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Abstract

This study aims to investigate electroosmotic flow of a power-law fluid through a slit

channel with walls asymmetrically patterned with periodic variations in shape and zeta

potential. On taking into account the near-wall depletion layer, the present problem

is simplified on the basis of the lubrication approximation, and through the use of the

Helmholtz–Smoluchowski slip boundary condition. Nonlinear equations are to be solved

for two unknown functions of axial dependence, one being the induced pressure gradient,

and another being an undetermined stress component. An efficient numerical scheme

is devised in this work to solve the nonlinear problem. Results are generated to check

whether the principle of linear superposition of forces, for electrokinetic flow of a non-

Newtonian fluid in the presence of a Newtonian depletion layer, is still applicable to flow

in an asymmetric channel. It is also found that phase shifts between the geometrical

and electric potential patterns on the two walls may lead to qualitatively disparate

effects, depending on the power-law behavior index of the fluid and the applied pressure

gradient.
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1 Introduction

In electrokinetic transport, the processes are usually so slow that a flux may depend in a

linear manner on its conjugate as well as nonconjugate forces [1]. For example, the fluid flow

can be driven not only by a pressure gradient, but also by an electric potential gradient,

both through a linear relationship. Typically, electrokinetic fluxes are a linear combination

of the components due individually to the hydrodynamic or electric driving forces. All such

linear relationships, also known as Onsager relations, are applicable to materials with linear

response, such as Newtonian fluid.

Electrokinetic transport of a non-Newtonian fluid does not follow a linear law in general,

mainly because of the nonlinear rheological constitutive relation. Nonetheless, Berli and Oli-

vares [2] have shown that, on taking into account the wall depletion effect, electroosmotic flow

(EOF) of non-Newtonian fluids is also expressible by a linear superposition of the components

due separately to the hydrodynamic and electric forcings. They found that the nonlinear ef-

fects arising from the shear-dependent viscosity are limited to the pressure-driven component

of flow, and the Onsager reciprocity, which means the equality of the nonconjugate streaming

coefficients, is also complied with.

For complex fluids, such as colloids, emulsions and polymeric solutions, there usually exists

a thin depletion layer near a non-sorbing wall [3, 4]. The depletion layer is so called because

it is depleted of the macromolecules that give rise to the nonlinear behavior of the complex

fluid. It is essentially a layer of a thickness comparable to the radius of gyration of the

macromolecules. In the absence of macromolecules, the fluid in the depletion layer is actually

the Newtonian solvent of the solution. Assuming that the depletion layer is much thicker

than the electric double layer (EDL), Berli and Olivares [2] put forward a two-zone model

for EOF of non-Newtonian fluids in a microchannel. The core zone is a region filled with a

non-Newtonian fluid forced directly by pressure gradient only. This core region is electrically

neutral since the EDL is completely screened in the depletion layer. The near-wall zone is

of course the depletion layer, which is Newtonian, and is subjected to both hydrodynamic

and electric forces. By virtue of this zonal separation of the fluid behaviors as well as the

forcings, Berli and Olivares [2] obtained force–flux relations that are a linear combination of
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two components, one associated with the pressure difference only, and the other associated

with the electric potential difference only. Unlike the Newtonian case, the hydrodynamic

conductance based on this two-zone model is not a constant, but a nonlinear function of the

pressure difference.

The channels considered by Berli and Olivares [2] are uniform microchannels with ei-

ther plane symmetry or axisymmetry. The flow they have considered is hence strictly one-

dimensional and symmetrical flow through a parallel-plate or circular channel with a constant

cross section and a constant zeta potential. One would ask a question: can the generalized

force–flux relations found by Berli and Olivares [2] still be valid if the channels are non-uniform

or asymmetric?

Whether the linear superposition of forces is applicable to non-Newtonian EOF in a non-

uniform channel has been examined by Ng and Qi [5]. These authors presented a model for

EOF of a power-law fluid through a non-uniform slit channel, which has the cross section as

well as the wall potential to vary slowly with axial position, but with mid-plane symmetry.

They found that such axial non-uniformities, resulting in a non-parallel flow, will invalidate

the linear superposition of forces to drive the flow of a non-Newtonian fluid, even when the

wall depletion effect is taken into account. For EOF of a non-Newtonian fluid through a

non-uniform channel, the flow rate due to the combined action of applied pressure gradient

and electric field is not equal to the sum of the flow rates due separately to these forces.

The present study aims to extend the work of Ng and Qi [5] in an attempt to further

look into EOF of a non-Newtonian fluid through a channel that is not only non-uniform in

the axial direction, but also asymmetric about the mid-plane of the channel. The primary

objective is to examine the effect of flow symmetry on the validity of the generalized force–

flow relation. We shall seek an answer to the question posed above by considering combined

pressure-driven and electroosmotic flow of a power-law fluid through a slit channel without

plane symmetry. On the one hand, losing the symmetry condition will make the problem

more difficult to solve. Complication arises from the need to identify regions of positive

or negative stress in order to apply the power-law rheological model. Therefore, another

objective of this study is to develop an efficient numerical solution method to handle this

kind of nonlinear problem. On the other hand, on relaxing the symmetry requirement, we
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may investigate effects on the flow due to the phase shift between the patterns on the two

walls of the channel. Such an investigation is not possible for flow in a symmetric channel.

Therefore, the third objective of this study is to find out how the phase difference between the

geometrical and electric potential distribution patterns on the opposite walls of the channel

may have disparate effects on the flow, depending on the rheology of the fluid.

The present problem is basically similar in mathematical formulation to that presented by

Ng and Qi [5]. The key aspects of the problem formulation are summarized as follows. First,

the power-law model is chosen to describe the non-Newtonian behavior of the fluid. EOF of

power-law fluid has been extensively studied in recent years in the context of electrokinetic

transport in microfluidic devices [6–29]. Most of these existing studies are, however, limited

to flow in relatively simple configurations, e.g., channels of uniform cross section, constant

zeta potential distribution, and so on. Also, some experimental attempts have been made

to investigate EOF under the effect of surface heterogeneities. Again, the majority of these

previous studies are for simple pattern configurations (e.g., either surface charge patterning

on channel walls [30–33] or patterned blocks in a channel [34]), or limited to Newtonian fluid

flows [30–34]. To date, little research has been conducted to examine in particular EOF of

a power-law fluid in a channel with asymmetrical, non-uniformly shaped and charged walls.

This key essence distinguishes the present study from the previous ones. Second, the two-zone

model put forward by Berli and Olivares [2] is adopted. Near the wall is a very thin depletion

layer, yet thick enough to completely cover the EDL. Hence, the electric force is applied only

to the Newtonian fluid in the depletion layer. The core region, which is occupied by a power-

law bulk fluid, is electro-neutral. Although the electric body force is zero in the core region,

the bulk fluid is driven by two forces: the direct forcing of pressure gradient, and the indirect

forcing of electrokinetics through the continuity of velocity on the interface between the two

zones. Third, the variations of flow in the axial direction are assumed to be so mild that the

lubrication approximation [35, 36] can be applied to the present problem. This will simplify

the governing equations to a quasi-one-dimensional form, significantly reducing the numerical

efforts required to solve the problem. Fourth, to further simplify the problem, we shall follow

MacInnes et al. [37], and Zimmerman et al. [38] to adopt the Helmholtz–Smoluchowski (HS)

slip boundary condition [39] instead of resolving the EDL directly for the electrokinetic force.
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We assume that the channel height, which may be of the order of 100 µm, is much larger

than the depletion layer thickness (say, 100 nm), which is in turn much larger the EDL

thickness (say, 10 nm). Using the HS slip condition to represent the electrokinetic forcing,

the analysis can be performed in a simplified manner focusing on the bulk fluid flow only.

Berli and Olivares [2] have theoretically shown that in the limiting case of an infinitesimally

thin depletion layer the electrokinetic action of the EDL on the bulk fluid will asymptotically

reduce to the electroosmotic slip boundary condition.

2 The Problem

Following Ng and Qi [5], we examine in this study combined pressure-driven and electroos-

motic flow of a power-law fluid through a slit channel bounded by two nearly parallel walls,

where the channel height as well as the wall potential may vary slowly and periodically

with axial position. In the previous study [5], the patterns on the two walls are assumed

to be aligned so that the flow is symmetrical about the centerline. In the present study,

this assumption is dropped. Here, we allow a phase difference between the patterns on the

two walls: the geometrical as well as the electric potential patterns on one wall may not be

aligned with those on the other wall. On relaxing this requirement of wall alignment, the flow

in the present problem is in general asymmetrical about the channel centerline, and therefore

we need to solve the problem across the entire section of the channel. Figure 1 shows a

definition sketch of our problem, where the axial and transverse coordinates are denoted by

(x, y), and the channel centerline is along y = 0. Channel non-uniformities are in the form

of variations in both the wall potential and wall shape: ζ1,2(x) are the upper/lower wall (or

zeta) potentials, and h1,2(x) are the distances from the centerline of the upper and lower

walls. They are all periodic functions of x with the same wavelength L. With an average

channel height of 2h0, the upper wall is located at y = h1(x) = h0 + ∆h1(x), while the lower

wall is positioned at y = −h2(x) = −h0 − ∆h2(x), where ∆h1,2 are the undulations of the

upper/lower walls. These undulations should have an amplitude less than half the average

channel height: |∆h1,2| < h0. The present problem reduces to the previous problem by Ng

and Qi [5] under the particular conditions: ζ1 = ζ2 and h1 = h2.
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The present problem is to be formulated based on the lubrication approximation, which

is valid when two basic conditions are met [5, 35]. The first condition, which is a geometrical

condition, is that the lengthscale for variations of flow in the axial direction is much longer

than that in the transverse direction. In this regard, we assume that the ratio of channel

height to pattern wavelength, h0/L, is a very small parameter. By virtue of this assumption,

the spatial gradients of flow quantities in the axial direction will be much smaller than the

counterparts in the transverse direction. As a result, the flow becomes a nearly unidirectional

or parallel flow. The second condition, which is a dynamical condition, is that the Reynolds

number is order unity or smaller. This condition leads to sub-dominant inertia terms in the

momentum equations.

The lubrication approximation will result in an axial momentum equation that looks

like the one for a strictly one-dimensional flow. The key difference is that the pressure

gradient is now an unknown function of x. The pressure, which is induced internally so as

to satisfy continuity of flow through a non-uniform channel, is a nonlinear function of the

axial non-uniformities. For Newtonian fluid flows, this induced pressure is usually found by

axial averaging. For non-Newtonian fluid flows, the task of determining the induced pressure

can be more complicated, mainly because of the nonlinear relationship between the shear

stress and shear rate. As is shown below, without the symmetry condition, the sectional

shear stress distribution will admit an undetermined stress component when the momentum

equation is integrated with respect to y. This imposes further difficulty in solving for the

induced pressure. This is the main challenge of the present study, and also distinguishes the

present study from the previous study [5].

The bulk fluid is assumed to be a power-law fluid, for which the constitutive equation

under simple shear is as follows:

τ = µ

∣

∣

∣

∣

∂u

∂y

∣

∣

∣

∣

n−1
∂u

∂y
=







µ
(

∂u
∂y

)n

for ∂u
∂y

≥ 0

−µ
(

−∂u
∂y

)n

for ∂u
∂y

< 0
, (1)

where τ is the shear stress, u is the axial velocity, and µ and n are the flow consistency and

flow behavior index of the fluid, respectively. The value of n determines the behaviors of

the fluid: n < 1, = 1, > 1 correspond to shear-thinning, Newtonian, and shear-thickening

behaviors, respectively. To facilitate deduction, the above constitutive equation is rewritten
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as follows:

∂u

∂y
= µ−

1

n |τ |
1

n
−1τ =











(

τ
µ

)
1
n

for τ ≥ 0

−
(

− τ
µ

)
1
n

for τ < 0
. (2)

Two conditions involving a sharp contrast between three thicknesses are assumed here:

the EDL is much thinner than the near-wall depletion layer, while the depletion layer is

much thinner than the channel height. Fluid in the depletion layer, owing to the absence

of the inclusion, is much less viscous than the bulk fluid and is essentially the Newtonian

solvent of the power-law fluid. Hence, the first condition is to ensure that the electroki-

netic body force acts only on the Newtonian fluid adjacent to the wall. Further under the

second condition, the electrokinetic forcing may, asymptotically and effectively, reduce to a

Helmholtz–Smoluchowski (HS) slip velocity on each of the two walls:

u = −
εEx

µs
ζ1(x) at y = h1(x), (3)

u = −
εEx

µs
ζ2(x) at y = −h2(x), (4)

where ε and µs are the permittivity and dynamic viscosity of the Newtonian fluid in the

depletion layer, and Ex is the externally applied axial electric field. By virtue of the slow

change in the wall topography (i.e., a very small steepness of the undulations), we may apply

the HS slip conditions as if the walls were perfectly flat.

Under the lubrication approximation, the Cauchy momentum equation simplifies to

0 = K +
∂τ

∂y
, (5)

where K(x) = −dp/dx is the pressure gradient, which consists of a known constant com-

ponent (i.e., the applied pressure gradient) and an undetermined periodic component (i.e.,

the internally induced pressure gradient), given that the wall potentials and heights vary

periodically with axial position.

Let us now introduce the following normalized variables (distinguished by overhead carets):

x̂ = x/L, (ŷ, ĥ1,2) = (y, h1,2)/h0, û = u/u0,

ζ̂1,2 = ζ1,2/ζ0, τ̂ = τ/τ0, K̂ = K/(τ0/h0),







, (6)
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where u0 = −εExζ0/µs, τ0 = µun
0/h

n
0 , and ζ0 is a characteristic scale for the wall zeta potential.

Note that the velocity is normalized by a scale that is independent of n, which will allow us

to compare flow rates of different n in our later discussion.

In terms of the normalized variables, Eq. (2) reads as

∂û

∂ŷ
= |τ̂ |

1

n
−1 τ̂ , (7)

while the HS slip boundary conditions in Eqs. (3)–(4) become

û = ζ̂1(x̂) at ŷ = ĥ1(x̂), (8)

û = ζ̂2(x̂) at ŷ = −ĥ2(x̂). (9)

Integrating Eq. (7) with respect to ŷ, and using boundary condition (9), we get

û = ζ̂2 +

∫ ŷ

−ĥ2

|τ̂ |
1
n
−1 τ̂dŷ. (10)

Also, by boundary condition (8),

∫ ĥ1

−ĥ2

|τ̂ |
1

n
−1

τ̂dŷ = ζ̂1 − ζ̂2. (11)

The volume flow rate through the channel can be obtained by integrating the velocity across

the channel:

q̂ =

∫ ĥ1

−ĥ2

ûdŷ = ζ̂2

(

ĥ1 + ĥ2

)

+

∫ ĥ1

−ĥ2

∫ ŷ

−ĥ2

|τ̂ |
1
n
−1 τ̂dŷdŷ. (12)

By continuity, q̂ is independent of the axial position x̂.

The dimensionless form of Eq. (5) is

0 = K̂ +
∂τ̂

∂ŷ
. (13)

By periodicity, the induced pressure gradient has a zero mean. Hence, integrating the pressure

gradient K̂ = K̂(x̂) axially over one wavelength should give the pressure drop ∆P̂ in unity

length of the channel due to the applied pressure gradient:

∫ 1

0

K̂dx̂ = ∆P̂ , (14)

which amounts to the normalized applied pressure gradient. The applied pressure gradient

is favorable, zero, or adverse when the net pressure drop ∆P̂ > 0, = 0, < 0, respectively.

8



Integrating Eq. (13) with respect to ŷ gives us an expression for the transverse shear stress

distribution:

τ̂ (x̂, ŷ) = −K̂ŷ + τ̂c, (15)

where τ̂c = τ̂c(x̂) is a yet-to-be-determined periodic function of x̂. Unless the flow is symmetri-

cal about the centerline for which τ̂c = 0, the stress contains two undetermined components,

K̂(x̂) and τ̂c(x̂), which are to be found simultaneously. This makes the present solution

method more complicated than that in the symmetry case, as has been remarked above.

3 Solution Methods

We shall for simplicity omit the overhead carets of the dimensionless variables from here

on. The problem is now to determine, for given ζ1,2(x), h1,2(x) and ∆P , the two spatial

functions τc(x) and K(x), and the flow rate q that satisfy Eqs. (11), (12) and (14), in which

the stress τ (x, y) is given by Eq. (15). The problem is in general highly nonlinear and can

only be solved numerically. Analytical or simpler solution methods are available only for

some special cases. The special cases, as well as the general numerical solution method, are

detailed in the following sections.

3.1 Newtonian limit

The problem can be solved analytically for the case of a Newtonian fluid. For n = 1, Eqs.

(11), (12) and (15) give

K =
12

(h1 + h2)
3

[

q −
1

2
(h1 + h2) (ζ1 + ζ2)

]

, (16)

τc =
1

2
(h1 − h2)K + (ζ1 − ζ2) / (h1 + h2) . (17)

On applying Eq. (14) to Eq. (16), the flow rate q can then be found as

q =

[

∆P + 6

∫ 1

0

(ζ1 + ζ2) (h1 + h2)
−2 dx

]

/

[

12

∫ 1

0

(h1 + h2)
−3 dx

]

. (18)

Putting q back to Eq. (16), which is then substituted into Eq. (17), we may determine the

two functions K(x) and τc(x). Note that for any ζ1,2(x) and h1,2(x), q is always a linear
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combination of the components due separately to the electric and hydrodynamic forcings for

a Newtonian fluid.

3.2 Flat and uniformly charged walls

If the walls are flat (h1,2 = 1) and uniformly charged such that the potentials ζ1,2 are constants

(but ζ1 and ζ2 can be different constants), the problem can be solved readily when the applied

pressure gradient is zero, ∆P = 0. Under these conditions, the pressure gradient is identically

zero, K = 0, by which the stress reduces to a constant τ = τc. From Eq. (11), we get

τc =







[(ζ1 − ζ2) /(h1 + h2)]
n

for ζ1 > ζ2,

− [(ζ2 − ζ1) /(h1 + h2)]
n for ζ2 > ζ1.

(19)

Then, from Eq. (12),

q =
1

2
(ζ1 + ζ2)(h1 + h2), (20)

which is independent of the power-law behavior of the fluid. If n 6= 1, ζ1 6= ζ2 and ∆P 6= 0,

the problem has to be solved numerically using the method described below in Section 3.4.

3.3 Symmetrical flow

When ζ1(x) = ζ2(x) = ζ(x) and h1(x) = h2(x) = h(x), the flow is symmetrical about the

centerline of the channel, by which τc = 0. The problem is then simplified to the one presented

by Ng and Qi [5]. The flow rate q can be found using an iterative method from

(

1 + 2n

2n

)n ∫ 1

0

(q − 2ζh)
|q − 2ζh|n−1

h1+2n
dx = ∆P. (21)

Then, the pressure gradient K(x) is given by

K =

(

1 + 2n

2n

)n
|q − 2ζh|n−1

h1+2n
(q − 2ζh) . (22)

In the limiting case of a strictly uniform channel, i.e., ζ and h are pure constants, the flow

rate is given by

q = 2ζh ±

(

2n

1 + 2n

)

h
1+2n

n (±∆P )
1

n , (23)
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where the upper/lower signs are for positive/negative ∆P , respectively. Note that in this

particular case, even for a non-Newtonian fluid, the flow rate is a linear combination of the

two components due separately to the electric and hydrodynamic forcings. As has been

remarked earlier, this linearity is a result of directly using the HS slip condition on taking

into account the near-wall Newtonian depletion layer. Further details about this symmetrical

case can be found in Ng and Qi [5].

3.4 Numerical method

For cases other than those described above, the problem solving is more complicated arising

from the need to solve some nonlinear equations for the variables q, K(x) and τc(x). A trial-

and-error numerical method, the steps of which are outlined below, is adopted to solve the

problem.

I. The axial domain, 0 ≤ x ≤ 1, is uniformly divided into N − 1 subintervals, whereby

the domain is discretized by N equally spaced grid points at x = xi = (i− 1)/(N − 1),

where i = 1, · · · , N . The functions K(x) and τc(x) are then represented by their discrete

values at these grid points.

II. The process begins with a trial value of the flow rate q. For a given q, the values of

the pressure gradient Ki = K(xi) and the stress component τci = τc(xi) at the discrete

points can be found through some relationships based on Eqs. (11) and (12). Further

details are provided below, and in the appendix.

III. The net pressure drop is then found by integrating Ki over the domain, which is per-

formed numerically using Simpson’s formula. This calculated pressure drop is to com-

pare with the given pressure drop ∆P in order to satisfy Eq. (14). Unless the difference

between these pressure drops are very small, we shall repeat Step II with an adjusted

trial value of q.

IV. Steps II and III are to be repeated until the calculated pressure drop agrees with the

given pressure drop within a certain numerical accuracy.
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The essence of Step II is to develop an efficient way to determine Ki for a given q. The most

challenging part is to handle the nonlinear term |τ |1/n−1, which appears in the integrands in

Eqs. (11) and (12). It is desirable if the sign of τ can be made definite when the integrations

are performed. To this end, we need to consider various possible combinations of K and τc,

which are the components of τ , as given by Eq. (15). All these combinations, grouped under

seven cases, are detailed in Table 1.

Let us first explain how Table 1 is constructed, before we explain how it may be used

to solve for K. To facilitate the analysis, we have introduced in cases 1–6, where K 6= 0,

an auxiliary variable z ≡ τc/K, by which the stress is expressible by τ = −K(y − z) for

−h2 ≤ y ≤ h1. We define the seven cases according to the values of K and z. Cases 1–3,

4–6, and 7 are for K > 0, K < 0, and K = 0, respectively. Furthermore, cases 1 and 4 are

for −h2 ≤ z ≤ h1, while cases 2 and 5 are for z > h1, and cases 3 and 6 are for z < −h2.

Accordingly, the regions where τ is positive or negative may be determined for the individual

cases, as given in the fourth column of Table 1. A known sign of τ in different regions will then

enable the integration in Eq. (11) to be performed explicitly. The integral in this equation

also determines the sign of ζ1 − ζ2, as given in the fifth column of Table 1. In cases 1 and

4, we need to further differentiate between three sub-cases, (a), (b) and (c), according to

ζ1 − ζ2 > 0, = 0 or < 0. The conditions in terms of z giving rise to these sub-cases are also

given in the table. Finally, based on Eq. (12), we may determine for each case or sub-case

the range in which q/(h1 + h2) will lie, as given in the sixth column of Table 1. We leave all

the mathematical details to the appendix.

Note that the seven cases given in Table 1 are mutually exclusive, and the union of them

covers all the possible values of the inputs and outputs. In other words, for any given q and

local values of h1, h2, ζ1 and ζ2, we may find one and only one case where this particular set

of inputs belongs to. As h1,2 and ζ1,2 are functions of x, which case the inputs will fall into

is position dependent.

Let us use an example to illustrate how Table 1 can be used to solve for K. Suppose the

inputs are as follows: n = 0.5, q = 1, ζ1 = 1, ζ2 = 0.5, and h1 = h2 = 1. First, we may

determine from the fifth column of the table that, because ζ1 − ζ2 > 0, only cases 1(a), 2,

4(a), 6 and 7 are possible. Second, on evaluating q/(h1 + h2) = 0.5 and ω1ζ1 + ω2ζ2 = 0.625,
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Table 1: Seven possible cases are defined according to the values of K and z ≡ τc/K. In the

last column, ω1 = n/(1 + 2n) and ω2 = (1 + n)/(1 + 2n).

Case K z τ = −K(y − z) ζ1 − ζ2 q/(h1 + h2)

1 > 0







≥ −h2

≤ h1



















> 0 if − h2 ≤ y < z

= 0 if y = z

< 0 if z < y ≤ h1

(a) > 0 ⇔ h1−h2

2
< z ≤ h1

(b) = 0 ⇔ z = h1−h2

2

(c) < 0 ⇔ −h2 ≤ z < h1−h2

2

(a) ≥ ω2ζ1 + ω1ζ2

(b) > ζ2

(c) ≥ ω1ζ1 + ω2ζ2

2 > 0 > h1 > 0 > 0







> 1

2
(ζ1 + ζ2)

< ω2ζ1 + ω1ζ2

3 > 0 < −h2 < 0 < 0







> 1

2
(ζ1 + ζ2)

< ω1ζ1 + ω2ζ2

4 < 0







≥ −h2

≤ h1



















< 0 if − h2 ≤ y < z

= 0 if y = z

> 0 if z < y ≤ h1

(a) > 0 ⇔ −h2 ≤ z < h1−h2

2

(b) = 0 ⇔ z = h1−h2

2

(c) < 0 ⇔ h1−h2

2
< z ≤ h1

(a) ≤ ω1ζ1 + ω2ζ2

(b) < ζ2

(c) ≤ ω2ζ1 + ω1ζ2

5 < 0 > h1 < 0 < 0







> ω2ζ1 + ω1ζ2

< 1

2
(ζ1 + ζ2)

6 < 0 < −h2 > 0 > 0







> ω1ζ1 + ω2ζ2

< 1

2
(ζ1 + ζ2)

7 = 0 N/A N/A Any value = 1

2
(ζ1 + ζ2)

we may further determine from the sixth column that this set of inputs should fall into case

4(a). Then, we may proceed to solve Eq. (A 3) for z, where −h2 ≤ z < (h1 − h2)/2, and

the functions G and F are given by Eqs. (A 18) and (A 19). Equation (A 3) can be solved

numerically, using Matlab or other similar packages, to generate a unique root of the equation

within the specified range. When z is found, we then substitute it into Eq. (A 1) to get K.

We have tested the accuracy of the numerical method by comparing results with those

generated by the analytical or simpler solution methods for the special cases described in

Sections 3.1–3.3. In the interest of space, the comparison of results is, however, not presented

here.
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4 Discussion

Let us consider the following sinusoidal functions of x for the axial distributions of the wall

topographies and the zeta potentials:

h1(x) = 1 + h′

1 cos (2πx) , (24)

h2(x) = 1 + h′

2 cos (2πx + φ) , (25)

ζ1(x) = ζ̄1 + ζ ′

1 cos (2πx + θ1) , (26)

ζ2(x) = ζ̄2 + ζ ′

2 cos (2πx + θ2) , (27)

where h′

1,2 and ζ ′

1,2 are the amplitudes of the wall undulation and potential modulation on

the upper/lower walls, ζ̄1,2 are the average potentials on the two walls, and φ and θ1,2 are the

phase shifts for the corresponding distributions.

4.1 Flat and uniformly charged walls, but with unequal potentials

We first look into the issue of linear superposition of the hydrodynamic and electrokinetic

effects by considering flow through a channel with asymmetrically charged walls. For sim-

plicity, we let the walls be flat (h′

1,2 = 0) and uniformly charged (ζ ′

1,2 = 0), but ζ1 can be

different from ζ2.

We show in Fig. 2 the following types of flow rate as functions of ζ2:

qPO = rate of flow due to applied pressure gradient (∆P = 1) only; (28)

qEO = rate of flow due to electric forcing (ζ1 = 1, 0 ≤ ζ2 ≤ 2) only; (29)

qcomb = rate of flow due to the combined action of ∆P = 1, ζ1 = 1, 0 ≤ ζ2 ≤ 2, (30)

where qPO and qEO can be computed readily by Eqs. (23) and (20), respectively, and qcomb has

to be found numerically (except when n = 1, for which Eq. (32) can be used, or when ζ1 = ζ2,

for which Eq. (23) can be used). It is clear from the figure that, for a non-Newtonian fluid

(n 6= 1), the sum of qPO and qEO (represented by the dashed lines) is in general not equal to

qcomb. They are equal to each other only when ζ1 = ζ2, corresponding to a symmetrical flow

configuration. For a Newtonian fluid (n = 1), the sum of the flow rates due separately to

14



the two forcings is always equal to the flow rate due to the simultaneous action of the two

forcings, which is expected. Such linearity will not apply to a non-Newtonian fluid, except

when the zeta potential is the same on the two walls, or when the flow is symmetrical about

the centerline of the channel. The results here reveal that, even for flat and uniformly charged

walls, a lack of symmetry about the channel centerline alone will upset the principle of linear

superposition of the hydrodynamic and electric forcings for a non-Newtonian fluid. This can

be reasoned as follows. Pure EOF in this case has a linear velocity profile, and the stress is

the constant τc given by Eq. (19). In the case of symmetry ζ1 = ζ2, the pure EOF has a plug

flow profile, and τc = 0. The vanishing of stress associated with electrokinetics will enable

the decoupling of the two forces in driving the flow. In the case of asymmetry, or ζ1 6= ζ2, the

stress associated with the electrokinetics is not zero, and will interact in a nonlinear manner

with the stress associated with the hydrodynamic forcing when the fluid is non-Newtonian.

4.2 Synchronized walls: φ = π

When φ = π, for which h2(x) = 1 − h′

2 cos(2πx), the two walls are in a synchronized con-

figuration, i.e., the topmost/lowest points of the upper wall being aligned respectively with

those of the lower wall.

An analytical expression for the flow rate is obtainable from Eq. (18) for Newtonian fluid

(n = 1):

q|n=1 =
4 − (h′

1 − h′

2)
2

6
[

8 + (h′

1 − h′

2)
2
]

{

∆P
[

4 − (h′

1 − h′

2)
2
]

3
2

+ 12
(

ζ̄1 + ζ̄2

)

− 6 (h′

1 − h′

2) (ζ ′

1 cos θ1 + ζ ′

2 cos θ2)

}

for φ = π. (31)

If it is further assumed that the amplitudes of the two wall undulations are the same, i.e.,

h′

1 = h′

2, such that channel height becomes a constant, h1(x)+h2(x) = 2, the flow rate above

reduces to

q|n=1 =
2∆P

3
+ ζ̄1 + ζ̄2, (32)

which depends only on the mean wall potentials, but not on the spatial-varying components

of the wall shapes and zeta potentials.
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We show in Fig. 3 the flow rate q as a function of θ1, for ζ̄1,2 = ζ ′

1,2 = 1, h′

1,2 = 0.5 and

θ2 = π. As expected, for n = 1, q is unaffected by the phase of ζ1, whether ∆P = 0 or not. It

is interesting to find that, for n 6= 1, q is also independent of θ1, but only when ∆P = 0. When

∆P 6= 0, q will have disparate dependence on θ1, depending on n. For ∆P = 1, as clearly

shown in the figure, q reaches the minimum and maximum when θ1 = 0, π, respectively, for

n = 0.5 (i.e., shear thinning). The opposite is true: maximum and minimum q at θ1 = 0, π,

respectively, for n = 2 (i.e., shear thickening). We may infer from the results that, in the

absence of applied pressure forcing, there is always no net effect due to the interaction between

the potential modulation and the wall undulation on the flow through a sinuous channel of

uniform depth. This statement applies to fluid of any power-law index n. When there is

an applied pressure gradient, the nonlinear interaction between the pressure forcing and the

electric forcing will lead to qualitatively different behaviors exhibited by shear-thinning and

shear-thickening fluids. Under a favorable applied pressure gradient, a shear-thinning fluid

(n < 1) will have the flow rate to reach the maximum/minimum when the two potential

distributions are in-phase/π-out-of-phase with each other, respectively. The reverse is true

for a shear-thickening fluid (n > 1).

We further show in Fig. 4 other qualitatively different behaviors exhibited by shear-

thinning and shear-thickening fluids. In this figure, we may see how the flow rate is affected

by the amplitude of the potential modulation, where ζ ′

1 = ζ ′

2 = ζ ′, for n = 0.5, 1, 2, and

θ1 = 0, π. It is remarkable that, under a favorable applied pressure gradient ∆P > 0, the

potential modulation ζ ′ will have a positive effect on q for n < 1, but a negative effect on q for

n > 1, where the effects, positive or negative, are the strongest at θ1 = π. Under an adverse

applied pressure gradient ∆P < 0, the effect of ζ ′ on q is reversed: negative for n < 1, but

positive for n > 1.

4.3 Flat uncharged lower wall

We have seen from Fig. 3 that, for flow through a channel of uniform cross section, q is

independent of n when ∆P = 0. This is no longer true for flow through a channel of varying

cross section. In Fig. 5, we show the results for a channel with a lower wall that is flat
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(h′

2 = 0) and uncharged (ζ2 = 0). Here, even for ∆P = 0, the flow rate changes as the phase

of ζ1 varies. For any n, the flow rate is the minimum when θ1 = 0, and is the maximum

when θ1 = π. These two phases correspond, respectively, to the cases where the minimum

or maximum ζ1 is positioned at the narrowest section of the channel. This is consistent with

the previous finding [5] that it is the electric forcing at the narrowest part of the channel that

determines the net flow. An analytical evidence is available from Eq. (31) for the Newtonian

fluid flow. From this equation, we see that the wall undulation interacts with the potential

modulation through the term −6h′

1ζ
′

1 cos θ1, which is the maximum negative when θ1 = 0,

and is the maximum positive when θ1 = π, thereby giving the minimum and maximum flow

rates at these phases, respectively.

4.4 Symmetrical walls

In the case shown above, which is for flow through an asymmetrical channel, the flow rate is

the maximum for any n when θ1 = π. Let us now show a different case to illustrate that the

optimum phase does not always occur exactly at θ1 = π. We show in Fig. 6 q as a function

of θ1, where ζ1 = ζ2 = 1 + cos(2πx + θ1), h1 = h2 = 1 + 0.5 cos(2πx), and ∆P = 0. In this

case of symmetrical flow, the maximum flow rate occurs at θ1 = π only for n ≤ 1, but not

for n > 1. For n = 2, q reaches the maximum at θ1 ≈ 0.9π and 1.1π. These are the phases

at which the maximum wall potential is located slightly away from the narrowest section.

Furthermore, in the case shown above in Fig. 5, q increases with increasing n monotonically

at any θ1. The case shown here in Fig. 6 displays different trends: q may increase or decrease

with increasing n, depending on θ1. Near the two limits, θ1 = 0 and θ1 = π, q increases as n

decreases. For an intermediate θ, the contrary is true.

We show in Fig. 7 the maximum flow rate qmax and the corresponding optimum phase

θ1optm as functions of the power-law index n. Here, it is seen that qmax follows a non-monotonic

relationship with n. It has a minimum value of approximately 1.99 at n = 1.27. The optimum

phase θ1optm, which is the phase at which the maximum flow rate occurs, is equal to π for

n ≤ 1. It drops sharply from π to approximately 0.9π, as n increases above 1.
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5 Concluding remarks

We have set out to investigate electroosmotic flow of a power-law fluid through a slit channel

bounded by asymmetric walls with periodic variations in shape and zeta potential. The

problem we have studied is simplified by the lubrication approximation, and the use of the

electroosmotic slip boundary condition on assuming that the bulk fluid is shielded from the

wall by a very thin Newtonian depletion layer enclosing completely the electric double layer.

Without the mid-plane symmetry condition, the problem becomes more difficult to solve.

By identifying all the possible relations between the flow rate and the given distributions of

zeta potential and wall shape, we have devised a numerical scheme to determine the axial

distribution of the pressure gradient.

Our results have revealed that even when the walls are flat and uniformly charged, a

lack of mid-plane symmetry alone will invalidate the principle of linear superposition of

forces found by Berli and Olivares [2] for electrokinetic flow of a non-Newtonian fluid in a

channel with the depletion effects taken into account. We have also found that, by varying

the phase shift between the patterns on the two walls, dramatically different behaviors will

be exhibited by shear-thinning and shear-thickening fluids. How the wall undulation may

interact with the potential modulation is strongly dependent on their phase difference, the

power-law behavior index, and the applied pressure gradient. We have demonstrated in

several examples how contrasting flow phenomena may arise under different values of these

parameters. For instance, for flow in a channel with synchronized walls forced by a favorable

pressure gradient, the flow rate will reach the maximum/minimum for a shear-thinning fluid,

but the minimum/maximum for a shear-thickening fluid, when the zeta potential distributions

on the two walls are in-phase/π-out-of-phase with each other, respectively. The contrary is

true (i.e., the maximum becomes the minimum, and vice versa) when the pressure gradient

is unfavorable. These effects may have important implications in the electrokinetic transport

of complex fluids in a microchannel with surface heterogeneities. It is desirable if the findings

of the present study can be verified by experiments in the future.
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Appendix

Introducing z ≡ τc/K, we may rewrite Eqs. (11) and (12) in the following forms:

n

1 + n
|K|

1
n G(z) = ζ1 − ζ2, (A 1)

and

q = ζ2 (h1 + h2) +
n

1 + n
|K|

1

n F (z), (A 2)

where the two functions G(z) and F (z) stem from the integrals in Eqs. (11) and (12). For in-

dividual cases, these functions can be expressed analytically, as presented below. Eliminating

K from Eqs. (A 1) and (A 2) gives

q = ζ2(h1 + h2) + (ζ1 − ζ2) [F/G] if G 6= 0. (A 3)

When G 6= 0, the equation above will be solved numerically for z, for any given q, h1,2, ζ1,2,

and n. A more direct way to find z is used when G = 0, which will happen only in cases 1

and 4. Putting z back to Eq. (A 1), we may determine K.

A.1 Case 1

For case 1 (K > 0, −h2 ≤ z ≤ h1), the functions G and F are

G = (z + h2)
1+ 1

n − (h1 − z)1+ 1
n , (A 4)

F =
1 + n

1 + 2n
(z + h2)

2+ 1
n + (h1 − z) (z + h2)

1+ 1
n −

n

1 + 2n
(h1 − z)2+ 1

n . (A 5)

By virtue of the monotonicity of G, one may infer from Eq. (A 1) that

ζ1 − ζ2



















> 0 ⇔ (h1 − h2)/2 < z ≤ h1,

= 0 ⇔ z = (h1 − h2)/2,

< 0 ⇔ −h2 ≤ z < (h1 − h2)/2.

(A 6)

When ζ1−ζ2 = 0, corresponding to G = 0, Eq. (A 3) is inapplicable. Instead, we may directly

substitute z = (h1 − h2)/2 into Eq. (A 2) and get

K =

(

1 +
1

2n

)n (

h1 + h2

2

)

−1−2n

× [q − ζ2(h1 + h2)]
n for ζ1 − ζ2 = 0. (A 7)
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In this particular case, K is solvable if and only if q is larger than ζ2(h1 + h2).

When ζ1 − ζ2 6= 0, corresponding to G 6= 0, F/G is a monotonically decreasing function

of z. Also,

F/G







≥ ω2(h1 + h2) iff (h1 − h2)/2 < z ≤ h1,

≤ ω1(h1 + h2) iff − h2 ≤ z < (h1 − h2)/2,
(A 8)

where ω1 = n/(1+2n) and ω2 = (1+n)/(1+2n). It follows from Eqs. (A 3), (A 6) and (A 8)

that

q ≥







(ω2ζ1 + ω1ζ2)(h1 + h2) for ζ1 − ζ2 > 0 or (h1 − h2)/2 < z ≤ h1.

(ω1ζ1 + ω2ζ2)(h1 + h2) for ζ1 − ζ2 < 0 or − h2 ≤ z < (h1 − h2)/2.
(A 9)

A.2 Case 2

For case 2 (K > 0, z > h1), the functions G and F are

G = −(z − h1)
1+ 1

n + (z + h2)
1+ 1

n , (A 10)

F =
n

1 + 2n
(z − h1)

2+ 1
n + (h1 + h2)(z + h2)

1+ 1
n −

n

1 + 2n
(z + h2)

2+ 1
n . (A 11)

Again, G is an increasing function of z, and hence G ≥ (h1 + h2)
1+1/n > 0. It follows from

Eq. (A 1) that ζ1 − ζ2 > 0. Given that F/G is a decreasing function of z, the upper and lower

bounds for q can be obtained as follows:

qmax → ζ2(h1 + h2) + (ζ1 − ζ2) ×
F

G

∣

∣

∣

z=h1

= (ω2ζ1 + ω1ζ2)(h1 + h2), (A 12)

qmin → ζ2(h1 + h2) + (ζ1 − ζ2) ×
F

G

∣

∣

∣

z→+∞

=
1

2
(ζ1 + ζ2)(h1 + h2). (A 13)

A.3 Case 3

For case 3 (K > 0, z < −h2), the functions G and F are

G = −(−z + h1)
1+ 1

n + (−z − h2)
1+ 1

n , (A 14)

F =
n

1 + 2n
(−z − h2)

2+ 1

n + (h1 + h2)(−z − h2)
1+ 1

n −
n

1 + 2n
(−z + h1)

2+ 1

n . (A 15)
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The function G is always negative in this case, and therefore ζ1 − ζ2 < 0 by Eq. (A 1). Again,

F/G is a decreasing function of z. Hence, the range of q is

qmax → ζ2(h1 + h2) + (ζ1 − ζ2) ×
F

G

∣

∣

∣

z→−h2

= (ω1ζ1 + ω2ζ2)(h1 + h2), (A 16)

qmin → ζ2(h1 + h2) + (ζ1 − ζ2) ×
F

G

∣

∣

∣

z→−∞

=
1

2
(ζ1 + ζ2)(h1 + h2). (A 17)

A.4 Case 4

For case 4 (K < 0, −h2 ≤ z ≤ h1), the functions G and F are

G = (h1 − z)1+ 1

n − (z + h2)
1+ 1

n , (A 18)

F = −
1 + n

1 + 2n
(z + h2)

2+ 1

n − (h1 − z)(z + h2)
1+ 1

n +
n

1 + 2n
(h1 − z)2+ 1

n . (A 19)

The deduction here is similar to that presented above for case 1. By virtue of the monotonicity

of G, one may infer from Eq. (A 1) that

ζ1 − ζ2



















> 0 ⇔ −h2 ≤ z < (h1 − h2)/2,

= 0 ⇔ z = (h1 − h2)/2,

< 0 ⇔ (h1 − h2)/2 < z ≤ h1.

(A 20)

When ζ1 − ζ2 = 0, we may substitute z = (h1 − h2)/2 into Eq. (A 2) to get

K = −

(

1 +
1

2n

)n (

h1 + h2

2

)

−1−2n

× [ζ2(h1 + h2) − q]
n

for ζ1 − ζ2 = 0. (A 21)

In this particular case, K is solvable if and only if q is smaller than ζ2(h1 + h2).

When ζ1 − ζ2 6= 0, F/G is a decreasing function of z, satisfying

F/G







≤ ω1(h1 + h2) iff − h2 ≤ z < (h1 − h2)/2,

≥ ω2(h1 + h2) iff (h1 − h2)/2 < z ≤ h1.
(A 22)

The ranges for q can be found accordingly via Eq. (A 3):

q







≥ (ω1ζ1 + ω2ζ2)(h1 + h2) for ζ1 − ζ2 > 0, or − h2 ≤ z < (h1 − h2)/2;

≥ (ω2ζ1 + ω1ζ2)(h1 + h2) for ζ1 − ζ2 < 0, or (h1 − h2)/2 < z ≤ h1.
(A 23)
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A.5 Case 5

For case 5 (K < 0, z > h1), the functions G and F are

G = (z − h1)
1+ 1

n − (z + h2)
1+ 1

n ; (A 24)

F =
n

1 + 2n
(z + h2)

2+ 1

n − (h1 + h2)(z + h2)
1+ 1

n −
n

1 + 2n
(z − h1)

2+ 1

n . (A 25)

The function G is always negative in this case, and hence by Eq. (A 1), ζ1 − ζ2 < 0. The

upper and lower bounds for q in this case can be obtained as follows:

qmax → ζ2(h1 + h2) + (ζ1 − ζ2) ×
F

G

∣

∣

∣

z→+∞

=
1

2
(ζ1 + ζ2)(h1 + h2), (A 26)

qmin → ζ2(h1 + h2) + (ζ1 − ζ2) ×
F

G

∣

∣

∣

z→h1

= (ω2ζ1 + ω1ζ2)(h1 + h2). (A 27)

A.6 Case 6

For case 6 (K < 0, z < −h2), the functions G and F are

G = (−z + h1)
1+ 1

n − (−z − h2)
1+ 1

n , (A 28)

F =
n

1 + 2n
(−z + h1)

2+ 1
n − (h1 + h2)(−z − h2)

1+ 1
n −

n

1 + 2n
(−z − h2)

2+ 1
n . (A 29)

The function G is always positive in this case, which by Eq, (A 1) implies that ζ1 − ζ2 > 0.

The upper and lower bounds for q in this case can be obtained as follows:

qmax → ζ2(h1 + h2) + (ζ1 − ζ2) ×
F

G

∣

∣

∣

z→−∞

=
1

2
(ζ1 + ζ2)(h1 + h2), (A 30)

qmin → ζ2(h1 + h2) + (ζ1 − ζ2) ×
F

G

∣

∣

∣

z→−h2

= (ω1ζ1 + ω2ζ2)(h1 + h2). (A 31)

A.7 Case 7

For case 7 (K = 0), the shear stress reduces to τ = τc. The flow rate q can be found readily

from Eqs. (11) and (12) as follows:

q =
1

2
(ζ1 + ζ2)(h1 + h2). (A 32)
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Figure 1: Combined pressure-driven and electroosmotic flow of a power-law bulk fluid through

a slit channel with wall shapes and zeta potentials varying slowly and periodically in the axial

direction, but not necessarily symmetrical about the centerline of the channel.
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Figure 2: Flow rate q as a function of the zeta potential on the lower wall ζ2 for ∆P = 1,

ζ1 = 1, where the two walls are flat and uniformly charged, and (a) n = 0.5, (b) n = 1, (c)

n = 2, in which qPO, qEO, qcomb are the flow rates defined in Eqs. (28)–(30), and the dashed

line represents qPO + qEO. For n = 1, qcomb = qPO + qEO.
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