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Abstract

We study online combinatorial auctions with production

costs proposed by Blum et al. [4] using the online primal dual

framework. In this model, buyers arrive online, and the seller

can produce multiple copies of each item subject to a non-

decreasing marginal cost per copy. The goal is to allocate

items to maximize social welfare less total production cost.

For arbitrary (strictly convex and differentiable) production

cost functions, we characterize the optimal competitive ratio

achievable by online mechanisms/algorithms. We show that

online posted pricing mechanisms, which are incentive com-

patible, can achieve competitive ratios arbitrarily close to

the optimal, and construct lower bound instances on which

no online algorithms, not necessarily incentive compatible,

can do better. Our positive results improve or match the

results in several previous work, e.g., Bartal et al. [3], Blum

et al. [4], and Buchbinder and Gonen [6]. Our lower bounds

apply to randomized algorithms and resolve an open prob-

lem by Buchbinder and Gonen [6].

1 Introduction

Consider a seller with m heterogeneous items to allocate
to n heterogeneous buyers to maximize social welfare,
that is, the sum of the buyers’ value for the items they
obtain. When buyers have combinatorial value func-
tions over bundles of items, it is known as combinatorial
auctions, a central problem in economics and algorith-
mic game theory.

Combinatorial auctions are computationally chal-
lenging. For instance, when buyers have arbitrary value
functions, there are no polynomial-time algorithms that
approximately maximize social welfare within a factor
better than m1/2 (e.g., [5]). Moreover, if we take the
strategic behavior of self-interested buyers into account,
i.e., focusing on polynomial-time and incentive compati-
ble mechanisms, then even computationally simple spe-
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cial cases become intractable. For example, there are
polynomial-time e

e−1 -approximation algorithms when
buyers have submodular value functions [18], but no
polynomial-time and incentive compatible mechanisms
can be better than an mγ-approximation for some con-
stant γ [14].

Part of the difficulty of combinatorial auctions
comes from the stringent supply constraints – the seller
has only one copy per item. In many applications, the
seller may have multiple copies of each item, or can even
produce an arbitrary number of copies paying certain
production cost. Therefore, it is natural to consider
variants of combinatorial auctions with relaxed supply
constraints, hoping that they are more tractable.

The first set of results along this line considers
having logarithmically many copies of each item. With
Ω( 1

ε2 logm) copies, an (1−ε)-approximation algorithm is
folklore because the standard linear program relaxation
of combinatorial auctions has an integrality gap of
1 − ε. Lavi and Swamy [16] further showed how
to convert this algorithm into an (1 − ε)-approximate
and incentive compatible mechanism. Bartal et al.
[3] considered the online setting where buyers arrive
online and the seller must allocates to each buyer at his
arrival without any information about future buyers.
Assuming the buyers’ value for any bundle is in the
range of [vmin, vmax]

1 and there are Ω(log(vmax/vmin))
copies per item, they introduced an O(log(vmax/vmin))-
competitive2 and incentive compatible mechanism.

Recently, Blum et al. [4] studied online combinato-
rial auctions in a more general model with production
costs. In this model, the seller may produce any num-

1An upper bound on values is necessary for any non-trivial
competitive ratio. Otherwise, after the seller has exhausted the
supply of an item, there could be a buyer with value for the item
arbitrarily large relative to the previous buyers’ values.

2Some previous work assume knowing vmax and, instead of
vmin, the number of buyers, n. In this case, using vmax/n as
an effective vmin leads to O(logn)-competitive algorithms. Most
techniques can be translated between the two settings. We assume
knowing vmax and vmin throughout this paper for consistency.
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ber of copies of the items while paying a non-decreasing
marginal production cost per copy. The goal is to max-
imize social welfare less the total production cost. The
aforementioned model is a special case of the produc-
tion cost model with the marginal production cost be-
ing a zero-infinity step function. Blum et al. [4] consid-
ered several simple marginal production cost functions,
including linear, polynomial and logarithmic functions,
and proposed constant competitive algorithms for these
special cases. They also studied general cost functions
assuming the values are between vmin and vmax, and in-
troduced logarithmic competitive algorithms. However,
it is not clear if their competitive ratios are optimal,
even for the special cases, and there was no characteri-
zation of the optimal competitive ratio achievable on a
per cost function basis.

In this paper, we further investigate online com-
binatorial auctions with production costs. We seek to
develop a unified framework that provides online mech-
anisms/algorithms with the optimal competitive ratios
for arbitrary production costs using the online primal
dual framework (see, e.g., Buchbinder and Naor [7] for
a comprehensive survey). Informally, the online primal
dual framework considers the linear program relaxation
of an optimization problem and its dual program, and
designs online algorithms based on the structure of the
linear programs and complementary slackness. It is not
clear, however, how to model production costs using lin-
ear programs. Instead, we use an extension of the tech-
nique to convex programs and Fenchel duality following
the recent work of Devanur and Jain [12], Devanur and
Huang [11], etc.

1.1 Our Contributions and Techniques Our
main contribution is a characterization of the optimal
algorithms/mechanisms and their competitive ratios for
online combinatorial auctions with arbitrary production
costs via an online primal dual approach:

We start with a fractional version of the problem in
Section 3, where there are infinitely many buyers each
of which wants at most an infinitesimal amount of each
item. The fractional version allows us to focus on the
online nature of the problem, while ignoring extra com-
plications from the integrality gap of using convex pro-
gram relaxations. Then, we characterize a parameter
α(f) that depends on the production cost function f ,
and show that (1) there are (α(f) + ε)-competitive and
incentive compatible mechanisms, and (2) there are no
(α(f) − ε)-competitive online algorithms, for arbitrar-
ily small ε > 0. The optimal competitive ratio achiev-
able α(f) is the infimum of parameters α such that a
differential equation parameterized by α has a feasible
solution. More specifically, a feasible solution to the

differential equation with α = α(f) + ε would yield a
relation between the primal and dual variables in the
online primal dual approach and, consequently, a com-
petitive online mechanism. Our lower bound is obtained
by constructing a family of instances such that if there
is an online algorithm that is (α(f) − ε)-competitive
for these instances, then there is a feasible solution to
the differential equation parameterized by α = α(f)−ε,
contradicting our definition of α(f). In short, our mech-
anism and lower bound for a given production cost func-
tion f reduce to the same differential equation and thus
are optimal. To the best of our knowledge, the only
other work with this type of characterization of the op-
timal competitive ratio is the work by Devanur and Jain
[12] on online matchings with concave returns. Finally,
we stress that our mechanisms are incentive compati-
ble and their competitive ratios are optimal even when
compared to non-incentive compatible algorithms.

In Section 4, we study the integral version and show
that under certain conditions, the optimal competitive
ratios for the fractional case extend to the integral case
with an arbitrarily small loss, say ε > 0, in the compet-
itive ratio. In particular, we have a ((1 + 1

d )
d+1d + ε)-

competitive algorithm for the polynomial marginal pro-
duction costs c(y) = yd and a (4 + ε)-competitive
algorithm for logarithmic marginal production costs.
These results improve the competitive ratios previously
achieved by Blum et al. [4]. Our (4 + ε)-competitive
algorithm further applies to any concave marginal pro-
duction costs. We summarize these results in Table 1.

Finally, we consider in Section 5 the case when the
buyers’ values are between vmin and vmax. We use the
same framework to derive nearly optimal incentive com-
patible mechanisms with a logarithmic competitive ratio
for supply-k online combinatorial auctions. As before,
our mechanisms are derived from the same differential
equation that characterizes online combinatorial auc-
tions. We also show an almost matching logarithmic
lower bound that applies to randomized algorithms, re-
solving an open problem by Buchbinder and Gonen [6].

1.2 Other Related Work There is a vast literature
on maximizing social welfare in combinatorial auctions.
In addition to the related work we have already dis-
cussed, we refer readers to the survey by Blumrosen
and Nisan [5] and the references therein. Also, we note
recent positive results by Dughmi et al. [13] when buy-
ers have coverage value functions or matroid rank sums
value functions.

Our mechanisms fall into a family known as posted
pricing mechanisms, where the seller posts item prices
to each buyer and let the buyer pick his favorite bun-
dle of items given the prices. Posted pricing mechanisms
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Table 1: Competitive ratios for various marginal production cost functions (for arbitrarily small ε):

Blum et al. [4] This Paper
Linear, c(y) = ay + b 6 4(1 + ε)
Polynomial, c(y) = ayd (1 + ε)4d (1 + ε)(1 + 1

d )
d+1d

Logarithmic, c(y) = ln(1 + y) 4.93 4(1 + ε)

are incentive compatible and are widely used for revenue
maximization (see, e.g., Balcan et al. [2], Chakraborty
et al. [8], Chawla et al. [9]). Some of these results (e.g.,
Chakraborty et al. [8]) also imply bounded approxima-
tion ratios for social welfare maximization.

All of the aforementioned results focus on the case
when each item has only one copy, in which case
strong assumptions on the value functions are needed to
achieve non-trivial positive results. On the other hand,
we consider the production cost model by Blum et al.
[4], i.e., allowing multiple copies of each item subject to
production costs. As a result, we are able to achieve
positive results for arbitrary value functions.

Our primal dual approach is related to the re-
cent work by Anand et al. [1], Gupta et al. [15], and
Thang [17] on the online scheduling problem using on-
line primal dual analysis or dual fitting with Lagrangian
duality. Lagrangian duality is defined even for non-
convex programs and therefore can be applied to prob-
lems without a natural convex program relaxation. In
contrast, we use convex programs and Fenchel duality;
fenchel duality is defined only for convex programs but
generally presents richer structures that guide the de-
sign and analysis of online algorithms.

2 Preliminaries

Let there be a seller with a set of m items, represented
by [m], and a group of n buyers that arrive online. We
use i to represent indices of buyers, j to represent indices
of items, and S to represent bundles.

Each item j is associated with a production cost
function fj : R+ → R

+ where fj(y) is the total cost to
produce y units of item j, i.e., the y-th (integral) unit
costs fj(y)−fj(y−1). Our results will depend on certain
technical properties of the cost functions which we will
make clear in the theorem statements. For simplicity
of presentation, we assume all fj are identical and omit
their subscripts in the rest of this paper. Our results
extend to non-identical fj ’s as well, with a dependency
on the “worst” fj .

Let S be the set of available bundles that can be
allocated to buyers. A bundle S of items is represented
by a vector (a1S , . . . , amS) where ajS is the number of
units of item j in the bundle. We assume S contains
the empty bundle �0 = (0, . . . , 0) and there is an upper

bound Δy on the maximal number of units of each
item in a bundle. Readers may think of Δy = 1 and
S = {0, 1}m as a concrete example, which corresponds
to the standard setting of combinatorial auctions. In
general, Δy can be any positive number and S can be
any subset of [0,Δy]m containing �0. For simplicity of
exposition, we assume S = {0,Δy}m and say j ∈ S if
ajS = Δy. Our analysis extends to the general case.

Each buyer i has a private value function vi : S �→
R

+ where vi(S) is buyer i’s value for getting bundle
S ∈ S of items. We do not require any assumptions
on the value functions and allow them to have arbitrary
complement and substitute effects.

At the beginning, the seller does not have any
information about the buyers, that is, vi’s and even n
are not known to the seller. Upon the arrival of each
buyer i, the buyer reports a value function v̂i (which
may or may not be his true value function vi) and the
seller (irrevocably) allocates a bundle Si ∈ S to the
buyer and charge a payment Pi, based on v̂i and the
reported values and allocations of previous buyers.

The resulting allocation rule along with the pay-
ment rule constitute an online mechanism. Since the
seller does not know the buyers’ value functions upfront,
he needs to incentivize them to truthfully report their
value functions. A mechanism is incentive compatible
if each buyer i maximizes the expectation of his utility,
i.e., vi(Si)− Pi, by reporting v̂i = vi. If the buyers are
not strategic, i.e., they always truthfully report their
value functions, then we only need the allocation rule
which is simply an online algorithm.

The objective is to allocate items to maximize
the expectation of social welfare, which is the sum
of the buyers’ value for the bundles they get, less
the total production cost, i.e.,

∑
i vi(Si) −

∑
j f(yj)

where yj denotes the total amount of item j that has
been sold so far. We measure the performance of
mechanisms/algorithms under the standard competitive
analysis framework. Let W (M) denote the expected
objective value of a mechanism M . Let OPT denote the
optimal objective value in hindsight. A mechanism M is
α-competitive if there exists a constant β, independent
of n and vi’s, such that

W (M) ≥ 1
α OPT−β
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for all possible instances. Clearly, α is always at least 1,
and the closer to 1 the better. Our goal is to characterize
the optimal competitive ratio α achievable by any online
mechanisms/algorithms.

Posted Pricing Mechanisms A particularly re-
lated family of mechanisms are posted pricing mecha-
nisms. Upon a buyer’s arrival, the seller chooses item
prices pj and lets the buyer pick his utility-maximizing
bundle, namely, argmaxS∈S vi(S)−

∑
j ajSpj , breaking

ties arbitrarily. The mechanism may use different prices
for different buyers. Posted pricing mechanisms are in-
centive compatible and are widely used for revenue max-
imization (e.g., [2, 8, 9]). Recently, Blum et al. [4] ex-
tended the use of posted pricing mechanisms to online
combinatorial auctions with production costs; in partic-
ular, the price of an item j only depends on the amount
of the item that has been sold. Thus, their mechanisms
can be represented by a pricing function p : R+ �→ R

+

where p(y) is the price per unit of item j if y units of
the item has been sold. In this paper, we characterize
the optimal competitive ratio achievable by any online
algorithms and show that the optimal competitive ra-
tio can be achieved by the posted pricing mechanisms.
See below for a formal description of the posted pricing
mechanism Mp defined by a pricing function p:

Algorithm 1 Mp, pricing mechanism with pricing
function p

1: Initialize yj = 0 for all j
2: for i = 1, . . . , n do
3: Offer item j at price pj = p(yj) for all j
4: Buyer i chooses bundle S and pays

∑
j∈S pj

5: Update yj = yj +Δy for all j ∈ S
6: end for

Online Primal Dual Algorithms While our
mechanisms are posted pricing mechanisms, we did not
commit to them a priori. Instead, we derive our mech-
anisms from a principled primal dual analysis. Con-
sider the following convex program relaxation (P ) of our
problem, on the top, and its Fenchel dual program (D)
(see, e.g., Devanur [10] for more discussions of Fenchel
duality and Appendix B for the derivation of the dual
program):

maxx,y
∑

i

∑
S viSxiS −

∑
j f(yj)

∀i : ∑
S xiS ≤ 1

∀j : ∑
i

∑
S ajSxiS ≤ yj

x, y ≥ 0

minu,p
∑

i ui +
∑

j f
∗(pj)

∀i, S : ui +
∑

j ajSpj ≥ viS

u, p ≥ 0

In the primal program, variable xiS indicates
whether or not buyer i purchases bundle S. Since we
want to maximize the objective function and f is an
increasing function, we may assume without loss that
yj =

∑
i

∑
S ajSxiS , namely, the total number of units

of item j that have been allocated.
In the dual objective, f∗(p) = supy≥0{py − f(y)}

is the convex conjugate of f . When f is strictly convex
and differentiable, f ′(y) and f∗′(p) are inverses of each
other. We interpret pj as the price per unit of item j
and ui as the utility of buyer i.

When ajS are binary and f is a step function
that equals 0 for y ∈ [0, 1] and ∞ for y > 1, these
programs become the standard primal and dual linear
program relaxations for the combinatorial auctions,
without production costs and with one copy per item
(see Appendix A).

Upon the arrival of buyer i, there is a new dual
variable ui and a set of new dual constraints, ui ≥ viS−∑

j ajSpj for all S. To maintain dual feasibility while
minimizing the increase of the dual objective, we let
ui = minS viS−

∑
j ajSpj ; by complementary slackness,

we also let xiS = 1. This allocation rule corresponds to
letting buyer i pick his utility maximizing bundle with
ui equaling his utility. After the allocation, yj increases
for each item j in the allocated bundle. Consequently,
we need to adjust the corresponding dual variables pj .
In the offline optimal solution, yj and pj shall form a
complementary pair, i.e., pj = f ′(yj). In our online
problem, however, the algorithm does not know the
final demand and, therefore, let pj be f

′’s value at some
estimated final demand; in general, we let pj(yj) be a
function of the current demand yj .

Let P i and Di be the primal and dual objective
values, respectively, after serving buyer i; let P 0 and
D0 be the values at initialization and Pn and Dn be
the values at termination. Throughout the process, we
maintain a feasible primal solution (x, y) and a feasible
dual solution (u, p). We use superscript i to denote
the current values of the primal and dual variables
after serving buyer i and before serving buyer i + 1.
If we could show that Pn ≥ 1

αD
n − β, then our

mechanism M is α-competitive since W (M) = Pn ≥
1
αD

n−β ≥ 1
α OPT−β, where the last inequality follows

from weak duality. We call this the global analysis
framework. On the other hand, it also suffices to show
that P i+1−P i ≥ 1

α (D
i+1−Di) for all i; summing over

all i we have Pn−P 0 ≥ 1
α (D

n−D0), or Pn ≥ 1
αD

n−β
for β = 1

αD
0 − P 0. We call this the local analysis
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framework. We will use both frameworks in this paper.
Remarks on Notation When Δy = 1 and S =

{0, 1}m, our setting becomes Blum et al. [4]’s setting,
except for the representation of production cost func-
tions. In Blum et al. [4], there is an increasing marginal
production cost function cj for each integral unit of item
j, whereas our production cost functions fj are the cu-
mulative version. If fj(yj)’s further take on value 0 for
0 ≤ yj ≤ k, and +∞ otherwise, our setting essentially
becomes multi-unit combinatorial auctions with multi-
minded buyers, as considered by Bartal et al. [3] and,
more recently, Buchbinder and Gonen [6].

3 Fractional Case

In this section, we consider the fractional case of our
problem, that is, we assume Δy is infinitesimally small
and let there be infinitely many buyers each of which
buys infinitesimal units of items. The fractional case
allows us to focus on the online nature of the problem,
while ignoring subtle treatments needed to handle the
integrality gap of the convex programs.

For the fractional case, we are able to character-
ize the optimal competitive ratio achievable by online
mechanisms/algorithms. We show that finding a pric-
ing function p : R+ �→ R

+ that is a feasible solution to
the following differential equation for some constant β
is a sufficient and necessary condition of the existence
of α-competitive online mechanisms/algorithms:

(3.1)
∫ y

0
p(ȳ)dȳ−f(y) ≥ 1

α ·f∗(p(y))−β, for all y ≥ 0.

Theorem 3.1. If a monotonically increasing pricing
function p satisfies (3.1) for some constant β, then the
corresponding pricing mechanism Mp is α-competitive
and incentive compatible.

Theorem 3.2. If there is an α-competitive algorithm,
then there exists a monotonically increasing pricing
function p that satisfies (3.1) for some constant β.

We note that the integral version of (3.1) is equiva-
lent to the Structural Lemma by Blum et al. [4] and,
perhaps not surprisingly, our mechanisms are posted
pricing mechanisms.

Further, we define

α(f) = inf
{
α : there exist constant β and monoto-

nically increasing p so that (3.1) holds
}
.

Corollary 3.1. For any ε > 0, there is an (α(f)+ ε)-
competitive and incentive compatible mechanism.

Corollary 3.2. For any ε > 0, there are no (α(f) −
ε)-competitive algorithms.

We stress that our upper bound holds for incentive
compatible mechanisms, while our lower bound holds
for arbitrary algorithms. In this sense, the incentive
compatibility constraint does not impose any additional
difficulties for online combinatorial auctions with pro-
duction costs. We note that the integral analogue of
Theorem 3.1 is equivalent to the Structural Lemma in
Blum et al. [4].

We present the proofs of Theorem 3.1 and Theo-
rem 3.2 in Section 3.1 and Section 3.2, respectively, and
characterize α(f) for some specific production cost func-
tions in Section 3.3.

3.1 Mechanism (Proof of Theorem 3.1) For no-
tational simplicity, let Si be the utility-maximizing
bundle that buyer i purchases and vi be the value
viSi . By the definition of pricing mechanisms, we have
ui = vi −

∑
j∈Si

pi−1
j · Δy. (Recall that we assume

ajS ∈ {0,Δy}.)
By the definition of the convex programs, we have

feasible solutions and Pn =
∑

i vi −
∑

j f(yj) and
Dn =

∑
i ui +

∑
j f
∗(pj) where yj and pj are the final

demand and price for item j. To lower bound Pn by the
1
α fraction of Dn, we first rewrite

∑
i vi as a function of

variables yj , ui, and pj :

Lemma 3.1.
∑

i vi =
∑

i ui +
∑

j

∫ yj

0
p(y)dy.

Proof. Let χj(i, y) be an indicator function that is equal
to 1 if buyer i buys from the y-th to the (y + Δy)-th
units of item j via bundle Si. The buyer i’s utility is
ui = vi −

∑
j

∑
y∈Δy·N χj(i, y)Δy · p(y), where y ranges

over all the nonnegative integer multiples of Δy. Then,

∑
i vi =

∑
i ui +

∑
i

∑
j

∑
y χj(i, y) ·Δy · p(y).

Next, we change the order of summation and account for
the second term, i.e., the total payment, in a different
way:

∑
i,j,y χj(i, y) ·Δy · p(y) = ∑

j,y Δy · p(y)∑i χj(i, y)

=
∑

j,y≤yj
Δy · p(y).

As we assume Δy to be infinitesimally small in the
fractional case, the above reduces to

∑
j

∫ yj

0
p(y)dy.

The lemma follows.

Given the lemma, the primal objective is Pn =∑
i ui +

∑
j

∫ yj

0
p(y)dy −∑

j f(yj). We now show that

Pn ≥ 1
α · Dn −mβ, then the competitive ratio follows

from the weak duality property. This is equivalent to

∑
i ui +

∑
j

∫ yj

0
p(y)dy −∑

j f(yj)

≥ 1
α

(∑
i ui +

∑
j f
∗(pj)

)−mβ.
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Note that α ≥ 1 and
∑

i ui ≥ 0. Having positive∑
i ui only helps the inequality. So, it suffices to show∑
j

∫ yj

0
p(y)dy −∑

j f(yj) ≥ 1
α

∑
j f
∗(pj) −mβ, which

follows by summing up (3.1) over all items.

3.2 Lower Bound (Proof of Theorem 3.2) We
consider a family of single-item instances parameterized
by v∗ ≥ 0, {Iv∗}v∗≥0, and show that if there is an
online algorithm that is α-competitive for all instances
in the family, then we can construct a monotonically
increasing feasible solution to the differential equation
(3.1).

The instance Iv∗ is defined as follows: let there be
a continuum of stages parameterized by v starting from
stage 0 to stage v∗; at stage v, let there be a continuum
of buyers with value v per unit of the item and a total
demand of f∗′(v). Since f∗′ and f ′ are inverses, f∗′(v)
is the maximal amount of the item that can be produced
at a marginal production cost of at most v per unit.

Consider any online algorithm. Let Y (v, v∗) be a
random variable denoting the amount of the item sold
up to stage v ≤ v∗ in instance Iv∗ . Let y(v, v∗) be
the expected value of Y (v, v∗) over the randomness of
the algorithm. Note that when the algorithm decides
the allocation for buyers at stage v, it does not have
any information about v∗ other than that v∗ ≥ v.
Hence, the distribution of random variable Y (v, v∗) is
independent of the value of v∗ for any v∗ ≥ v. We will
omit the second argument and simply write Y (v) and
y(v) in the rest of the proof.

We first show that if there is a competitive algo-
rithm, then there is a feasible solution to the “inverse”
of the differential equation (3.1):

Lemma 3.2. If there is an α-competitive algorithm for
all instances Iv∗ , v∗ ≥ 0, then there is a constant β and
a function y(v) such that:

(3.2)
∫ v∗

0
vdy(v)−f(y(v∗)) ≥ 1

αf
∗(v∗)−β, for v∗ ≥ 0.

Proof. In instance Iv∗ , the optimal offline solution allo-
cates f∗′(v∗) units of the item to the buyers in the last
stage and none to the buyers in previous stages. The
optimal objective value of social welfare less the total
production cost is

OPT(v∗) = v∗ · f∗′(v∗)− f(f∗′(v∗)) = f∗(v∗),

where the last equality follows from the definition of
the convex conjugate function f∗ and properties of the
complementary pair v∗ and f∗′(v∗).

On the other hand, the objective value achieved by

the algorithm is
∫ v∗

0
vdY (v)−f(Y (v∗)). By the linearity

of the first term and convexity of f , the expected

objective value of the algorithm is at least:

E[ALG(v∗)] ≤ ∫ v∗

0
vdy(v)− f(y(v∗)).

Therefore, if the algorithm is α-competitive, then
there exists β such that for any v∗ ≥ 0, E[ALG(v∗)] ≥
1
α OPT(v∗)− β. Subsequently, there exists y(v) that is
a feasible solution to (3.2).

The differential equation (3.2) is essentially the
same as (3.1), except that a solution to (3.1) is p(y)
as a function of y while a solution to (3.2) is y(p) as a
function of p. In particular, if there is a feasible solution
y(p) to (3.2) that is strictly monotone, then its inverse
function would be a feasible solution to (3.1) that is
monotonically increasing. The rest of this subsection
is devoted to constructing a strictly monotone feasible
solution.

Suppose the differential equation (3.2) is feasible for
some α and β. For the same α and β values, we let

y(v) = inf
{
y(v) : y is feasible for (3.2)

}
.

Lemma 3.3. (3.2) holds with equality for y.

Proof. For a given v∗ ≥ 0, by the definition of y(v∗),
there exists a feasible solution ỹ to (3.2) that takes value
at most y(v∗) + ε at v∗ for an arbitrarily small ε > 0.
In particular,

(3.3)
∫ v∗

0
vdỹ(v)− f(ỹ(v∗)) ≥ 1

αf
∗(v∗)− β.

Note that
∫ v∗

0
vdỹ(v) = v∗ỹ(v∗) − ∫ v∗

0
ỹ(v)dv. By the

definition of ỹ(v∗), the first term is at most v∗y(v∗)+v∗ε.
Further, by the definition of y, we have ỹ(v) ≥ y(v) for
all v. So, we have

∫ v∗

0
vdỹ(v) ≤ v∗y(v∗)− ∫ v∗

0
y(v)dv + v∗ε

=
∫ v∗

0
vdy(v) + v∗ε.

Putting the above back to (3.3) and using the fact that
f(y(v∗)) ≤ f(ỹ(v∗)), we have

∫ v∗

0
vdy(v) + v∗ε− f(y(v∗)) ≥ 1

αf
∗(v∗)− β .

As it holds for arbitrarily small ε > 0, it also holds
for ε = 0 in the limit. It follows that y is a feasible
solution to the differential equation (3.2). Further, (3.2)
must hold with equality because otherwise we could
further lower the value of y while maintaining feasibility,
contradicting our choice of y.

Lemma 3.4. y(v) is strictly increasing in v.
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Proof. Suppose for contradiction that y(v) is not strictly
increasing at v = v∗. Consider (3.2) from v∗ to v∗ + dv
for an infinitesimally small dv. Its left hand side remains
the same while its right hand side strictly increases,
contradicting the previous lemma that says (3.2) holds
with equality for y.

Theorem 3.2 then follows by that the inverse of y(v)
is a monotonically increasing feasible solution to (3.1).

3.3 Case Study In this subsection, we use the dif-
ferential equation (3.1) to study two specific families of
production costs – power production costs and concave
marginal production costs. It is easier to work with the
following version of (3.1) without integrals:

(3.4) (p(y)− f ′(y))dy = 1
αf
∗′(p(y))dp, for all y ≥ 0.

On the one hand, if p(y) is a monotonically increas-
ing feasible solution to (3.4), then integrating both sides
we get that p(y) is also a monotonically increasing feasi-
ble solution to the differential equation (3.1). Note that
it suffices to satisfy (3.4) with inequality, namely, its left
hand side greater than or equal to its right hand side.
For the purpose of finding a feasible solution, however,
the more restricted equality version is more instructive.

On the other hand, if there is an α-competitive
algorithm/mechanism, then, as in Section 3.2, we can
construct a feasible solution to (3.1) with equality.
Thus, differentiating both sides we get (3.4).

Due to space constraints, we demonstrate only the
theorems and defer the proofs to Appendix C.

Theorem 3.3. (Power Prod. Costs) If f(y) =
ayγ+1 is a power function with γ ≥ 1, then α(f) =
(γ+1)(γ+1)/γ . In particular, the pricing mechanismMp

with p(y) = (γ + 1)yγ is (γ + 1)(γ+1)/γ-competitive.3

Theorem 3.4. (Concave Marginal Prod. Costs)
If a cost function f is such that f ′ is differentiable,
concave and strictly increasing, then α(f) ≤ 4. In par-
ticular, the pricing mechanism Mp with p(y) = f ′(2y)
is 4-competitive.

We remark that our upper bound for concave marginal
cost functions is tight, because f(y) = y2 is a special
case of concave marginal cost functions for which α(f) =
4, by Theorem 3.3.

Finally, we present a theorem that unifies above

two cases. Define Γ×f,λ = max
{
1,maxy>0

(λ−1)yf ′′(λy)
f ′(λy)−f ′(y)

}
.

It represents how fast the value of f ′′ could increase
when its argument is scaled by a factor of λ, because

3Note that asymptotically (γ + 1)(γ+1)/γ ≈ eγ as γ goes to
infinity.

f ′(λy)−f ′(y)
(λ−1)y ≈ f ′′(y). When f ′ is concave, Γ×f,λ = 1.

When f ′(y) = yγ , Γ×f,λ = (λγ−λγ−1)γ
λγ−1 .

Theorem 3.5. (A Unified Theorem) For cost func-
tions f with f ′ differentiable and strictly increasing, the

pricing mechanism Mp with p(y) = f ′(λy) is λ2

λ−1Γ
×
f,λ-

competitive for any λ > 1.

4 Integral Case

In this section, we consider the integral case of online
combinatorial auctions where the constant Δy is 1 and
the set of bundles is S = {0, 1}m. We derive constant
competitive mechanisms for broad classes of production
cost functions f . Our competitive ratios are arbitrarily
close to the fractional counterparts in Section 3, and are
strictly better than those obtained by Blum et al. [4].
Our mechanisms are posted pricing schemes similar to
their twice-the-index pricing scheme.

We use superscript i to denote the current values
of the primal and dual variables after serving buyer i
and before serving buyer i + 1. For example, suppose
yi−1
j units of each item j have been allocated so far, and

buyer i observes item prices pi−1
j and chooses his utility-

maximizing bundle Si. Then, we update the primal and
dual variables as follows: xiSi

= 1; yij = yi−1
j + 1 for all

item j in Si; ui = viSi −
∑

j∈Si
pi−1
j ; pij = p(yij) for all

item j according to the pricing function p.
We use the following integral analogue of (3.4):

Lemma 4.1. If a monotonically increasing pricing
function p satisfies, for all i,

(4.5) pi−1
j − (f(yi−1

j + 1)− f(yi−1
j ))

≥ 1
α (f

∗(pij)− f∗(pi−1
j )),

then the pricing mechanism Mp is α-competitive (and
incentive compatible).

The main idea is that the integral case approxi-
mately reduces to the fractional case when the seller
has sold sufficiently many copies of an item for “nice-
behaving” cost functions. Concretely, if the cost func-
tion satisfies f(yij)−f(yi−1

j ) ≈ f ′(yi−1
j )dyi−1

j (note that

dyi−1
j = 1) and f∗(pij)−f∗(pi−1

j ) ≈ f∗′(pi−1
j )dpi−1

j , then
(4.5) is essentially the same as the inequality version of
(3.4). The contributions when yj is not sufficiently large
can be accounted for by the additive cost β.4 Due to
the space constraint, we defer proofs to Appendix D.1.

4Note that additive costs are necessary as shown in Lemma
A.1 in Blum et al. [4].
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Theorem 4.1. (Power Prod. Costs) For a power
cost function f(y) = ayγ+1, the pricing mechanism
Mp with p(y) = a(γ + 1)2yγ is α-competitive with
a sufficiently large additive cost, i.e., W (Mp) ≥
1
α OPT−∑

j(
1
αf
∗(f ′( 2ε )) + f( 1ε − 1)) for ε > 0, where

α = (1 + ε)γ(γ + 1)(γ+1)/γ .

Theorem 4.2. (Concave Marginal Prod. Costs)
For a cost function f with f ′ concave, the pricing
mechanism Mp with p(y) = f ′(2(y + 1)) is 4(1 + ε)-
competitive with a sufficiently large additive cost, i.e.,
W (Mp) ≥ 1

4(1+ε) OPT−∑
j(

1
4(1+ε)f

∗(f ′( 2ε ))+f( 1ε−1))
for ε > 0.

To unify the above two theorems, recall that Γ×f,λ =

max
{
1,maxy>0

(λ−1)yf ′′(λy)
f ′(λy)−f ′(y)

}
from Section 3; further,

let Γ+
f,λ,τ = max

{
1,maxy≥τ

f ′′(y+λ)
f ′′(y)

}
. If f ′ is concave,

Γ×f,λ = Γ+
f,λ,τ = 1. If f ′(y) = yγ , Γ×f,λ = (λγ−λγ−1)γ

λγ−1 and

Γ+
f,λ,τ is 1 for γ ≤ 1 and is (1 + λ

τ )
γ−1 otherwise.

Theorem 4.3. (A Unified Theorem) For cost func-
tions f with f ′ differentiable and strictly increasing, the
pricing mechanism Mp with p(y) = f ′(λ(y + 1)) is α-

competitive for α = (1+ε)λ2

λ−1 ·Γ+
f,λ,λ/ε ·Γ×f,λ and arbitrarily

small ε > 0.

Comparisons with Previous Results Blum
et al. [4] considered a nearly identical problem and
showed constant competitive posted pricing mechanisms
for several marginal production cost functions: linear,
polynomial, and logarithmic functions. In this sec-
tion, we designed constant competitive algorithms for
broader classes of production cost functions. We show
that our results apply in Blum et al. [4]’s setting and
improve those competitive ratios previously obtained.
The two settings differ in the representation of produc-
tion cost functions: we use (cumulative) production cost
functions f whereas they use marginal production cost
functions c. For each class of linear, polynomial, and
logarithmic marginal production cost functions, we con-
struct a strictly convex and differentiable production
cost function f that matches c on each integral unit,
i.e., f(y) =

∑y
l=1 c(l) for all (sufficiently large) integer

values y.5

For linear c(y) = ay + b, where a, b ≥ 0, we use
the production cost function f(y) = a

2y
2 + (b + a

2 )y.

5The equality is necessary, since the cost contributes negatively
to the social welfare and optimizing the modified social welfare
objective with a multiplicative approximate cost function does
not lead to an approximately optimal solution with respect to the
original social welfare objective.

By Theorem 4.2, we get a 4(1 + ε)-competitive pricing
mechanism, improving the previous ratio of 6.

For polynomial c(y) = ayd, where d > 1, we use
production cost function f(y) = aSd(y) where Sd(y)
is given by Faulhaber’s formula for the power sum∑n

�=1 	
d. For sufficiently large y values, we upper

bound Γ×f,λ and Γ+
f,λ,τ and use these bounds to get the

competitive ratio of (1 + ε)(1 + 1
d )

d+1d, improving the
previous (1 + ε)4d ratio.

For logarithmic c(y) = ln(1 + y), we use a produc-
tion cost function f with a continuous, piecewise-linear,

and concave first derivative f ′ such that
∫ i+1

i
f ′(y)dy =

c(i+1) for all i. By Theorem 4.2, we get a competitive
ratio of 4(1 + ε) which is strictly better than the previ-
ous competitive ratio of 2/ ln(3/2) ≈ 4.93. Our results
further applies to any concave marginal cost functions.

Note that ε can be arbitrarily small subject to a
tradeoff in the additive cost in all of the above results.
See Table 1 for a summary of our improvements and
Appendix D.2 for the details.

5 Limited k-Supply Case

In this section, we consider the limited supply version of
the online combinatorial auction problem, also known
as the multi-unit combinatorial auction with multi-
minded buyers. We show how to apply our primal-
dual approach to this setting and get competitive ratios
matching those in Bartal et al. [3] and Buchbinder and
Gonen [6]. All proofs are in Appendix E.1.

In the limited supply case, items are allocated
integrally and there are exactly k units of each item
for sale. In this setting, Δy = 1; S = {0, 1}m;
and f(y) = 0 for y ∈ [0, k] and f(y) = +∞ for
y > k. Bartal et al. [3] and Buchbinder and Gonen
[6] showed an O(k((mρ)1/k−1))-competitive algorithm,
where ρ = vmax/vmin, vmax = maxi,S viS , and vmin =
mini,S:viS>0 viS .

6 This competitive ratio is O(log(mρ))
when the supply is at least k = Ω(logm).

We first briefly discuss the fractional case to build
our intuition. Again, it suffices to construct a pricing
function that is a feasible solution to (3.4) (where
f∗(p) = kp). Further, since the values are bounded by
vmin and vmax, we may let p(0) = vmin/m without loss
of generality (so that the initial price of all bundles are
at most vmin), and it suffices to satisfy (3.4) for v ≥ 0
s.t. p(v) ≤ vmax. Thus, (3.4) becomes: for all y ≥ 0
such that p(y) ≤ vmax,

(p(y)− f ′(y))dy = k
αdp.

6Only the ratio vmax/vmin matters. So we may assume vmin is
1 after scaling. Note the knowledge of vmax is necessary to obtain
a non-trivial competitive ratio, as shown in [6].
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Since f ′(y) = 0 for 0 ≤ y ≤ k and +∞ for y > k, we
get that p · dy = k

αdp for 0 ≤ y ≤ k and p(k) ≥ vmax.
By the first equation, p(y) = p(0) · exp(αk y). By the
boundary condition that p(0) = vmin/m and p(k) ≥
vmax, let α = ln(mρ). Thus, the fractional solution
p(y) = p(0)(mρ)y/k is a natural candidate solution. For
technical reasons, we decrease the starting price p(0) by
a factor of 2 and use p(y) = p(0)(2mρ)y/k in the integral
case.

Theorem 5.1. The pricing mechanism Mp with
p(y) = p(0)ry, where p(0) = vmin

2m and r = (2mρ)1/k,

is Θ(k((2mρ)1/k − 1))-competitive and incentive com-
patible for combinatorial auctions with supply k.

Recall that when k = Ω(logm), the competitive ra-

tio is Θ(log(mρ)), since k((2mρ)1/k−1) = k(e
1
k ln(2mρ)−

1) ≈ k 1
k ln(2mρ) = ln(2mρ). Buchbinder and Gonen [6]

used a similar primal dual approach based on the stan-
dard linear program relaxations that impose the sup-
ply constraint as linear constraints (See Appendix E.1).
Our approach is different in that we consider the sup-
ply constraint in a broader production cost model using
convex programs, i.e., “lifting” the supply constraint
into the objective. As a result, the pricing mechanism
follows straightforwardly as a solution of a differential
equation. We believe this approach will find further ap-
plications on similar problems.

Finally, we use our framework to show an almost
matching logarithmic lower bound that applies to ran-
domized algorithms, thus resolving an open problem by
Buchbinder and Gonen [6] on if randomized algorithms
can overcome the logarithmic lower bound.

Theorem 5.2. No online algorithms are o( logm
log logm +

log ρ)-competitive for combinatorial auctions.
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A LP for the Single-Unit Combinatorial
Auction Problem

In the single-unit combinatorial auction problem, the
seller has m items, represented by [m], to allocate to n
buyers, represented by [n]. Let S be the the collection
of all subsets of [m]. There are no production costs, but
there is exactly 1 unit available for sale for each item.
The seller’s objective is to maximize the total social
welfare which is exactly the total aggregate value of the
buyers’ respective allocated bundles. The following are
the standard primal and dual linear program relaxations
for this problem:

maxx
∑

i

∑
S viSxiS

∀i : ∑
S xiS ≤ 1

∀j : ∑
i

∑
S:j∈S xiS ≤ 1

x ≥ 0

minu,p
∑

i ui +
∑

j pj

∀i, S : ui +
∑

j∈S pj ≥ viS

u, p ≥ 0

The primal variables xiS indicate whether or not buyer
i purchases bundle S. We have linear constraints that
impose the conditions that a buyer purchases at most
1 bundle and that each item gets purchased at most
once. We have dual variables u and p: one variable
ui for each buyer and one variable pj for each item.
To minimize the dual objective function, we let ui =
maxS{viS −

∑
j∈S pj} for all i, given the valuations viS

and variables pj . We interpret pj as the price of item
j and ui as the utility of buyer i for buying his utility-
maximizing bundle S at price

∑
j∈S pj .

B Derivation

We derive the dual convex program (D) from the primal
convex program (P ) in Section 2 using Lagrangian
duality. For the linear constraints in P , we define the
dual variables: ui ≥ 0 for each buyer i; pj ≥ 0 for each
item j; μiS ≥ 0 for each buyer i and bundle S; ηj ≥ 0
for each item j. We define the Lagrangian function L,
omitting the primal and dual variables in the function
argument, as follows:

L =
∑

i,S viSxiS −
∑

j f(yj) +
∑

i λi(1−
∑

S xiS)

+
∑

j λ
′
j(yj −

∑
i,S:j∈S ajSxiS) +

∑
i,S αiSxiS

+
∑

j βjyj

=
∑

j(yj(βj + λ′j)− f(yj)) +
∑

i λi

+
∑

i,S xiS(viS − λi −
∑

j∈S λ′jajS + αiS).

Then, the dual program is minu,p,μ,ν≥0 maxx,y L. Given
the dual variables, maxx,y L =

∑
j f
∗(p′j)+

∑
i λi as long

as p′j ≥ pj for all item j and viS −
∑

j∈S ajSpj ≤ ui

for all buyer i and bundle S; otherwise, maxx,y L is
unbounded. Note that f∗ is the convex conjugate of
f , i.e., f∗(p) = maxy{py − f(y)}. When f is strictly
convex and differentiable, which is true for broad classes
of production cost functions we consider in this paper,
f∗ is increasing and we have p′j = pj for all item j.
Finally, we obtain the dual program (D).

C Missing Proofs from Section 3

Proof. [Theorem 3.3] Note that α(f) is scale invariant:
if p(v) is a feasible solution for (3.4) with respect to
f , then a · p(v) is a feasible solution with respect to
a · f for any constant a. So, we may assume a = 1

γ+1

without loss of generality. We have f ′(y) = yγ , f∗(p) =
γ

γ+1p
(γ+1)/γ , and f∗′(p) = p1/γ . Then, (3.4) becomes

(3.6) (p(y)− yγ)dy = 1
αp(y)

1/γdp, for all y ≥ 0.

Upper Bound: Note that p(y) = (λy)γ is a natu-
ral candidate because all terms in the above differential
equation would have the same degree in y and, thus, the
contribution of y would cancel out. Concretely, the dif-

ferential equation becomes (λγ − 1) = γλγ+1

α . Choosing

λ = (γ + 1)1/γ to maximize 1
α = 1

γ
1
λ (1 − 1

λγ ), we have

that the pricing mechanism Mp with p(y) = (γ + 1)yγ

is (γ+1)(γ+1)/γ-competitive. So, α(f) ≤ (γ+1)(γ+1)/γ .
Lower Bound: Suppose p(y) is a feasible solution

to the differential equation (3.6) for some constant α.
We need to show that α ≥ (γ + 1)(γ+1)/γ .

Let ε > 0 be an arbitrarily small constant. We let
c0 = (1−ε) γα and inductively define ci+1 = (1−ε) γ

α(1−cγi )

for i ≥ 0. We will first show the following lemma:

Lemma C.1. For any i ≥ 0, there exists yi such that
for all y > yi, y > cip(y)

1/γ .

Proof. We will prove the lemma by induction. Let us
start with the base case. Since y ≥ 0, we have

p · dy ≥ 1
αp

1/γdp.

Rearranging terms, we have dy ≥ γ
αdp

1/γ = c0
1−εdp

1/γ

and, thus, y ≥ c0
1−ε (p(y)

1/γ − p(0)1/γ). Note that
for (3.6) to be feasible, we have p(y) ≥ yγ . For all
y > 1

ε p(0)
1/γ , we have p(y) > 1

εγ p(0). Putting together,

we have y > c0p(y)
1/γ . So the base case follows.

Suppose y > cip(y)
1/γ for all y > yi. Then, by

(3.6), we have

(1− cγi )p · dy ≥ 1
αp

1/γdp.
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Rearranging terms, we have dy ≥ γ
α(1−cγi )

dp1/γ =
ci+1

1−ε dp
1/γ for all y ≥ yi and, thus, y−yi ≥ ci+1

1−ε (p(y)
1/γ−

p(yi)
1/γ). For all y > 1

ε p(yi)
1/γ , we have p(y) ≥ yγ >

1
εγ p(yi). Further note that yi ≥ 0. Putting together, we

have y > ci+1p(y)
1/γ .

Recall that for (3.6) to be feasible, we must have
p(y) ≥ yγ . So ci < 1 for all i and {ci}i≥0 is an
increasing sequence. Since {ci}i≥0 is increasing and
bounded, it converges. For sufficiently large i, we have
ci+1 ≤ (1 + ε)ci. So (1 − ε) γ

α(1−cγi )
= ci+1 ≤ (1 + ε)ci

and, thus, 1
α ≤ 1

γ
1+ε
1−εc(1 − cγ) ≤ 1+ε

1−ε (γ + 1)−(γ+1)/γ .

As this holds for arbitrarily small ε, we have α(f) ≥
(γ + 1)(γ+1)/γ .

Proof. [Theorem 3.4] Note that for the upper bound, it
suffices to satisfy (3.4) with inequality, i.e., the left hand
side is greater than or equal to the right hand side. For
λ > 1 to be determined later, let p(y) = f ′(λy). Then,
the inequality version of (3.4) becomes

f ′(λy)− f ′(y) ≥ 1
αλ

2yf ′′(λy), for all y ≥ 0.

Since f ′ is concave, f ′(λy) − f ′(y) ≥ (λ − 1)yf ′′(λy).
So it suffices to show λ − 1 ≥ 1

αλ
2. To minimize α, we

choose λ = 2 to maximize λ−1
λ2 . For λ = 2 and, thus,

p(y) = f ′(2y), we get α = 4.

Proof. [Theorem 3.5] By the definition of Γ×f,α, Γ
×
f,α ≥

(λ−1)yf ′′(λy)
f ′(λy)−f ′(y) or, equivalently,

f ′(λy)− f ′(y) ≥ λ−1
Γ×
f,α

yf ′′(λy), for all y ≥ 0.

Hence, it is sufficient to show λ−1
Γ×
f,λ

yf ′′(λy) ≥
1
αλ

2yf ′′(λy) or λ−1
λ2Γ×

f,α

≥ 1
α . The rest of the analysis

is identical to those of Theorem 3.3 and Theorem 3.4.

D Missing Proofs and Details from Section 4

D.1 Missing Proofs

Proof. [Lemma 4.1] We first show that P i − P i−1 ≥
1
α (D

i −Di−1) for all i. For notational simplicity, let Si

be the utility-maximizing bundle that buyer i purchases
and vi be the value viSi

, such that ui = vi−
∑

j∈Si
pi−1
j .

Note

P i − P i−1 = vi −
∑

j(f(y
i
j)− f(yi−1

j ))

= vi −
∑

j∈Si
(f(yi−1

j + 1)− f(yi−1
j )),

and

Di −Di−1 = ui +
∑

j∈Si
(f∗(pij)− f∗(pi−1

j ))

= vi −
∑

j∈Si
pi−1
j

+
∑

j∈Si
(f∗(pij)− f∗(pi−1

j )).

Then, P i − P i−1 ≥ 1
α (D

i −Di−1) is equivalent to

(1− 1
α )vi −

∑
j∈Si

(f(yi−1
j + 1)− f(yi−1

j )) ≥
− 1

α

∑
j∈Si

pi−1
j + 1

α

∑
j∈Si

(f∗(pij)− f∗(pi−1
j )).

As buyer i maximizes his utility, vi ≥
∑

j∈Si
pi−1
j

and the left hand side of the last inequality is at least
(1− 1

α )
∑

j∈Si
pi−1
j −∑

j∈Si
(f(yi−1

j +1)−f(yi−1
j )). After

some algebra, it is sufficient to show

∑
j∈Si

pi−1
j −∑

j∈Si
(f(yi−1

j + 1)− f(yi−1
j )) ≥

1
α

∑
j∈Si

(f∗(pij)− f∗(pi−1
j )),

which follows from (4.5). Therefore, P i − P i−1 ≥
1
α (D

i −Di−1) for all i = 1, . . . , n.
Summing the inequality P i−P i−1 ≥ 1

α (D
i−Di−1)

over all i, we obtain Pn − P 0 ≥ 1
α (D

n − D0). After
rearranging terms and using the weak duality, we get

Pn ≥ 1
αD

n − ( 1
αD

0 − P 0) ≥ 1
α OPT−( 1

αD
0 − P 0).

As the final value of the primal objective function is
the total social welfare that pricing mechanism Mp

achieves, W (Mp), the lemma follows.

Proof. [Theorem 4.1] For λ > 1 to be chosen later, we
let the pricing function p to be p(y) = f ′(λ · (y+1)) and
initialize yj = 1

ε − 1 for each item j in Step 1 of Mp.
Other primal and dual variables are still initialized to
0, except for the prices pj which depend on variables
yj . The left hand side of (4.5) can be lower bounded as
follows:

LHS = f ′(λ(yi−1
j + 1))− (f(yi−1

j + 1)− f(yi−1
j ))

≥ f ′(λ(yi−1
j + 1))− f ′(yi−1

j + 1),

where the inequality follows by the mean value theorem
and the fact that f ′ is an increasing function. Similarly,
the right hand side of (4.5) can be upper bounded:

RHS ≤ 1
α (p

i
j − pi−1

j )f∗′(pij)

≤ 1
αλ

2(yi−1
j + 2)f ′′(λ(yi−1

j + 2))

≤ 1
αλ

2(1 + ε)γ(yi−1
j + 1)f ′′(λ(yi−1

j + 1)),

where the first inequality follows from the mean value
theorem and that f∗′ is an increasing function; the
second from the convexity of f ′ and that f∗′ and f ′

are inverses; and the third from the initial conditions.
It suffices to choose λ > 1 such that

f ′(λ(yi−1
j + 1))− f ′(yi−1

j + 1) ≥
1
αλ

2(1 + ε)γ(yi−1
j + 1)f ′′(λ(yi−1

j + 1)).
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For power cost functions, this reduces to 1
(1+ε)γ

λγ−1
γλγ+1 ≥

1
α . As in Theorem 3.3, we choose λ = (γ + 1)1/γ

and obtain α = (1 + ε)γ(γ + 1)(γ+1)/γ . Note that
P0 = −∑

j f(
1
ε − 1) and D0 =

∑
j f
∗(f ′( 2ε )). By

Lemma 4.1, the theorem statement follows.

Proof. [Theorem 4.2] For λ > 1 to be chosen later, we
let the pricing function p to be p(y) = f ′(λ · (y+1)) and
initialize yj =

1
ε −1 for each item j in Step 1 ofMp. As

shown in the proof of Theorem 4.1, the left hand side of
(4.5) is lower bounded by f ′(λ(yi−1

j +1))−f ′(yi−1
j +1),

and the right hand side is upper bounded as follows:

RHS ≤ 1
α (f

′(λ(yi−1
j + 2))− f ′(λ(yi−1

j + 1)))λ(yi−1
j + 2)

≤ 1
αλ

2(yi−1
j + 2)f ′′(λ(yi−1

j + 1))

≤ 1
α (1 + ε)λ2(yi−1

j + 1)f ′′(λ(yi−1
j + 1)),

where the first inequality follows the same reasoning as
in Theorem 4.1; the second from the concavity of f ′; and
the third follows from the initial conditions yij ≥ 1

ε − 1.
Then, it is sufficient to choose λ > 1 such that

f ′(λ(yi−1
j + 1))− f ′(yi−1

j + 1) ≥
1
α (1 + ε)λ2(yi−1

j + 1)f ′′(λ(yi−1
j + 1)).

By the same reasoning as in Theorem 3.4, we choose λ =
2 and obtain 1

α = 1
4(1+ε) . Note that P0 = −∑

j f(
1
ε −1)

and D0 =
∑

j f
∗(f ′( 2ε )). By Lemma 4.1, the theorem

statement follows.

Proof. [Theorem 4.3] For λ > 1 to be chosen later, we
let the pricing function p to be p(y) = f ′(λ · (y+1)) and
initialize yj =

1
ε − 1 for each item j. The left hand side

of (4.5) can be lower bounded as follows:

LHS ≥ f ′(λ(yi−1
j + 1))− f ′(yi−1

j + 1)

≥ λ−1
Γ×
f,λ

(yi−1
j + 1)f ′′(λ(yi−1

j + 1)),

where the first inequality follows the same reasoning
as in Theorem 4.1 and the second from the definition
of Γ×f,λ. Similarly, the right hand side of (4.5) can be
upper bounded:

RHS ≤ 1
α (f

′(λ(yi−1
j + 2))− f ′(λ(yi−1

j + 1)))λ(yi−1
j + 2)

≤ 1
αλ

2Γ+
f,λ,λ/ε(y

i−1
j + 2)f ′′(λ(yi−1

j + 1))

≤ 1
α (1 + ε)λ2Γ+

f,λ,λ/ε(y
i−1
j + 1)f ′′(λ(yi−1

j + 1)),

where the first inequality follows the same reasoning
as in Theorem 4.1; the second from the definition of
Γ+
f,λ,λ/ε; and the third from the initial conditions yij ≥

1
ε − 1.

Then, it is sufficient to choose λ such that

λ−1
Γ×
f,λ

(yi−1
j + 1)f ′′(λ(yi−1

j + 1)) ≥
1
α (1 + ε)λ2Γ+

f,λ,λ/ε(y
i−1
j + 1)f ′′(λ(yi−1

j + 1)),

which is equivalent to α ≥ (1+ε)λ2

λ−1 ·Γ+
f,λ,λ/ε ·Γ×f,λ. From

here, we follow the same reasoning as in Theorem 4.2.

D.2 Detailed Comparisons with Blum et al. [4]
We construct a strictly convex and differentiable pro-
duction cost functions f given a marginal production
cost function c such that f(y) =

∑y
l=1 c(l) for all suffi-

ciently large integer values y and apply results in Sec-
tion 4 to get constant competitive algorithms. The
equality is necessary, since the cost contributes nega-
tively to the social welfare and optimizing the modified
social welfare objective with a multiplicative approxi-
mate cost function does not lead to an approximately
optimal solution with respect to the original social wel-
fare objective.

Linear Marginal Costs Assume that the
marginal production cost function is a linear function,
c(y) = ay + b, where a, b ≥ 0. We use the production
cost function f(y) = a

2y
2 + (b + a

2 )y. It is straight-
forward to check that f is strictly convex (over the
domain y ≥ 0) and differentiable and that, more
importantly, f(y) =

∑y
l=1 c(l) for all integer values y.

Furthermore, note that f ′ is concave. By Theorem 4.2,
we obtain a 4(1+ ε)-competitive pricing algorithm with
some additive cost. This improves upon the previous
competitive ratio of 6.

Polynomial Marginal Costs Assume the
marginal production cost function is a polynomial,
c(y) = ayd, where d > 1 and a > 0. Let Sd(y) be the
degree d + 1 polynomial function given by Faulhaber’s
formula for the integer power sum

∑n
l=1 l

d, i.e.,

Sd(n) =
1

d+1

∑d+1
l=1 (−1)δld

(
d+1
l

)
Bd+1−ln

l,

where δld is the Kronecker delta and Bl is the l-th
Bernoulli number. We use the production cost function
f(y) = a ·Sd(y) = ad+1y

d+1+ady
d+ · · ·+a0. Note that

ad+1 and ad are positive. For sufficiently large values of
y, f ′′(y) > 0 and f is strictly convex. As the following
competitive analysis applies to f when y is sufficiently
large, we may modify f for small values of y for the
sake of strict convexity over the whole domain. For any
0 < ε′ < 1 and sufficiently large values of y, we have the
following inequalities:

f ′′(λy) ≤ (d+ 1)dad+1(1 + ε′)(λy)d−1,

f ′′(y + λ) ≤ (d+ 1)dad+1(1 + ε′)(y + λ)d−1, and

f ′′(y) ≥ (d+ 1)dad+1y
d−1.
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For such large y values, we can effectively upper bound
Γ×f,λ and Γ+

f,λ,τ :

Γ×f,λ ≤ (1 + ε′)λd−1, and

Γ+
f,λ,τ ≤ (1 + ε′)(1 + λ/y)d−1 ≤ (1 + ε′)d.

We use these upper bounds in place of Γ×f,λ and Γ+
f,λ,τ

in Theorem 4.3 for sufficiently small ε′ to get the
competitive ratio of (1 + ε)(1 + 1

d )
d+1d for any ε > 0.

This improves upon the competitive ratio of (1 + ε)4d.
Logarithmic Marginal Costs Assume the

marginal production cost function is logarithmic,
c(y) = ln(1 + y). We construct a continuous, piecewise-
linear, and concave f ′ such that the corresponding
production cost function f satisfies f(y) =

∑y
l=1 c(l)

for all integer values y. Then, by Theorem 4.2, we
get the competitive ratio of 4(1 + ε) which is strictly
better than the previously obtained competitive ratio
of 2/ ln(3/2) ≈ 4.93. Our construction applies more
generally for any concave marginal production cost
function c with a convex first derivative.

Let f(0) = 0. We define f ′ at integer points and
let f ′ be linear over each interval [i, i+1] as follows. In
order to have f(y) =

∑y
l=1 c(l) for integer values of y,

we need to have
∫ i+1

i
f ′(y)dy = c(i+1) for all i. To this

end, we let

f ′(i) = c(i+ 1)− δ(i) and f ′(i+ 1) = c(i+ 1) + δ(i),

for a suitable nonnegative function δ to be chosen later.
Note f ′(i+ 1) = c(i+ 1) + δ(i) = c(i+ 2)− δ(i+ 1). It
follows that

δ(i+ 1) = c(i+ 2)− c(i+ 1)− δ(i), for all i,

and any single value δ(i) completely determines the
function δ and, consequently, f ′. For the concavity of
f ′, we note the slope of f ′ over [i, i + 1] is 2δ(i) and it
is sufficient to have δ(i) decreasing in i. Furthermore,

since δ(i) ≥ c(i+2)−c(i+1)
2 implies δ(i + 1) = c(i + 2) −

c(i + 1) − δ(i) ≤ 2δ(i) − δ(i) = δ(i), it is sufficient
to have δ(i) ∈ Ji = [g(i + 1), g(i)] for all i, where

g(i) = c(i+1)−c(i)
2 .

We now show how to choose a value for δ(0) ∈ J0
such that δ(i) ∈ Ji for all i. We reduce the interval
[0, g(0)] to [g(1), g(0)] by inductively mapping the points
g(i) to ḡ(i) as follows:

ḡ(2j) = ḡ(2j − 1) + (g(2j − 1)− g(2j)), and

ḡ(2j + 1) = ḡ(2j)− (g(2j)− g(2j + 1)).

Accordingly, we map the values δ(i) to δ̄(i) in the
interval [g(1), g(0)]. Note that δ̄ values superimpose
onto a single point, say δ(0), in the interval. In addition,

the sequence of intervals J̄0, J̄1, . . ., where J̄2j = [ḡ(2j+
1), ḡ(2j)] and J̄2j+1 = [ḡ(2j + 1), ḡ(2j + 2)], are nested
by the convexity of c′. It is sufficient to choose δ(0) such
that it is included in J̄i for all i. As there exists a point
included in the intersection of any infinite sequence of
nested intervals, we let δ(0) to be this value. It is
straightforward to check that the resulting f is strictly
convex. The construction is complete.

E Additional Materials for Section 5

E.1 LP for the Combinatorial Auction with
Limited Supply In the combinatorial auction with
limited supply, the seller has m items, represented by
[m], to allocate to n buyers, represented by [n]. Let
S be the collection of all subsets of [m]. There are no
production costs, but there are exactly k units available
for sale for each item. The seller’s objective is to
maximize the total social welfare which is exactly the
total value of the buyers of their respective allocated
bundles. The following are the standard primal and
dual linear program relaxations for this problem, which
was used in Buchbinder and Gonen [6]:

maxx
∑

i

∑
S viSxiS

∀i : ∑
S xiS ≤ 1

∀j : ∑
i

∑
S:j∈S xiS ≤ k

x ≥ 0

minu,p
∑

i ui +
∑

j pj

∀i, S : ui +
∑

j∈S pj/k ≥ viS

u, p ≥ 0

The primal and dual variables are the same as
in the linear program relaxations for the single-unit
combinatorial auction problem in Appendix A.

E.2 Missing Proof of Theorem 5.1

Proof. [Theorem 5.1] We first show that at most k
units are produced and allocated for each item. Since
r = (2mρ)1/k, the price for the (k + 1)-th unit of
any item is p(k) = p(0)rk = p(0)2mρ = vmax. By
the assumption that buyers prefer the empty bundle
to any nonempty bundle yielding the same utility of 0
and the definition of vmax, no buyers will buy a bundle
containing the (k + 1)-th unit. Hence, at most k units
are sold for each item.

We now analyze the competitive ratio of the pricing
mechanism Mp. By the construction of the production
cost function f and the pricing function p(y), (4.5)
reduces to pi−1

j ≥ k
α (r − 1)pi−1

j . The last inequality

71 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.



holds for α ≥ k(r − 1) = k((2mρ)1/k − 1), so we let
α = k((2mρ)1/k − 1) and (4.5) holds for all i. By
Lemma 4.1,

W (Mp) ≥ 1
α OPT−( 1

αD
0 − P 0).

Note that P 0 = 0 and D0 = 1
2vmink ≤ 1

2 OPT.
Furthermore, at least one unit of an item is bought by
a buyer since p(0) is small enough and there is a bundle
of value at most vmin/2, and Pn 
= P0 and Dn 
= D0.
Then,

W (Mp) ≥ 1
α OPT− 1

αD
0 ≥ 1

2α OPT .

Consequently, the final competitive ratio is 2α =
Θ(k((2mρ)1/k − 1)).

E.3 Missing Proof of Theorem 5.2 The proof
follows the same framework as Theorem 3.2. We present
only a sketch in this paper.

Proof. [Theorem 5.2] We first prove that the competi-
tive ratio is at least Ω(log ρ) even for m = 1. Consider
a continuum of stages parameterized by v∗, from stage
vmin to stage vmax. At each stage v∗ ≥ vmin, let there be
k buyers with value v∗ for one copy of the item. Using
the same argument as in Lemma 3.2 and Lemma 3.3,
if there is an α-competitive algorithm for all instances
v∗ ≥ 0, then there is a constant β and y(v)’s as a func-
tion of v such that: for vmin ≤ v∗ ≤ vmax,

∫ v∗

0
vdy(v)− f(y(v∗)) ≥ 1

αf
∗(v∗)− β,

where f(y) = 0 for 0 ≤ y ≤ k and +∞ for y > k, and
f∗(v) = kv. Differentiating both sides, we get that

(5.7) (v− f ′(y))dy ≥ 1
αf
∗′(v)dv, for vmin ≤ v ≤ vmax.

Since we have y(v) ≤ k for v ≤ vmax, vdy ≥ k
αdv

for vmin ≤ v ≤ vmax. Rearranging terms, we have
dy ≥ k

α
1
vdv and thus,

k ≥ y(vmax)− y(vmin) ≥ k
α ln vmax

vmin
= k

α ln ρ.

So, the competitive ratio α is at least ln ρ.
Next, we show that the competitive ratio is at least

Ω( logm
log logm ) even for ρ = 1. Let us assume without loss

of generality that vmax = vmin = 1. Let r = logm. We
will define logr(m)+1 = Θ( logm

log logm ) different instances,
and show that no online algorithm can be better than
1
2 logr(m)-competitive for all these instance.

For 0 ≤ i ≤ logr(m), instance i is defined as follows:
let there be i stages; at stage j, 0 ≤ j ≤ i, let there be
krj buyers with value 1 for any bundle of size at least
m/rj and value 0 otherwise. That is, the buyers’ value
per item is rj/m at stage j.

The optimal offline solution for instance i allocates
all items to buyers at stage i, getting ri/m value per
item and, thus, the optimal social welfare for instance
i, OPT(i), is OPT(i) = kri.

Assume for contradiction that there is a 1
2 logr(m)-

competitive online algorithm. By the same argument as
in the proof of Theorem 3.2, it is characterized by the
expected total number of items allocated up to stage
j, denoted by y(j). Recall that y(j) is independent
of i other than i ≥ j. Note that it is also a function
of vmin and vmax but we assume this implicitly and
omit the parameters. Let Δy(j) = y(j) − y(j − 1)
denote the expected number of items allocated at stage
j (let y(−1) = 0). The expected social welfare of

the algorithm for instance i is
∑i

j=0 Δy(j) r
i

m . Note
that the contribution of stage 0 to i − 1 is at most

km · ri−1

m = 1
r OPT(i) < 1

logr m OPT(i), because there

are km items in total and item values are at most ri−1

m in
these stages. So if the algorithm is 1

2 logr m competitive,
it must get at least 1

logr(m) OPT(i) social welfare from

stage i and, thus, Δy(i) > km
logr(m) . Then, we have

y(logr(m) + 1) =
∑logr(m)

i=0 Δy(i) > km, contradicting
the supply constraint.
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