surrounding vehicles. The average instantaneous speed of all of 
the occupied taxis for each hour within the studied region was used as the estimate of the 
space-mean speed. The reciprocal of the space-mean speed was taken as the estimate of the 
average travel time per unit distance of movement, which served as the observed dependent 
variable. With both the collected travel time and linearly projected total hourly traffic flow 
taken into account, the MBPR function could be calibrated. 

 

5.4 Model calibration and results  

The MBPR function, which modeled the relationship between the travel cost and 
traffic flow associated with a region, was defined as follows: 

																																																											Q = Q� + Q�{ F)
�|�
�

���
G
�
																																																							16� 

where Q  is the travel time; Q�  is the free-flow travel time; �  is the number of boundary 

stations; 
�  is the scaling factor of boundary station %; |�  is the observed hourly taxi flow 
entering the studied region through a boundary station %, adjusted by the ratio between the 
two normalized patterns in Figure 5 during the observation hour; the sum of the products of 
� 
and |�  over � boundary stations, ∑ 
�|����� , is the estimate of the total hourly traffic flow 
entering the studied region through these boundary stations; and {  and �  are the model 
parameters. 

 Several MBPR functions with different values of �, including 2, 3 and 4, were chosen 
as the candidate models. In general, the MBPR function in quadratic form was found to best 
fit the collected dataset. Thus, the MBPR function with � equal to 2 was chosen to study the 
effect of the spatial variability of the scaling factor on the extent of systematic bias embedded 
in the sensitivity parameter due to linear data projection. Models were calibrated on the 
observed travel time and linearly projected traffic flow. Table 2 shows the estimated 
parameters and R-squared values of each calibrated model in the studied regions. 

The second column contains the calibrated free-flow travel time per unit distance, Q��, 

of each studied region. Because free-flow travel time is the intercept of MBPR function, it is 
anticipated that no bias is embedded in it. The inverse of the calibrated free-flow travel time 
is an estimate of the free-flow travel speed, |�� . The values in the third column are the 

calibrated sensitivity parameters of the nonlinear term in the MBPR function. They indicate 
that correction using the derived adjustment factor is necessary. As free-flow travel time is 
unbiased, the embedded systematic bias is absorbed by {�. Both the free-flow travel time and 
congestion sensitivity parameter are deemed to be the aggregated result of the topological 
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features of the network. The last column, which contains the R-squared values, reveals the 
goodness-of-fit of the calibrated MBPR functions for the six selected studied regions. 

 

Table 2 
Model calibration results of the MBPR function in each of the studied regions 

Studied Region }~!(h/km) ��!(km/h) }~!��(h3/km/veh2) �� 

Tin Hau 0.0331 30.2 8.638E-11 0.483 

Ma Tau Wai 0.0229 43.6 1.030E-10 0.715 

Fortress Hill 0.0226 44.3 6.769E-11 0.600 

Admiralty 0.0225 44.5 3.228E-11 0.690 

Jordan 0.0356 28.1 1.724E-11 0.630 

Kowloon Tong 0.0264 37.9 2.530E-10 0.729 

 

Table 3 

Adjustment of sensitivity parameter { 

Studied Region z! !"⁄  � 
∑ �����=�	∑ �����=� �

""""""""""""""""""""
 ��� �	���(%) ��(h2/veh2) ��(h2/veh2) 

Tin Hau 0.383 28 0.237 1.035 +3.5% 2.607E-09 2.519E-09 

Ma Tau Wai 0.423 26 0.285 1.051 +5.1% 4.489E-09 4.271E-09 

Fortress Hill 0.404 18 0.276 1.045 +4.5% 2.999E-09 2.870E-09 

Admiralty 0.338 22 0.195 1.022 +2.2% 1.435E-09 1.404E-09 

Jordan 0.440 35 0.116 1.022 +2.2% 4.837E-09 4.731E-09 

Kowloon Tong 0.235 19 0.218 1.012 +1.2% 9.588E-09 9.474E-09 

 

The CV of the scaling factor estimated by the sampled scaling factors of the ATC 
stations in each region and the mean of the sum of squared over squared of sum of the 
occupied taxi flow through each boundary station were required to evaluate the adjustment 
factor for the sensitivity parameter of the squared-term in the MBPR function. The CV of the 
scaling factor, defined as the ratio of the standard deviation to the mean, was a measure of the 
spatial variation of the scaling factor per unit vehicles, represented by each occupied taxi in 
this case. The mean of sum of squared over squared of sum of the occupied taxi flow was 
bounded by the upper bound of 1 and the lower bound evaluated from the reciprocal of the 
number of boundary stations, �. It was a measure of the average uniformity of the occupied 
taxi flow through the boundary stations over each hour throughout the year. It hit the lower 
bound when the occupied taxis entering the studied region were evenly distributed across the 
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boundary stations. It reached the upper bound if all of the occupied taxis entering the region 
were concentrated through one boundary station. Table 3 presents the adjustment factor, 
detected systematic bias and sensitivity parameter, {, before and after adjustment for each 
studied region. 

The systematic biases detected in the calibrated sensitivity parameters of the squared 
terms of the six MBPR functions were positive, indicating that the calibrated sensitivity 
parameters were overestimated as expected. Due to the relatively high scaling factor 
variability (81.9) and the highest unevenly distributed occupied taxi flow through the 
boundary stations (0.285), the percentage of bias detected in the calibrated sensitivity 
parameter in the MBPR function of Ma Tau Wai was +5.1%, the highest of the studied 
regions. The high spatial variability of scaling factor and low uniformity of occupied taxi 
flow could have resulted from the heterogeneities of road hierarchy and land uses in different 
lots in the studied region. Although Fortress Hill showed the highest scaling factor variability 
(93.8), the highest scaling factor mean (232.2) resulted in a slightly lower CV (0.404) 
compared with that of Ma Tau Wai (0.423). Thus, the amount of bias embedded was +4.5%, 
lower than that of Ma Tau Wai. In addition to the lower spatial variability of the scaling 
factor (74.0), the more uniformly distributed occupied taxi flow through the boundary station 
(0.237) in Tin Hau led to the third highest embedment of systematic bias in the sensitivity 
parameter (+3.5%). The sensitivity parameters of the MBPR functions of Admiralty and 
Jordan shared the same extent of systematic bias (+2.2%). Although the CV of the scaling 
factor in Jordan (0.440) was greater than that in Admiralty (0.338), the substantial number of 
boundary stations in Jordan (35) significantly minimized the influence of the random effects 
of scaling factors and non-uniformity of the occupied taxi flows, and resulted in the lowest 
mean of sum of squared over squared of sum of the occupied taxi flow (0.116) out of all of 
the regions. This cancelled the effect of the high CV, and hence the embedded biases in the 
parameters of the models of Admiralty and Jordan were at the same level. Kowloon Tong is a 
residential area in Hong Kong with a relatively low density and a relatively homogenous road 
hierarchy and land use. This led to the lowest variability (45.4) and CV of scaling factor 
(0.235), and hence remarkably decreased the systematic bias embedded in the sensitivity 
parameter of the nonlinear term (+1.2%).  

Given the evaluated adjustment factors, the systematic bias embedded in the 
calibrated sensitivity parameter was then corrected by the methodology proposed in Section 
3.3. Figure 7 illustrates the scatter plots of travel time against projected vehicular flow, the 
calibrated MBPR functions and adjusted MBPR functions of the six 1x1 km studied regions 
in Hong Kong. The adjusted MBPR functions were the more reliable models describing the 
relationship between the travel time per unit distance and the traffic flow. 
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Figure 7. Scatter plots of travel time against vehicular flow, the calibrated MBPR functions and the adjusted 
MBPR functions for the 1x1 km studied regions: (a) Tin Hau; (b) Ma Tau Wai; (c) Fortress Hill; (d) Admiralty; 

(e) Jordan; (f) Kowloon Tong. 

 

6 Conclusion 

In the transportation field, using different instruments to acquire data representing 
population traffic characteristics through direct measurement may meet with various 
limitations and restrictions. Traffic data inferences are often made based on the data of a 
population subset. Linear data projection is a prevailing method adopted for data inference. 
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However, the possibility of a systematic bias being introduced into the parameters of models 
calibrated from linearly projected data has surprisingly gone unexplored. This paper unveils 
the necessary and sufficient condition of the introduction of systematic bias into calibrated 
parameters due to linear data projection. A systematic bias is introduced if the model to be 
calibrated is a nonlinear function of the scaling factor, and the scaling factor used is subject to 
variability. The embedded bias originates from systematically distorted data points caused by 
linear data projection in which the contribution of the scaling factor variance to the mean of 
the response variable undesirably remains in the error component. 

In this paper, a generalized multivariate polynomial function model is applied to a 
discussion of the removal of systematic bias. Global adjustment factors are derived for each 
sensitivity parameter of the terms with different exponents. Both the metric detecting the 
extent of the embedment of systematic bias and method of its removal are subsequently 
proposed. The CV of the scaling factor, the exponent of the scaling factor and the mean of 
sum of squared over squared of sum of the observable independent variable are identified as 
the factors affecting the extent of the embedded systematic bias. If the exponent is greater 
than 1, then overestimation of the sensitivity parameter is anticipated. In contrast, 
underestimation is expected if the exponent is between 0 and 1. The amount of embedded 
systematic bias increases with both the CV of the scaling factor and the mean of sum of 
squared over squared of sum of the observable independent variable.  

Comprehensive simulation has demonstrated the significant correction power and 
efficiency of the derived adjustment factor. There is no evidence to suggest that the 
applicability of the adjustment factor is restricted to the magnitudes of the mean and the CV 
of the scaling factor. This ensures and boosts confidence in the proposed approach to the 
removal of systematic bias. One of the major contributions of the proposed methodology is 
that the systematic bias introduced by data inference can be reduced via mathematic 
treatment without incurring additional equipment and installation costs at the data acquisition 
stage to ensure more accurate data.  

Real-life traffic data from an on-road fixed detector and taxi GPS data were collected 
and integrated to illustrate how the derived adjustment factor can be applied in model 
calibrations and to calibrate MBPR functions in generalized multivariate polynomial form for 
six 1x1 km regions in Hong Kong. The extent of the embedded systematic bias was affected 
by the spatial variability of the scaling factor and the uniformity of the occupied taxi flow 
through the boundary stations. The derived adjustment factor successfully captured the 
information provided by the scaling factor variability undesirably remained in the error 
component. The adjusted MBPR functions were the more reliable models for depicting how 
the travel time per unit distance related to the traffic flow in these six regions. 

The adjustment factor proposed in this paper is applicable for polynomial models. 
However, systematic bias is introduced into any model form as long as it is a nonlinear 
function of the scaling factor and when linear data projection is adopted. If the calibrated 
model is a factor of the second derivative of the model in relation to the scaling factor, then 
the biased parameter and effect of the scaling factor variability can be easily identified, as the 
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scaling factor variance can be grouped with the model parameter. The exponential function 
and some trigonometric functions such as the sine and cosine functions possess this property. 
Thus, the adjustment factors of the parameters of these models can be derived by following 
steps and procedures similar to those used to derive the adjustment factors for the sensitivity 
parameters of generalized multivariate polynomial models. For models that do not have this 
property, the effect of the ignorance of the scaling factor variability on parameters biased by 
linear data projection can be more complicated and ambiguous, as the variance of the scaling 
factor cannot be easily fused with the model parameters and it may be cumbersome to 
manipulate. Future studies could extend the techniques used to remove the systematic bias 
embedded in more complicated model forms as a result of linear data projection. 
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