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Abstract

In transportation and traffic planning studies, wmate traffic data are required for
reliable model calibration to accurately predieingportation system performance and ensure
better traffic planning. However, it is impractidal gather data from an entire population for
such estimations because the widely used loop tdeseand other more advanced wireless
sensors may be limited by various factors. Thuskingadata inferences based on smaller
populations is generally inevitable. Linear datajgction is a commonly and intuitively
adopted method for inferring population traffic chaeristics. It projects a sample of
observable traffic quantities such as traffic cob@sed on a set of scaling factors. However,
scaling factors are subject to different types afiability such as spatial variability. Models
calibrated based on linearly projected data thatatcaccount for variability may introduce a
systematic bias into their parameters. Such a iBigsirprisingly often ignored. This paper
reveals the existence of a systematic bias in moaldbration caused by variability in the
linear data projection. A generalized multivaripgdynomial model is applied to examine the
effect of this variability on model parameters. éstiment factors are derived and methods
are proposed for detecting and removing the emlzkdgstematic bias. A simulation is used
to demonstrate the effectiveness of the proposdtiadeTo illustrate the applicability of the
method, case studies are conducted using real-wgtolthl positioning system data obtained
from taxis. These data calibrate the Macroscopie8u of Public Road function for six 1x1
km regions in Hong Kong.

Keywords: Systematic Bias; Model Calibration; Linear DatajBction; Macroscopic Bureau of Public Road;
GPS

1. Introduction

Reliable model calibration is crucial in transptida studies as it helps to establish a
better understanding of the interactions betweansportation infrastructure, vehicles and
road users. Accurate model calibration leads téebetrban and traffic planning and the
implementation of traffic management and controlasuges. Consequently, it helps to
develop a less congested and more efficient netwkeleps a city more economically
competitive and decreases traffic emissions. Intadg due to the irreversible patterns of
development restricted by infrastructures and tiitecal role of infrastructure in promoting
economic growth (Carlsson et al., 2013), carefahping with the support of reliable model
calibration is essential for preventing the misofthe public budget and resources.
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The accurate measurement and estimation of trgff@ntities result in reliable model
calibration. Technological advancements have imgaddahe accuracy and efficiency of traffic
data collection methods over the past decades. ltlydmeasurement has gradually been
replaced by automatic systems such as inductive $emsors, radar and television cameras.
In addition to point measurement, methods for meagualong a length of road and the
collection of data by a moving observer have alsenbdeveloped. The rapid development of
intelligent transportation systems has made itiptss$o conduct measurements over a wide
area at a relatively low cost.

On-road fixed detectors such as inductive loop @msnare still the most commonly
adopted means of collecting traffic data for impattroadways, as such methods provide an
acceptable level of accuracy with minimal efforovever, high installation and maintenance
costs sometimes make it impractical or economicaflyiable toubiquitously deploy these
sensors on all highways and the entire arteriabowt (Herrera and Bayen, 2010, Herrera et
al., 2010). Hence, the coverage is normally limied subset of links (Caceres et al., 2012).

Given that vehicle movement can be interruptediggads, the travel time estimates
of loop detectors could be inaccurate. In pringi@evehicle re-identification system can
improve the accuracy as follows. Sensors installetthe two ends of a selected arterial link
record the times when a vehicle passes by and meedsuwsignature. The travel time of the
vehicle is calculated when the signature is matchtetthe two consecutive locations of the
link (Kwong et al., 2009). The radio frequency itecation (RFID) transponders (Wright
and Dahlgren, 2001, Ban et al., 2010), licenseeptatognition (LPR) systems (Herrera et al.,
2010) and other unique tags are readily availabigies for this scheme. However, in
addition to raising privacy concerns, these systarassimilarly limited by the cost of sensor
deployment over the entire arterial network, thestricting coverage. Kwong et al. (2009)
presented a scheme based on matching signaturesimeegby wireless magnetic sensors
installed at the two ends of the arterial link.h&ltigh this scheme is able to avoid the risk of
privacy issues, it fails to resolve cost and cogerproblems. More recently, the Bluetooth
Media Access Control Scanner (BMS) was proposeal @smplementary traffic data source
(Bhaskar and Chung, 2013). However, Jie et al. {p@dentified the poor quality of its data
and the uncertainty surrounding its identificat@frBluetooth device carriers (i.e., whether a
carrier belongs to a vehicle, a cyclist or a pethsy

Cellular systems were introduced a decade agogBwltd Davoli, 2000, Ygnace and
Drane, 2001, Zhao, 2000) to overcome the limitationposed by expensive implementation
costs and the limited coverage of stationary ratdsiquipment (Herrera et al., 2010) in
systems such as loop detectors and vehicle reHigatibn systems. However, because the
use of cell phones while driving disrupts driveatention (Liang et al., 2007), it is prohibited
or discouraged in many countries, thus limiting #@plication of the proposed models.
Moreover, flow measurements from cellular systewifoww an aggregate format for each
group of links intercepting the corresponding irtel boundary (Caceres et al., 2012),
making it impossible to estimate traffic flow fanyaindividual link.



Advancements in global positioning systems (GP&sghmade it possible to collect
data from GPS-equipped vehicles. These systems lheee widely adopted to extend the
coverage of data collected from stationary roadsmigpment to almost the entire network at
a relatively low cost (Miwa et al., 2013). Many eat travel time estimation studies have
been based on GPS probe vehicle data (Nanthaweicait, 2003, Hofleitner et al., 2012, Peer
et al., 2013, Herring et al., 2010, Jenelius andt&apoulos, 2013, Zheng and Van Zuylen,
2013, Zhan et al., 2013). Although they lend po#&no future global coverage, these probe
vehicle data come from various sources that prespatific challenges. First, fleet data
(FedEx, UPS, taxis, etc.) (Moore et al., 2001, Sufrenegger et al., 2008, Bertini and
Tantiyanugulchai, 2004; Wong et al., 2014) poses lpeoblems due to the operational
constraints and specific travel patterns involvBdcond, participatory sensing data taken
from industry models (INRIX, Waze, etc.) are unpctble, and no single company has
ubiquitous coverage (Hofleitner et al., 2012). Muwer, the added cost of equipping every
vehicle with GPS trackers coupled with potentialg@cy issues prevent this system from
being applied on a global scale, making direct mesmsent of total traffic flows implausible.

Despite the advancement of technologies, the dalleof traffic data via different
devices remains limited by various factors. Mathiraa techniques used for traffic data
estimations, such as sampling methods, filterimgprathms and data scaling, offer possible
solutions to the problems presented by data adgunsiLinear data projection is a prevalent
data scaling method that infers population trafi@racteristics by projecting the observable
traffic characteristics of a smaller population tha mean of a set of scaling factors.

The scaling factors used in linear data projectimy by situation. Example scaling
factors include traffic composition ratios and masger car units (PCUs). The factor is
usually a random variable that is subject to valitgbkand assumed to follow a distribution,
rather than a constant. Depending on the sampletpad used, the variance of the sampled
scaling factor measures different types of varighisuch as spatial and temporal variability.
If traffic composition ratios are sampled acrosgetwork, then the variance measures spatial
variability. Contrary to the usual assumption, dJP€ not essentially static (Chandra et al.,
1995). Thus, if it is selected as the scaling fadte variance during different time points at
the same site measures temporal variability. Bex#ws mean of the distribution is the most
probable observed scaling factor, it is usuallyed in linear data projections.

Linear data projections are especially useful faffic data estimations in situations
where direct measurement is not possible sucheakthk of spatial coverage of sensors. For
instance, a linear data projection can be adomagbtimate an hourly total traffic flow on a
link where on-road fixed detectors are not insthllAssuming that occupied taxi flow is
observable on every roadway in a network and thtat traffic flow is only observable on a
subset of links outfitted with detectors in thewatk, the total traffic-to-occupied-taxi ratio
can be the chosen scaling factor, and is assumiedldav a distribution over a region due to
geographical proximity. Scaling factors can be dachjat sites outfitted with detectors. The
mean of the sampled scaling factors is the expeotadi traffic-to-occupied-taxi ratio across
that region in the long run. The variance of thegiead scaling factors measures the spatial
variability of the total traffic-to-occupied-taxiatio within this network. If the hourly
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occupied taxi flow on the link of interest is 10hvle and the mean of scaling factors sampled
at the nearby sites is 100, the hourly total tcafin this link can be estimated by the product
of the mean of the scaling factors and the occuairdflow, which is 1000 veh/h in this case.
In their study of urban-scale macroscopic fundamdeditgrams, Geroliminis and Daganzo
(2008) leveraged the notion of linear data progectio infer the total traffic flow of sites
without loop detector installations from the flow @ small group of GPS-equipped taxis,
using the traffic composition ratio as the scaliagtor. This scaling method is not limited to
projecting traffic flow. It can also be used todanfother quantities such as trip completion
rates, vehicular accumulations and space-mean sgg&edoliminis and Daganzo, 2008).

Due to its simple concept, linear data projectias been widely adopted in many
real-world situations that necessitate data scaliagcaling factor. However, scaling factors
such as traffic composition ratios and PCUs arédaanvariables with variations rather than
absolute constants. Systematic bias may be embédldeel parameters of a model calibrated
based on linearly projected data because the vaiakewness, kurtosis and even higher-
ordered moment of the distribution of the scaliagtér are not captured in the linear data
projection.

This embedded systematic bias remains unexplaretia field, as it is not easily
evident. To reveal and demonstrate the existendheobias, a numerical example of the
calibration of a simple polynomial model simulatiadinear data projection is presented as
follows:

y =a+bX"=a+b(fx)"

wherex is the observable independent varialflés the scaling factor of; X = fx is the
projected valuey is the observable dependent variable; anbl andn are the model
parameters.

Ten thousand data points xgf which serve as the observed data for the independ
variable, are sampled from a uniform distributioithva domain from O to 1. Because scaling
factors are generally positive, a lognormal disttibn with f = 1 andsy = 0.2 is chosen to
sample the corresponding scaling factors for theDQ®M samples of . f and o are
respectively the mean and standard deviation ofstteding factorf. Depending on the
sampling method used, both the standard deviatjorand variances;> can measure
variability such as the spatial variation or tengdasariation of the scaling factors across the
dimension under consideration. Assuming that1,b =1 andn = 3, the corresponding
10,000 points ofy andX = fx, which serve as the observed data for the depérateh
projected independent variable, can be calculaiskd on the assumed values of the
parameters and sampledndf.

Suppose that the values of all individXaare no longer available and can only be
estimated via a linear projection function basedtemean value of, f, a common real-
world occurrence. Regression analysis is then attedbetweery and the linearly projected
X. The calibrated values of the parametersiaze0.999 and = 1.130. It is obvious that
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is close to the assumed true value. However, thHibrated value ofb is apparently
overestimated. The overestimationbof+13.0%) reveals the existence of systematic dhiges

to the ignorance of scaling factor variability ihetlinear data projection. A linear data
projection provides good estimates of unobservatalependent variables because it captures
the first moment of the scaling factor that carmesst of the information. However, such
point estimates are not sufficient for reliable mlochlibration.

Models depicting the characteristics and perforreamica network use fundamental
diagrams and both link- and area-based cost-flavetfons. These models such as volume
delay functions (e.g., Spiess, 1990, Akcelik, 19¥8ato, 1991, Davidson, 1966, Akcelik,
1980) and speed-density relationships (e.g., Jesjatan et al., 1995, Kerner and Konhauser,
1994, Drake et al., 1967, Drew, 1965, Munjal anaeBj 1971, Pipes, 1967, MacNicholas and
Board, 2008, Del Castillo and Benitez, 1995a, Dasttillo and Benitez, 1995b, Van Aerde,
1995) require traffic speed, flow and density ddkeg three most important quantities in
transportation. However, if a non-negligible subsfelinks within a network is not equipped
with adequate instruments for direct traffic dataasurement, which is usually the case in
urban transportation network (Lederman and Wyrz@4,1), a linear data projection may be
leveraged using the observable traffic data of allempopulation to estimate traffic data.
Models calibrated based on these linearly projedi&d may be systematically biased. To
remove this bias, information provided by the swalifactor variability should be
incorporated into the calibration of the model.

This paper fills the aforementioned knowledge ggpimposing the incorporation of
adjustment factors that capture scaling factoralmlity into the model calibration process.
We derive global adjustment factors that corre@ dalibrated sensitivity parameters of
chosen generalized multivariate models in polynérfuem. The Bureau of Public Roads
(BPR) function adopted in the Highway Capacity Main(Iransportation Research Board,
2000) is a polynomial function that can model teationship between travel time and the
traffic volume in a link. It is commonly used in maEuropean countries and the United
States (Dowling et al., 1998, Lum et al., 1998) atalys an important role in static user
equilibrium analysis (Garcia-Rodenas and VerastBgio, 2013). The case studies section
presents calibrations of Macroscopic Bureau of ieuRbads (MBPR) functions using real-
life GPS data and demonstrates the applicatiom@fderived global adjustment factor. The
main contribution of the proposed global adjustméatttor is that it can remove the
systematic bias introduced in the calibrated patarseand hence ensure more accurate
model calibration.

The remainder of this paper is structured as fddlow Section 2, the existence of the
systematic bias embedded in parameters calibreded linear projected data is proven based
on a Taylor series expansion. In Section 3, thesiajent factor for models in generalized
multivariate polynomial form is derived. The metnweasuring the extent of the systematic
bias, factors affecting the extent of the embedmoéiie systematic bias and the method for
removing the bias embedded in the calibrated seitgiparameters are also presented in
Section 3. Section 4 presents a simulation totithtis the significant correction power of the
derived global adjustment factors for multivarifd@ctional models, and demonstrates that
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the applicability of the global adjustment factsrriot restricted to the magnitudes of the
mean and coefficient of variation (CV) of the suoglifactor. In Section 5, real-world taxi
GPS data are used to calibrate the macroscopiefloastfunction, and the derived global
adjustment factor is applied in an illustrative easudy. Finally, Section 6 summarizes the
findings of the paper and discusses possible fuegearch directions.

2. Existence of systematic bias

This section reveals the necessary and sufficientdition for the introduction of
systematic bias into the calibrated model pararaetgsing from linearly projected data, and
thereby proves its existence. The origin of theéesystic bias is then discussed.

2.1 Necessary and sufficient condition for the introduction of systematic bias

Consider a functioy = G(z) of any form, where is constituted by the sum of the
products of a set of scaling factors and a set liffenvable independent variables, i.e.,
z = Y"1 fix;; x; is the observable independent varialfles the scaling factor of;, which
is assumed to follow any distribution with me@and variance;?; andm is the number of
terms used to construct the quantiy,

In most cases, it is impossible or impracticallypensive and labor-intensive to
collect data foz compared with;. In practice, data for the observable variakjecan be
collected in relatively cheaper ways. It is assuntieat the scaling factorf;, of each
individual x; follows a distribution. In theory, the scaling t@gG f;, can be assumed to follow
any distribution. However, the chosen distributagpends on the properties of the scaling
factor. For instance, if the scaling factor is animegative random variable with a lower
relative frequency at high values, then lognormistridhution is an assumed candidate
distribution. The first and second moments of tlsridbution can be estimated from another
set of scaling factors collected from another sewrader similar conditions. Each set of
observable variable;, can be scaled by the estimated mean of the gcédittor,f, i.e.,

™. fx;, as an estimate of the target variableThe calibrated model based on the linearly
projected data is?(f), which may be a model calibrated with systemdiichliased
parameters. Proposition 1 states the necessargudficient condition for the introduction of
systematic bias. In other words, if the followingnditions (the model to be calibrated is a
non-linear function of the scaling factor and thalsg factor is subject to variability) are not
satisfied, the calibrated model is unbiased everlitiear data projection is employed.

Proposition 1:

Systematic bias is embedded in the calibrated peteasiof models calibrated from linearly
projected data, regardless of the distributionhef $caling factor and the form of the model
G(z), as long as it is a non-linear function of thelisgafactor and the scaling factor is
subject to variability.



Proof: Approximatey by a Taylor series expansion with the centgf at f, Vi € N*

v=o )+ Y WDy ST e

i=1 i=1 j=1

Ignoring higher order terms and taking the expemtadn both sides,

E(y)—G(f)+. (f)E(ﬁ )+ ZZZ aGm Ei-N0-N @

whereE (f;) = f, E(f; — f) = 0. Assuming thaf;, Vi € N* are independent of each other,
E[(fi-F)(fi—f)] =0, vi,j e N*\[i = j] andE [(ﬁ —f)z] = g;2. It follows that

1 > 0%G(T
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Thus, both the mean of the scaling facfgrand the variance of the scaling factor,
o2, contribute to the expectation pf

E() # G(f)

1 azG(f)

i=1
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i=1
|

Systematic bias may be introduced {z) is a nonlinear function of the scaling factor.
However, G(z) is unrestrictive to any kind of model form. In peular, according to

— 2 F
Equation (3), ifG(f) is a factor 012}7;1%[_({), then the variance of the scaling factor can be

easily grouped with the model parameters. The mpaelmeters affected by the variance of
the scaling factor and the effect of theriance on those parameters can be easily icehtifi
Examples of such models are generalized multivanetilynomial models, the exponential
function and some trigonometric functions suchhesdine and cosine functions. This paper

examines the generalized multivariate polynomialdeto If G(f) is not a factor of



m 9%6(f)
i=1 afiz ’

the variance of the scaling factor cannot be edsdgd with the model parameter.

then the effect of the scaling factor variancatmmodel parameters is fuzzy, as

2.2 Origin of systematic bias

Embedded systematic bias stems from uncaptureshgdaktor variability. Equation
(3) demonstrates that the second moment of a gctdotor distribution also plays a role in
contributing the mean of the response variableedimodel calibration based on linearly
projected data implies an ignorance of the inforomaprovided by the second moment. The
discrepancy between the true mod&ly) or G(z), and the calibrated modé(f), is the
second term on the right-hand side of Equation §8d undesirably remains in the error
component. This unexplained and hidden contributmrihe mean value of the response
variable, which is a function of the independentialde, is then captured by the error
distribution mean. The violation of the mean zenmedistribution results in a systematically
biased calibrated model.

Adopting linear data projection, i.e., replacingkandividual scaling factor;, in
>m, fix; with £, leads to translational movements and the systerseattering of the data
points of the true model along the independentaéei space. This data point distortion is
equivalent to shifting the entire distribution o&td points at each observation along the
dependent variable space, such that the most peolbakerved value differs from the true
value by the exact value of the second term in BEoud3). Linear data projection generates
systematically distorted data points. Furthermaadibrating a model with systematically
distorted data points naturally creates a systealatibiased model.

3. Global adjustment factorsfor generalized multivariate polynomial models

The paper uses a generalized multivariate polyniomiglel to examine the effect of
the ignorance of scaling factor variability in mbdalibration. The goal of this section is to
derive the global adjustment factors that captutalisgy factor variability. A metric
measuring the extent of the embedment of systentadis is proposed, and the factors
affecting the amount of introduced systematic laigsdiscussed. A method for incorporating
the captured variability to correct the calibrapedlameters is then introduced.

3.1 Derivation of global adjustment factors
Consider the following model in polynomial form it + 1 terms:
y=ay+ a1z + ayz? + -+ ayz™ 4

wherez = Y, fix;;a9, a4, ay, ...,a,_1 anda, are the parameters to be calibrated.



Thus, the preceding model can be generalized irulivariate functional form as
follows:

y=aota <i fixi> t+a; <i fixi>2 +ta, (i fixi>n (5)

Proposition 2 stated below presents a global adgst factor for the calibrated
sensitivity parameterg, , of the k" term with exponenk. Each calibrated sensitivity
parameter of the generalized multivariate polynadruiaction has its own global adjustment
factor and can be corrected independently. Theagjlatijustment factor is expressed in terms
of the scaling factor variance, and hence is ableapture the lost variability information in
linear data projection.

Proposition 2:

The global adjustment factdr,, for the calibrated sensitivity paramet@g, of thek®™ term
with exponenk is given by

=14+ [0 |G [ 225
F,=1+
‘ [ P llEm,

Proof: Consider the!" term with exponemt, T, = a, (X, fix)*:

UsingEquation (3),

E(y) =ao+ a4 (Zﬁﬁ) + a;
i=1

2 1)o2 30 1% ](’" _
1+ fx| +-
20, Fx)’ Z

i=1

n(n — 1)os? Z{"lxiz_ ( O )n
1+ X,
22 1fx) | z

+a,

Hence Yk € N°, and
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E(y) = 1+ fx (6)
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Again, the mean value ¢fis dependent on both the mean and variance cfahieng
factor. However, in practice, the collected datahe® observable independent variable are
normally linearly projected using the mean of tbalisig factor, and the information provided
by the scaling factor variance is ignored in thedelaalibration. Thus, systematic biases are
introduced into some of the sensitivity parameters.

In Equation (6), the variance of the scaling fast® taken out from each scaling
factor, f;, and absorbed by the sensitivity parameters df éaxen. Comparing Equation (6)
with the original model in Equation (5), we canidefthe local adjustment factdf,, for the
calibrated sensitivity parameté,, of thek!" term with exponent as follows:

k(k— 1)O'f :nlxiz

Fe=1+ @)
2(3m, fx)’
or
(k — 1)“ 92 [Z:nlxlz
Fp=1+4|——= St ML 8
‘ [ ., x)? ®

The adjustment factor for each calibrated sensjtiparameter is dependent on the

exponentk, the CV of the scaling facto? andé‘ﬁ, wherex; are the collected
i=1%i

2
observable independent variables. The adjustmestorfas localized becausé% IS
i=1%i

dependent on each set of collected observable @amtlemt variablesq,, x,, ..., x,.

According to the Cauchy-Schwarz inequality;, y; = 0,

2

(S (55

i=1 i=1 i=1

Setting ally; = 1,

Given thaty" x; #0,
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Zm1%

h (Z x;)?

The equality of the lower bound holds when= x, = --- = x,,,. Asm — o, the lower
bound1/m — 0. Furthermore,

(S =3z 2

i=1 i=1 i<j

Thus,

m 2
1 i=1%i

—<——<1 9
mT(En, x)? ©

The equality of the upper bound holds when alhef dbserved independent variables but one
are equal to zero.

In general, am increasesz‘% decreases, and the adjustment factor moves closer

L,

to 1. In other words, the systematic bias decredsemuse the random effects among
different scaling factors cancel one another outhascreases. In the limiting case,

11%

li === 10
e (T %) (10

Hence, the adjustment factdy,, tends to 1. In such a case, no adjustment isseacg

A local adjustment factor is determined by each sktcollected observable

independent variables, x,, ..., x,,,. A distribution of% with a lower bound -—and

ioq X0)

an upper bound = 1 is formed by all of the setsaiiected observable independent variables.

In practical termsél% varies across different observations. In this pafies effect is
i=1%i
represented using the mean value of all of theviddal observations(z”—xl)z, based on
=11

which a global adjustment factdi,, is defined for the calibrated sensitivity paraengi,,, of
the k™" term with exponenk:
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F -1+ lk(k_l)ll ) ll 1= 1xl (11)
“ (Zl 1 l

Note that whemn decreases to 1, the multivariate polynomial fuorctilecreases to a
polynomial function of a single variable. The glblajustment factor for each sensitivity

parameter is exactly the same as the local adjustfaetor, as(z‘#

121%0)
The derived global adjustment factors capture tlealirsgy factor variability
information, which is normally ignored in model ibahtion and can be used to remove the
systematic bias as shown in Section 3.3.

3.2 Extent of embedded systematic bias

The global adjustment factor captures the ignooadirgy factor variability. Hence, it
contains information related to the extent of tinebedded systematic bias it causes. The
percentage of embedded systematic bias in theratdib sensitivity parameted,,, is defined
as

whereB (ay) is the percentage of embedded systematic bidindlibrated paramete.

A zero value oB(a;) indicates an unbiased calibrated parameter. i fiositive,
overestimation of the calibrated parameter is gdted. Underestimation of the calibrated
parameter is expected whBKfa,) is negative in value.

The extent of the embedded systematic bias is geddny the exponent, the CV of
the scaling faCIOI’,—_ andz”—‘ For a given value oé”—xl)z e.g., 0.5, Figure 1 shows the

(l_ll) lel

relationship between the extent of the embeddetksygic bias and the CV of the scaling
factor, ranging from O to 1, at different exponehts= 0,k = 0.5,k =1,k =2,k =3 and

k = 4. Figure 2 reveals the relationship between #ient of the embedded systematic bias
and the exponent, which ranges from 0 to 2, aeufit CVsi(ar/f)? =0, (o;/f)* =
and(o;/f)* = 1.0.
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When the CV of the scaling factor is 0, suggestego variability in the scaling
factor, no systematic bias is introduced into thkbcated parameter regardless of the value
of the exponent, as shown in Figure 1, becaussdakng factor for scaling the observable
independent variable is exact without any lossnédrmation. Except fok = 0 andk = 1,
the extent of embedded systematic bias increagbghe CV. If the model to be calibrated is
a linear model with the exponeht= 0 ork = 1, B(d,) decreases to 0, indicating that the
sensitivity parameters of the linear terms in thedel do not need to be adjusted because the
variation of the scaling factor does not alter¢hbbration of the linear term parameters.

When the exponent is greater tharB(g,) is always positive, as shown in Figure 2,
implying that the calibrated sensitivity parametérthe corresponding non-linear term is
always overestimated in the long run, and the catilol parameter must be scaled down. For
each fixed value of the CV with an exponent gre#itan 1, the extent of the embedded
systematic bias increases with the exponent. IE#ponent is smaller than 1 but greater than
0, the calibrated sensitivity parameters of the -lnmoear terms are expected to be
underestimated in the long run becaB$é,) are evaluated to be negative.

3.3 Removal of systematic bias

In this subsection, a method for decreasing théesyatic bias introduced by the
derived global adjustment factor is proposed. Thkbrated sensitivity parameter can be
corrected by absorbing the variance of the scdlatpr. To do so, the calibrated parameter
must be divided by the global adjustment factore Dased parametet;,, associated with
the k" term with exponent can be corrected as follows:

Qe =% (13)

wherea, is the globally corrected sensitivity parametethafkt" term with exponenk.

4. Simulation

In this section, simulations are performed usinm@ad scaling factors from 100
lognormal distributions with different combination$ means and standard deviations, and
hence different CVs, to demonstrate the corregtimmer and efficiency of the derived global
adjustment factoif),. The association between the correction powerraagnitudes of the
mean and CV of the scaling factor is also invesdigao illustrate the applicability of the
global adjustment factor. Assuming thgf = 3,4, = 0,a, = 1,n =2 andm = 5, the
multivariate polynomial model chosen for the sintiola is

2

5
y=3+X2=3+< fl-xi> (14)
)
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whereX = ¥?_, fix;.

4.1 Data generation

As the chosem =5, 5 sets of 10,000 observable independent vasahlewhich
serve as the observed data throughout the 100 aions, are sampled from a negative
exponential distribution with a mean of 0.2. Inngport studies, many observable quantities
are assumed to follow a negative exponential Oistion. One example is the traffic flow of
a particular fleet of vehicles, such as privates @ard taxis. Due to the small volume of traffic
flow of any particular type of vehicle at dawn, tldéstribution resembles a negative
exponential. Thus, a negative exponential distidouts chosen to generate the data for the

Nm .2
observable independent variable in this simulatibhe value ofé;;+xl)2 in this set of

1=1%1

samplesy;, is 0.333.

Because scaling factors are normally positive \&lue lognormal distribution is
chosen for the sampling. To formulate 100 simutetiand examine the relationship between
the correction power of the adjustment factor drelrhagnitude of the mean and CV of the
scaling factor, scaling factors are sampled fro dBtributions with different combinations
of means and standard deviations, such that bahmban and CV of the scaling factors
range from 0.1 to 1.0 in steps of 0.1.

The corresponding 100 sets of dependent variapleserving as the observed
dependent variables are then calculated basedeoohitsen polynomial using the assumed
parameters, sampled scaling factors and obserdegp@mdent variables.

4.2 Model calibration and parameter correction

Assuming that the means and variances are the loddwn information about the
distributions of the scaling factors in these 10@u$ations, then the observed independent
variables can only be linearly projected by theregponding mean of the scaling factors in
each of the simulations. Regressions of the obdedependent variables on the linearly
projected observed independent variables are mpeefbrto obtain 100 sets of calibrated
parametersg, anda,.

Scaling factor variability is not expected to irdhce the calibration of parametgy,
anda, is likely to be overestimated in the long run hesmathe exponent of the non-linear
term is greater than 1. The global adjustment faci, for each simulation are evaluated

m._x,2 . . .
from the exponent, the CV a% of the sampled independent variables, and apptied
=1l

the calibratedi, for correction.
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4.3 Results

Because the mean valuedyfin the 100 simulations is 3.001(+0.1%), no adjustmn
is required, as expected. In contrast, the meamevadd, is 1.127, which is 12.7% greater
than the true value. The graph of the calibrateddehashown in Figure 3 reveals a
discrepancy between the true and calibrated modetsthe distance between them increases
with X. The mean value of the global adjustment fadigrjs 1.128, which is greater than 1
as expected and suggests an overestimati@pimthe long run due to the loss of information
about the scaling factor variance during calibratibhis is consistent with the result obtained.
The detected bias embeddediin B(a,), is +12.8%. After adjustment, the mean value ef th
adjusted parameter, is 0.999, which is only 0.1% less than the truei@aThe graph of the
corrected model illustrates that the derived gladdjustment factor is capable of scaling
down the overestimated calibrated model toward tthe model. This demonstrates the
significant correction power of the global adjustmfactor.
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Figure 3. Demonstration of the correction powethef global adjustment factor.
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Figure 4. Distributions of the unadjusted and adjdi®rror ir,.

The mean and variance of the adjusted error caoskd to assess the correction
power of the global adjustment factor. The disttidru of the error, centered at zero with a
small standard deviation, represents the unbiaBeieat estimation of the parameter in the
long run because the central tendency has zera anmd minimal dispersion. Figure 4
illustrates the correction power of the adjustnfector due to the shifting and narrowing of
the distribution of the unadjusted errors. Befodgustment, the mean of the distribution of
the unadjusted error i@, deviates to the right of zero by 0.127. This pdeg an indication
of the extent of the embedded systematic bias altieetlinear data projection. Application of
the adjustment factor shifts the distribution o€ tbnadjusted error by 0.128, so that it
deviates from zero by only -0.001. This shifting thie central tendency indicates the
significant correction power of the adjustment dactThe narrowing of the distribution
shows that the adjustment factor is also capableoafining the spread of the error. The
correction decreases the standard deviation ofitlaejusted error from 0.123 to 0.047. This
reduction in the error spread demonstrates that pitogposed global adjustment factor
improves the efficiency of the parameter estimatiotie long run.

4.4 Applicability of the global adjustment factor

The adjusted errors are regressed on the mean ®nhodfQGhe scaling factor to
investigate whether the applicability of the glolzdjustment factor is restricted to the
magnitudes of each and to study the associatiamgeba them.

17



eaqj = Po + Buf + BZ? (15)

wheree,; is the error of the calibrated parameter.

The calibrated parameters of the mean and CV o§thling factor$; andp,, are -
0.001 and 0.001, with p-values of 0.931 and 0.8&8pectively. There is no evidence that the
error is correlated with the mean and CV of thelisgafactor. It is apparent that the
applicability of the global adjustment factor ig ikely to depend on these factors.

5. Casestudies

To illustrate the application of the derived glolaaljustment factor for generalized
multivariate polynomial model in Section 3, caseidsts using real-world data were
conducted in relation to the model calibration addvbscopic Bureau of Public Road (MBPR)
function for six 1 km x 1 km regions in Tin Hau, Mau Wai, Fortress Hill, Admiralty,
Jordan and Kowloon Tong, Hong Kong. The MBPR fumctiwhich is in generalized
multivariate polynomial form, is an essential inputthe continuum modeling of urban cities
(Ho and Wong, 2006, Ho et al., 2013, Wong, 199)¢’and Wong, 2000, Yin et al., 2013).

5.1 Databases

These case studies modeled the travel time and tatHic flow relationship
macroscopically using one-year travel time andfirafolume data associated with six
selected 1x1 km regions obtained from tAenual Traffic Census (ATC) (Transport
Department, 2010) and 480 GPS-equipped taxis.

The ATC provides detailed traffic data from oveb() stations covering 87% of
trafficable roads in Hong Kong (Lam et al., 200®n§ et al., 2003). The average annual
daily traffic (AADT) across each of the stationsest on-road fixed detectors are installed
can be obtained from the ATC report.

The taxi GPS database stores detailed travel irdbom about the 480 taxis over the
course of 2010. Each of the 480 probe vehiclesrtegdheir real-time locations, expressed
in terms of WGS84 (ITRF96 reference frame) in dedimdegrees, and the dates, times,
traveling directions and instantaneous speeds etpancies to the traffic control center at a
rate of twice per minute. Due to the full coverag¢he taxi data over the entire road network,
occupied taxi flow on any road segment can beeasilinted. The travel time and taxi flow
data were extracted from the 480 GPS-equipped.taxis

18



5.2 Necessity of linear data projection and adjustment of calibrated parameters

The MBPR function is a monotonically increasing +ioear model with a
generalized multivariate polynomial form depictiting sensitivity of the travel time per unit
distance to the increase in traffic volume assediatith a defined studied region.

Hourly total traffic flow, which was calculated #@se sum of hourly traffic flow
entering the arbitrarily defined studied regionotigh the roadways intercepting the defined
boundaries, was the target independent variableveier, a non-negligible subset of urban
network links was not outfitted with inductive loogetectors for direct and accurate
measurements of traffic flow through these roadwaysking the hourly total traffic flow
entering the studied regions unobservable. As @RS data were available with
approximately full coverage, the occupied taxi flow any street was readily attainable. A
data scaling method such as linear data projeetitina total-traffic-to-occupied-taxi ratio as
the scaling factor could be leveraged to projeetdbcupied taxi flows through the roadways
diverting traffic into the studied regions as esties of the hourly traffic flows.

Given the geographical proximity of the roadwayhwitthe network, the same set of
vehicles should have more or less circulated witha network for each period. However,
due to the heterogeneities of the road hierarcliyland use of different lots affecting the
travel pattern, a homogenous traffic mix was noteatirely valid assumption. Thus, the
traffic composition ratio across the network of #tedied region could generally be assumed
to follow a distribution subject to a certain lewélspatial variability. With the availability of
AADT data, ATC stations within the studied regioserved as the sampling sites for the
scaling factors. The distribution mean, which wias most likely traffic composition ratio,
was estimated using the sampled scaling factorsised in the linear data projection.

As the scaling factors were subject to spatialatemn and MBPR was a nonlinear
function of the scaling factor, according to Prapos 1, systematic bias might have been
introduced into the calibrated parameters duedditiear data projection. The variance of the
scaling factor accounting for spatial variabilityasvestimated using the sampled scaling
factors. Furthermore, because the MBPR was a deegtamultivariate polynomial, the
derived global adjustment factor shown in Proposit2 and proposed methodology were
adopted to correct the systematically biased paemand improve the reliability of the
calibrated model.

5.3 Data extraction

The travel time and total traffic flow associateithwthe studied region were the
essential ingredients in these case studies. Asgutiat occupied taxis possess similar travel
characteristics and behavior to those of other sypk vehicles, only occupied taxis are
considered in this paper. Figure 5 shows the noretlpatterns of the hourly occupied taxi
flows and hourly traffic flows at a few of the Idmms for which hourly counts were
available within the studied regions.
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Figure 5. Normalized hourly occupied taxi flow amabrly total traffic flow patterns at several looais within
the studied regions: (a) Tin Hau; (b) Ma Tau Wa);Kortress Hill; (d) Admiralty; (e) Jordan; (f) Mdoon Tong.

Although both the normalized occupied taxi flowsl arormalized total traffic flows
of the six studied regions varied throughout thg, daeir patterns remained remarkably
similar, suggesting that the proposed assumptios n@asonably valid. In other words, the

hourly total traffic flows entering a studied regiwere inferred from the occupied taxi flows
using the mean of the scaling factors.
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® ATC Station B Boundary Station

Figure 6. Schematic diagram showing the locatidnSTeC stations and boundary stations in the 1x1stadied
regions: (a) Tin Hau; (b) Ma Tau Wai; (c) Fortrésl; (d) Admiralty; (e) Jordan; (f) Kowloon Tong.
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Figure 6 is a schematic diagram showing the netvetidetons of the six chosen
studied regions, the locations of the ATC statiamsl the distributions of the boundary
stations surrounding the 1x1 km boundaries. The Ataions within each of the studied
regions were the selected sampling sites for tradingc factors, which were the traffic
composition ratios of total traffic to occupied itéiews. The daily occupied taxi flows across
each of the ATC stations were counted using theG&®6 data. Dividing the AADT obtained
from the ATC report by the average daily occupiaxi flow of each ATC station gave a
sampled scaling factor. A meghwas an estimate of the average number of vehicles
represented by each occupied taxi in that studkgebn. A standard deviatiary measured
the spatial variation of the scaling factor acrtiss network concerned. The means and
standard deviations of the distributions of thelisgafactors of the six studied regions were
estimated from the sampled scaling factors, anglawen in the following table.

Tablel
Estimates of the mean and standard deviation as¢hbng factor distributions for each studied oegi

Studied Region Number of ATC stations f o
Tin Hau 31 1934 74.0
Ma Tau Wai 18 193.9 81.9
Fortress Hill 25 232.2 93.8
Admiralty 15 211.2 71.4
Jordan 31 157.4 69.2
Kowloon Tong 13 193.4 45.4

Tin Hau, Ma Tau Wai and Kowloon Tong exhibited danisampled scaling factor
means. The traffic composition ratios were abous, 1eaning that each occupied taxi
roughly represented 193 vehicles in the three regi@ompared with other regions, occupied
taxis comprised even smaller vehicular populationg-ortress Hill and Admiralty. Thus,
each occupied taxi represented over 200 vehicl#seise two regions. On the contrary, there
were more occupied taxis in Jordan, with each aecutaxi representing about 157 vehicles.
Because the scaling factors were sampled at diffecad segments and locations within the
studied regions, the scaling factor standard dievias a measure of the spatial variation of
the traffic composition ratithat is the dispersion of the scaling factor acribes network
spatially. Among the six regions, the scaling fastiandard deviation in Fortress Hill was the
highest at 93.8, and the lowest was 45.4 in Kowldong. Both the means and standard
deviations of the scaling factors in each regionld¢dave resulted from factors such as the
land use patterns, demography and household wefatie corresponding regions.

For each of the studied regions, the hourly ocalpeei flows across the boundary
stations were projected linearly using the corresipny scaling factor means as the estimates
of the hourly traffic flows across these boundatgtisns. The total hourly traffic flow
entering the studied region was the sum of thetmates.
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Because the occupied taxis interacted with theosading vehicles as they travelled
within the network of the studied regions, botheymf vehicles should have travelled at
similar speeds. Therefore, the speed of the ocdufagis was considered an unbiased
estimate of the speed of the surrounding vehidlbes. average instantaneous speed of all of
the occupied taxis for each hour within the studiegion was used as the estimate of the
space-mean speed. The reciprocal of the space-gpesal was taken as the estimate of the
average travel time per unit distance of movemehtch served as the observed dependent
variable. With both the collected travel time amtkeérly projected total hourly traffic flow
taken into account, the MBPR function could belralied.

5.4 Mode! calibration and results

The MBPR function, which modeled the relationshgtween the travel cost and
traffic flow associated with a region, was defirsedfollows:

T =T, +Ta <z fivi> (16)

whereT is the travel timeTr is the free-flow travel timen is the number of boundary
stations;f; is the scaling factor of boundary statigrnv; is the observed hourly taxi flow
entering the studied region through a boundaryostat adjusted by the ratio between the
two normalized patterns in Figure 5 during the okestton hour; the sum of the productsfpf
andv; overm boundary station;[%, f;v;, is the estimate of the total hourly traffic flow
entering the studied region through these bound&ations; andr andn are the model
parameters.

Several MBPR functions with different valuesmfincluding 2, 3 and 4, were chosen
as the candidate models. In general, the MBPR iiom@h quadratic form was found to best
fit the collected dataset. Thus, the MBPR functiath n equal to 2 was chosen to study the
effect of the spatial variability of the scalingfar on the extent of systematic bias embedded
in the sensitivity parameter due to linear datajgmteon. Models were calibrated on the
observed travel time and linearly projected traffiow. Table 2 shows the estimated
parameters and R-squared values of each calibmadeél in the studied regions.

The second column contains the calibrated free-frawel time per unit distancé,

of each studied region. Because free-flow travektis the intercept of MBPR function, it is
anticipated that no bias is embedded in it. Thense of the calibrated free-flow travel time
is an estimate of the free-flow travel speégd, The values in the third column are the
calibrated sensitivity parameters of the nonlinieam in the MBPR function. They indicate
that correction using the derived adjustment factanecessary. As free-flow travel time is
unbiased, the embedded systematic bias is absbsb@dBoth the free-flow travel time and

congestion sensitivity parameter are deemed tdhéeaggregated result of the topological
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features of the network. The last column, whichtams the R-squared values, reveals the
goodness-of-fit of the calibrated MBPR functionsttee six selected studied regions.

Table2
Model calibration results of the MBPR function iach of the studied regions

Studied Region T s(h/km) D(km/h) T ra(h*km/veh?) R?
Tin Hau 0.0331 30.2 8.638E-11 0.483
Ma Tau Wai 0.0229 43.6 1.030E-10 0.715
Fortress Hill 0.0226 44.3 6.769E-11 0.600
Admiralty 0.0225 445 3.228E-11 0.690
Jordan 0.0356 28.1 1.724E-11 0.630
Kowloon Tong 0.0264 37.9 2.530E-10 0.729
Table3

Adjustment of sensitivity parameter

2

Sudied Region  a;/f m é:i—z)z F, B@®%) a(hive) a(hiivehd)
Tin Hau 0.383 28 0.237 1.035 +3.5% 2.607E-09 2.509E
Ma Tau Wai 0.423 26 0.285 1.051 +5.1% 4.489E-09 7HE209
Fortress Hill 0.404 18 0.276 1.045 +4.5% 2.999E-09 2.870E-09
Admiralty 0.338 22 0.195 1.022 +2.2% 1.435E-09 409
Jordan 0.440 35 0.116 1.022 +2.2% 4.837E-09 4. TBLE-
Kowloon Tong 0.235 19 0.218 1.012 +1.2% 9.588E-09 .479E-09

The CV of the scaling factor estimated by the sah@caling factors of the ATC
stations in each region and the mean of the sursqofred over squared of sum of the
occupied taxi flow through each boundary statiomemequired to evaluate the adjustment
factor for the sensitivity parameter of the squaesd in the MBPR function. The CV of the
scaling factor, defined as the ratio of the stathdviation to the mean, was a measure of the
spatial variation of the scaling factor per unihiates, represented by each occupied taxi in
this case. The mean of sum of squared over squdrsdm of the occupied taxi flow was
bounded by the upper bound of 1 and the lower bawaduated from the reciprocal of the
number of boundary stations,. It was a measure of the average uniformity ofdbeupied
taxi flow through the boundary stations over eaobrithroughout the year. It hit the lower
bound when the occupied taxis entering the studigbn were evenly distributed across the

24



boundary stations. It reached the upper bound fahe occupied taxis entering the region
were concentrated through one boundary stationleTabpresents the adjustment factor,
detected systematic bias and sensitivity parametdoefore and after adjustment for each
studied region.

The systematic biases detected in the calibratesitsaty parameters of the squared
terms of the six MBPR functions were positive, tading that the calibrated sensitivity
parameters were overestimated as expected. Dudnetorelatively high scaling factor
variability (81.9) and the highest unevenly disitdd occupied taxi flow through the
boundary stations (0.285), the percentage of beiected in the calibrated sensitivity
parameter in the MBPR function of Ma Tau Wai wasl1%b, the highest of the studied
regions. The high spatial variability of scalingctiar and low uniformity of occupied taxi
flow could have resulted from the heterogeneitieoad hierarchy and land uses in different
lots in the studied region. Although Fortress ilbwed the highest scaling factor variability
(93.8), the highest scaling factor mean (232.2)lted in a slightly lower CV (0.404)
compared with that of Ma Tau Wai (0.423). Thus, dneount of bias embedded was +4.5%,
lower than that of Ma Tau Wai. In addition to thewver spatial variability of the scaling
factor (74.0), the more uniformly distributed ocmgtaxi flow through the boundary station
(0.237) in Tin Hau led to the third highest embedimef systematic bias in the sensitivity
parameter (+3.5%). The sensitivity parameters ef MBPR functions of Admiralty and
Jordan shared the same extent of systematic bia2%#). Although the CV of the scaling
factor in Jordan (0.440) was greater than thatdm#alty (0.338), the substantial number of
boundary stations in Jordan (35) significantly mized the influence of the random effects
of scaling factors and non-uniformity of the ocaitaxi flows, and resulted in the lowest
mean of sum of squared over squared of sum of ¢hepoed taxi flow (0.116) out of all of
the regions. This cancelled the effect of the iy and hence the embedded biases in the
parameters of the models of Admiralty and Jordareva¢ the same level. Kowloon Tong is a
residential area in Hong Kong with a relatively Idensity and a relatively homogenous road
hierarchy and land use. This led to the lowestadmlity (45.4) and CV of scaling factor
(0.235), and hence remarkably decreased the syitelmas embedded in the sensitivity
parameter of the nonlinear term (+1.2%).

Given the evaluated adjustment factors, the sydtentdas embedded in the
calibrated sensitivity parameter was then correbiethe methodology proposed in Section
3.3. Figure 7 illustrates the scatter plots of ¢étaume against projected vehicular flow, the
calibrated MBPR functions and adjusted MBPR funwiof the six 1x1 km studied regions
in Hong Kong. The adjusted MBPR functions were tiere reliable models describing the
relationship between the travel time per unit gistaand the traffic flow.
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6 Conclusion

In the transportation field, using different instrents to acquire data representing
population traffic characteristics through directeasurement may meet with various
limitations and restrictions. Traffic data inferescare often made based on the data of a
population subset. Linear data projection is a aiteng method adopted for data inference.
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However, the possibility of a systematic bias bemtgoduced into the parameters of models
calibrated from linearly projected data has sunpgly gone unexplored. This paper unveils
the necessary and sufficient condition of the ihiiciion of systematic bias into calibrated
parameters due to linear data projection. A systient#as is introduced if the model to be
calibrated is a nonlinear function of the scaliagtér, and the scaling factor used is subject to
variability. The embedded bias originates from eysdtically distorted data points caused by
linear data projection in which the contributiontbé scaling factor variance to the mean of
the response variable undesirably remains in tlee eomponent.

In this paper, a generalized multivariate polyndnfiiection model is applied to a
discussion of the removal of systematic bias. Glabigustment factors are derived for each
sensitivity parameter of the terms with differexpenents. Both the metric detecting the
extent of the embedment of systematic bias and adeti its removal are subsequently
proposed. The CV of the scaling factor, the expowénhe scaling factor and the mean of
sum of squared over squared of sum of the observablependent variable are identified as
the factors affecting the extent of the embeddeddesyatic bias. If the exponent is greater
than 1, then overestimation of the sensitivity pseter is anticipated. In contrast,
underestimation is expected if the exponent is betwO and 1. The amount of embedded
systematic bias increases with both the CV of tteirsg factor and the mean of sum of
squared over squared of sum of the observable amtlgmt variable.

Comprehensive simulation has demonstrated the fisigni correction power and
efficiency of the derived adjustment factor. Theseno evidence to suggest that the
applicability of the adjustment factor is restratti® the magnitudes of the mean and the CV
of the scaling factor. This ensures and boostsidente in the proposed approach to the
removal of systematic bias. One of the major cbatrons of the proposed methodology is
that the systematic bias introduced by data infeenan be reduced via mathematic
treatment without incurring additional equipment anstallation costs at the data acquisition
stage to ensure more accurate data.

Real-life traffic data from an on-road fixed detecand taxi GPS data were collected
and integrated to illustrate how the derived adpestt factor can be applied in model
calibrations and to calibrate MBPR functions in g@tized multivariate polynomial form for
six 1x1 km regions in Hong Kong. The extent of #mbedded systematic bias was affected
by the spatial variability of the scaling factordatne uniformity of the occupied taxi flow
through the boundary stations. The derived adjustnf@ctor successfully captured the
information provided by the scaling factor varidilundesirably remained in the error
component. The adjusted MBPR functions were theemeliable models for depicting how
the travel time per unit distance related to thaéitr flow in these six regions.

The adjustment factor proposed in this paper idiegge for polynomial models.
However, systematic bias is introduced into any ehddrm as long as it is a nonlinear
function of the scaling factor and when linear datajection is adopted. If the calibrated
model is a factor of the second derivative of thadel in relation to the scaling factor, then
the biased parameter and effect of the scalingrfaetriability can be easily identified, as the
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scaling factor variance can be grouped with the ehpdrameter. The exponential function

and some trigonometric functions such as the gidecasine functions possess this property.
Thus, the adjustment factors of the parameterbese models can be derived by following

steps and procedures similar to those used toeddrey adjustment factors for the sensitivity

parameters of generalized multivariate polynomiabeis. For models that do not have this
property, the effect of the ignorance of the sepfector variability on parameters biased by
linear data projection can be more complicatedantiguous, as the variance of the scaling
factor cannot be easily fused with the model patarseand it may be cumbersome to

manipulate. Future studies could extend the teclasiqused to remove the systematic bias
embedded in more complicated model forms as atreflihear data projection.
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