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I. INTRODUCTION

The present work explores the generation of stable soli-
tons in two-dimensional (2D) discrete waveguiding arrays
(lattices) with a localized nonlinear gain. In particu-
lar, we demonstrate that this is possible in a linear lat-
tice where the nonlinearity, represented by the self-phase
modulation and cubic gain, is applied to a single waveg-
uide (the hot spot, HS). The lattice coupled Ginzburg-
Landau (CGL) system which is introduced here may be
used for selective excitation of particular core(s) in an ar-
rayed waveguiding system, if it is uniformly doped, but
only the selected core is pumped by an external coherent
source of light.
The paper is organized as follows. The discrete 2D

CGL equation is introduced in Sec. II. Section III out-
lines an approximate analysis for the truncated version of
the model. The linear stability analysis of the pinned soli-
tons against small perturbations is presented in Sec. IV.
Section V discusses about the onset of instability of the
zero solution.A brief discussion of the double HS problem
is given in Sec. VI, followed by a conclusion in Sec. VII.

II. THE MODEL

The present work aims to consider the 2D counterpart
of the lattice model introduced in Ref. [6]:

dum,n

dz
=
i

2
(um−1,n + um+1,n + um,n−1 + um,n+1 − 4um,n)

−γum,n +
[

(Γ1 + iΓ2) + (iB − E) |um,n|
2
]

δm,0δn,0um,n ,

(1)

where m,n = 0, ±1, ±2, ... are the discrete coordi-
nate, δm,0 and δn,0 are the Kronecker’s symbols, and the
coefficient of the linear coupling between adjacent cores
is scaled to unity. In optics, the discrete equation can
be derived by means of well-known methods [1–3]. In
the application to arrays of plasmonic waveguides, which
can be built, for example, as a set of metallic nanowires
mounted on top of a dielectric structure [4], this equa-
tion can be derived in the adiabatic approximation, when
the exciton field may be eliminated in favor of the pho-
tonic component (otherwise, the system features a two-

component discrete structure). It is also relevant to men-
tion that the well-known staggering transformation [3],

um,n(t) ≡ (−1)
m+n

e−4itũ∗m,n, where the asterisk stands
for the complex conjugate, simultaneously reverses the
signs of Γ2 and B, thus rendering the self-focusing and
defocusing nonlinearities mutually convertible in the dis-
crete system. In particular, the latter feature is essential
for modeling arrays of plasmonic waveguides, where the
intrinsic excitonic nonlinearity is self-repulsive. In what
follows, we fix the signs of Γ2 and B by setting Γ2 > 0,
while B may be positive (self-focusing), negative (self-
defocusing), or zero.
As mentioned above, the underlying array can be ac-

tually manufactured as a uniform one, with all the cores
doped by an appropriate amplifying material, while the
HS is singled out by focusing an external pump to a sin-
gle core. The latter setting is interesting for potential
applications, as the location of the HS is switchable in
the 2D plane.
The model based on Eq. (1) is the subject of the

present paper. The Kerr-nonlinearity coefficient, if
present, may be normalized to B = +1 (self-focusing)
or B = −1 (self-defocusing). These two cases are con-
sidered separately below, along with the case of B = 0,
when the nonlinearity is represented solely by the cubic
dissipation localized at the HS.

III. TRUNCATED LATTICE ANALYSIS

One-dimensional dissipative solitons in uniform dis-
crete CGL equations were studied by means of numerical
methods in Refs. [2, 5]. We seek analytical solutions for
stationary modes with real propagation constant k as

um,n(z) = Um,ne
ikz . (2)

Outside of the HS site, m = n = 0, Eq. (1) gives rise to
the linear stationary equation,

2 (k + 2− iγ)Um,n = Um−1,n+Um+1,n+Um,n−1+Um,n+1.
(3)

Unlike its one-dimensional counterpart, Eq. (3) does not
admit an exact analytical solution. A possibility to de-
velop an approximate solution is to use a truncated lat-
tice. The simplest version of the truncation is illustrated
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FIG. 1. (Color online) The sketch of the truncated square
lattice, which consists of 13 sites. The real amplitude, U0

(black), and three complex ones, U1 (blue circles), U2 (green
circles), and U3 (red circles) are defined here too.

in Fig. 1, where four independent amplitudes are de-
fined: U0 (at the center), U1 (in the first rhombic layer
surrounding the center), and U2,3 (two independent am-
plitudes in the second rhombic layer). The amplitudes
in all other layers, i.e. U4,5,..., are set to zero. At
(m,n) 6= (0, 0), Eq. (3) is truncated and yield:

U3 =
U1

2K
, U2 =

U1

K
, U1 =

2K

4K2 − 5
U0, (4)

where the central amplitude U0 may be defined to be
real, and the complex coefficient is

K ≡ 2 + k − iγ. (5)

The remaining nonlinear equation (1) at m = n = 0
reduces to a single complex equation relating the real
intensity U2

0 and propagation constant k:

iK
(

4K2 − 9
)

4K2 − 5
− (Γ1 + iΓ2) = (iB − E)U2

0 . (6)

One can solve the above equation numerically for the
central (peak) amplitude U0 and propagation constant
k. Consequently the amplitudes in the subsequent layers
can be obtained from (4).

The accuracy of the truncated lattice analysis can be
improved by including more rhombic layers in the cal-
culations. Although Eqs. (4) and (6) will become more
complicated in doing so, they are still easy to solve nu-
merically. Table I shows the numerically obtained U0 and
k for different truncated lattice models at two different
sets of parameters. In any case, convergence is observed
by increasing the number of rhombic layers in the analy-
sis.

TABLE I. Numerical solutions for different truncated lattice
models at B = 1, E = 0.1, γ = 0.5, and Γ2 = 0.8.

Γ1 = 0.8574 Γ1 = 0.7861
Number of rhombic layers k U0 k U0

2 2.2926 1.8020 1.4005 1.5107
3 2.2870 1.8002 1.3633 1.4962
4 2.2866 1.8000 1.3580 1.4942

IV. THE LINEAR-STABILITY ANALYSIS

The stability of the pinned modes was studied by
means of the linearization procedure [7]. To this end,
perturbed solutions were taken as

um,n = [Um,n + ǫVm,n(z)] e
ikz , (7)

where Vm,n(z) = Xm,n(z)+iYm,n(z) is a complex pertur-
bation with an infinitesimal amplitude ǫ≪ 1. Substitut-
ing this into Eq. (1) results in a linear system that governs
the evolutions of the perturbations Xm,n and Ym,n:

X ′

m,n =
−1

2
(Ym−1,n + Ym+1,n + Ym,n−1 + Ym,n+1 − 4Ym,n)

+ kYm,n − γXm,n + δm,0δn,0 {(Γ1Xm,n − Γ2Ym,n)

−B
[

2Pm,nQm,nXm,n +
(

P 2
m,n + 3Q2

m,n

)

Ym,n

]

− E
[(

3P 2
m,n +Q2

m,n

)

Xm,n + 2Pm,nQm,nYm,n

]}

Y ′

m,n =
1

2
(Xm−1,n +Xm+1,n +Xm,n−1 +Xm,n+1 − 4Xm,n)

− kXm,n − γYm,n + δm,0δn,0 {(Γ2Xm,n + Γ1Ym,n)

−B
[(

3P 2
m,n +Q2

m,n

)

Xm,n + 2Pm,nQm,nYm,n

]

− E
[

2Pm,nQm,nXm,n +
(

P 2
m,n + 3Q2

m,n

)

Ym,n

]}

(8)
where Pm,n = Re (Um,n) and Qm,n = Im (Um,n). An
eigenvalue problem is obtained by substituting Xm,n =
φm,n exp(λz) and Ym,n = ψm,n exp(λz) into the above
linear system. The stationary mode um,n(z) is linearly
stable if all the eigenvalues λ satisfy Re(λ) ≤ 0, otherwise
it is unstable.

The truncated lattice analysis provides an efficient way
to trace solution branches, assuming that the stationary
mode is radially symmetric about the hotspot. In what
follows, this assumption is relaxed in order to allow a
more general modal profile. In other words, the modal
amplitudes Um,n are obtained by numerically solving the
full system (1) rather than the truncated lattice models.
Figure 2 shows a typical stable mode and its eigenvalue
spectrum. The stable mode is radially symmetric and
is peaked at the location of the hot spot m = n = 0.
The peak amplitude U0,0 and propagation constants are
in quantitative agreement to those given in table I, thus
justifying the validity of the truncated lattice analysis.
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FIG. 2. Top: Stable mode in the form of (2) with peak am-
plitude U0,0 = 1.8 and propagation constant k = 2.2865. The
parameters are B = 1, E = 0.1, γ = 0.5, Γ1 = 0.8574, and
Γ2 = 0.8. Bottom: The eigenvalue spectrum associated with
the linearized system (8). All eigenvalues have non-positive
real parts.
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FIG. 3. (Color online) Solution branches for various values
of the cubic dissipation E in the self-focusing regime B =
1. Stable and unstable branches are denoted by the blue
solid lines and red dotted lines, respectively. The rest of the
parameters are γ = 0.5 and Γ2 = 0.8.

A. Self-Focusing Nonlinearity: B = +1

We first studied the stability of pinned modes in the
self-focusing regime (B = 1). Figure 3 shows the so-
lution branches as functions of the localized linear gain
Γ1 at different values of the cubic dissipation E. Sta-
ble solution branches can only be found in the region
where E > 0, i.e. in the presence of cubic loss. For in-
stance, at E = 0.1, pinned modes with peak amplitudes
greater than 1.277 are linearly stable while those with
amplitudes less than or equal to 1.277 are all unstable.
As mentioned in the previous section, the instability is
characterized by the presence of eigenvalues of positive
real parts. In any case, the stable and unstable solutions
only exist when Γ1 ≥ 0.7675 for the parameters consid-
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FIG. 4. Top: An unstable pinned mode with a peak amplitude
of 1.194 and k = 0.6548 at Γ1 = 0.771 (left) and its eigenvalue
spectrum (right). Bottom: A stable pinned mode with a peak
amplitude of 1.494 and k = 1.3576 at Γ1 = 0.7861 and its
corresponding spectrum. The rest of the parameters are B =
1, E = 0.1, γ = 0.5, and Γ2 = 0.8.

ered. When Γ1 < 0.7675, any initial condition will evolve
into the zero solution as there is not enough energy input
to support the pulse. Figure 4 shows some typical exam-
ples of such stable and unstable solutions. Stability is
greatly enhanced by increasing the magnitude of the cu-
bic loss. At E = 1, all pinned modes are linearly stable,
even at very large values of Γ1. On the other hand, all
pinned modes in the absence of cubic dissipation (E = 0)
or in the pressence of cubic gain (E < 0) are all unstable.
These unstable modes have the same profile as those de-
picted in Fig. 4 (i.e. radially symmetric and localized at
m = n = 0) and therefore are not shown here.
Figure 3 shows that all the solution branches emerge

from the critical linear gain value Γ1 ≈ 1.152. Moreover,
the unstable branch corresponding to E = 0 approaches
a vertical asymptote at Γ1 = 0.5 near which the peak am-
plitude increases drastically. Finally, figure 5 shows the
typical evolutions of the unstable modes corresponding
to different values of E obtained from full simulations of
Eqs. (1). In the E > 0 case, the cubic loss stabilizes the
system, and therefore the unstable mode evolves into the
stable mode of the same Γ1 value on the solution branch.
However, when E ≤ 0 (lack of cubic loss), the unstable
modes blow up quickly as there are no stable branches in
this regime.

B. Self-Defocusing Nonlinearity: B = −1

Figure 6 shows the solution branches in the self-
defocusing regime B = −1. In the presence of a small
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FIG. 5. Evolutions of unstable modes for E = 0.1, E = −0.1,
and E = 0, respectively. Γ1 is chosen such that the initial
peak amplitudes are |U(0,0)| ≈ 1.1. The rest of the parameters
are B = 1, γ = 0.5, and Γ2 = 0.8.
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FIG. 6. (Color online) Solution branches for various values
of the cubic dissipation E in the self-defocusing regime B =
−1. Stable and unstable branches are denoted by the blue
solid lines and red dotted lines, respectively. The rest of the
parameters are γ = 0.5 and Γ2 = 0.8.

cubic loss, the solution branch exhibits a bistability for a
certain range of linear gain Γ1. For instance, at E = 0.1,
stable solutions of different amplitudes co-exist in the re-
gion 1.152 ≤ Γ1 ≤ 1.319. The two stable branches are
connected together with an unstable branch whose modal
profile and linear spectrum are similar to those found in
the self-focusing case (see top panel of Fig. 4) and hence
are replicated here. An example of this kind of bistabil-
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FIG. 7. Bistable solutions with amplitudes of 1.04 (top) and
2.75 (bottom), respectively. Both solutions are obtained with
Γ1 = 1.268, B = −1, E = 0.1, γ = 0.5, and Γ2 = 0.8.

ity is shown in Fig. 7. The solution with smaller peak
amplitude is more spread out. Besides the pulse width,
the linear spectra also demonstrate significant difference.
When E increases, the unstable branch is eventually sta-
blized by the excessive cubic loss and disappears from
the bifurcation diagram, and therefore all solutions are
stable.
Unlike the self-focusing case, stable solutions are found

even in the absence of cubic loss (i.e. E ≤ 0) in the
self-defocusing regime. For small values of cubic gain,
bistability similar to those depicted in Fig. 8 is observed.
When the magnitude of cubic gain is increased (i.e. mak-
ing E more negative), the stable branch with larger peak
amplitude disappears. When the cubic gain is too large,
all the solutions become unstable. Figure 9 shows the
typical evolutions of the unstable modes corresponding
to different values of E obtained from full simulations of
Eqs. (1). In the E > 0 case, the initial unstable mode
evolves into the “closest” stable mode with the same Γ1

value. Even though a small number of stable modes can
be found in the E ≤ 0 regime. However, the unsta-
ble modes blow up rather than evolve into those stable
modes in this regime.

C. Special Case: B = 0

Finally we studied the pulse stability in the special case
of B = 0. Figure 10 shows the stability of different so-
lution branches in this situation. In particular, solutions
are always unstable in presence of cubic gain (E < 0)
and always stable in the presence of cuibc loss (E > 0).
Note that in the case when the cubic dissipation van-
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FIG. 8. Bistable solutions with amplitudes of 0.2 (top) and
1.1 (bottom), respectively. Both solutions are obtained with
Γ1 = 1.159, B = −1, E = −0.01, γ = 0.5, and Γ2 = 0.8.
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FIG. 9. Evolutions of unstable modes for E = 0.1, E =
−0.1, and E = 0, respectively. Γ1 is chosen such that the
initial peak amplitudes are |U(0,0)| = 1.25. The rest of the
parameters are B = −1, γ = 0.5, and Γ2 = 0.8.

ishes, i.e. E = 0, the governing system (1) admits only
one stable solution at a specific gain value (Γ1 = 1.152
with the chosen parameters). Since the system is linear
when B = E = 0, this solution has an arbitrary ampli-
tude which explains why the solution branch is vertical.
Figure 11 shows the various stable and unstable solutions
and their corresponding linear spectra. Unlike the self-
focusing and defocusing regimes, the unstable modes in
the B = 0 case evolve into the zero solution rather than
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FIG. 10. (Color online) Solution branches for various values of
the cubic dissipation E in the case B = 0. Stable and unstable
branches are denoted by the blue solid lines and red dotted
lines, respectively. The rest of the parameters are γ = 0.5
and Γ2 = 0.8.

blow up to infinity.

V. ONSET OF INSTABILITY OF THE ZERO

SOLUTION

In this section we linearize the 2D lattice model (1)
by setting B = E = 0 and study the stability of
the zero solution around the hot spot. As shown for
the one-dimensional contiunal counterpart of the present
work [8], the onset of the local instability of the zero solu-
tion, caused by the action of the local gain, Γ1 > 0, corre-
sponds to the situation when the linearized system gen-
erates a solution of the form given by (2) with Um,n 6= 0
everywhere in the lattice.

Unlike the 1D model, an exact analytical treatment is
not feasible in the present case due to the complexity of
the system. However, the tuncated lattice analysis pre-
sented in Sec. III provides an efficient way to study the
onset of instability in the linearized lattice. In particu-
lar, this onset is determined by the critical Γ1 value that
makes Eq. (6) solvable (with B = E = 0). The Γ1 values
found for different truncated models are summarized in
table II. As the number of rhombic layers included in
the calculations increases , we expect the threshold value
of the instability onset to slowly converge to the numer-
ically predicted value Γ1 ≈ 1.152 which corresponds to
the point for which the solution branches in Figs. 3, 6,
and 10 enmanate from.
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FIG. 11. Solutions with a peak amplitude of 2 at different val-
ues of Γ1 and E (left) and their corresponding spectra (right).
Top: (Γ1, E) = (0.7521,−0.1). Middle: (Γ1, E) = (1.1521, 0).
Bottom: (Γ1, E) = (1.5521, 0.1) The rest of the parameters
are B = 0, γ = 0.5, and Γ2 = 0.8.

TABLE II. Critical Γ1 values for different truncated lattice
models γ = 0.5 and Γ2 = 0.8.

Number of rhombic layers Γ1

2 1.4756
3 1.0078
4 1.0955
5 1.1886
6 1.1411

VI. DUAL HOT SPOTS: SYMMETRIC AND

ANTISYMMETRIC MODES

Finally, we briefly studied pinned modes in a lattice
with two hot spots. The truncated lattice analysis was
first used to obtain simplified equations like Eq. (6) to
describe the dual hot spot configuration. For illustration
purposes, we assumed the two hot spots were located
at n = 0 and m = ±1. Unlike the case of the previ-
ous single hot spot configuration, pinned modes in the
dual hot spot configuration can be classified as symmet-
ric and antisymmetric. While the amplitudes at the hot
spots are taken to be real without the loss of generality,
a symmetric mode requires that U(−1,0) = U(1,0), and
an antisymmetric mode requires that U(−1,0) = −U(1,0).
The simplest truncated lattices, which only consist of
one rhombic layer surrounding the hot spots, are shown
in Fig. 12. For the symmetric mode configuration (top
panel), a calculation similar to that presented in Sec. III

m = 0

n = 0U0U1 U1

U2

U2

U4 U4

U4 U4

U3U3

U5

U5

m = 0

n = 0U1 U1U2 U2

U3

U3

U3

U3

- 

- - 

- 

FIG. 12. (Color online) The sketch of the truncated lattice
of the dual hot spot configuration with one rhombic layer
for the symmetric (top) and antisymmetric modes (bottom).
Here U1 denotes the amplitude (real) at the hot spots. The
antisymmetric mode also requires that the amplitudes along
the m = 0 locations to be zero. For both models, the am-
plitudes at the peripheral (green circles) are assumed to be
zero.

yields the equation

i
(

16K4 − 40K2 + 9
)

4K (4K2 − 5)
− (Γ1 + iΓ2) = (iB − E)U2

1 , (9)

with K given by (5), whereas the antisymmetric mode
configuration (bottom panel) gives

i
(

4K2 − 3
)

4K
− (Γ1 + iΓ2) = (iB − E)U2

1 . (10)

More accurate truncated models with more rhomic lay-
ers can be derived in the same manner.
Table III gives the numerical values of the propagation

constant k and the hot site amplitude U1 for both the
symmetric and antisymmetric lattices. We compare these
results to full numerical simulations of the dual hot site
version of Eq. (1). Figure 13 shows that stable pinned
modes (either symmetric or antisymmetric), indicated by
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TABLE III. Numerical solutions for different truncated lattice
models at B = 1, E = 0.1, and γ = 0.5. For the symmetric
lattices, Γ1 = 1.5445 and Γ2 = −4.2224. For the antisymmet-
ric lattices, Γ1 = 0.8484 and Γ2 = 0.8.

Symmetric Antisymmetric
Number of rhombic layers k U1 k U1

1 -3.4439 1.8903 2.2535 1.811
2 -3.6721 1.8114 2.2271 1.8009
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FIG. 13. Top: A stable symmetric mode (left) with peak
amplitude of 1.8 and k = −3.5445 at Γ1 = 1.5445 and
Γ2 = −4.2224, and its eigenvalue spectrum (right). Bottom:
A stable antisymmetric mode (left) with peak amplitude of
1.8 and k = 2.2243 at Γ1 = 0.8484 and Γ2 = 0.8, and its
eigenvalue spectrum (right). The rest of the parameters are
B = 1, E = 0.1, and γ = 0.5. The locations of the hot sites
are at n = 0 and m = ±1.

the absence of eigenvalues of positive real parts, can be
found in such a configuration. The hotsite amplitudes for
the symmetric (top) and antisymmetric (bottom) modes
are found to be 1.8 and 1.8344, respectively. These are
in good agreement with the prediction of the truncated
lattice analysis.

VII. CONCLUSIONS

We have introduced the 2D discrete dynamical system
based on the linear lossy lattice into which a single non-
linear site with the linear gain (HS, “hot spot”) is embed-
ded. The system can be readily implemented in the form
of an array of optical or plasmonic waveguides, admit-
ting selective excitation of individual cores, by the local
application of the pump to the uniformly doped cores.
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