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Abstract

We discuss some properties of a class of multivariate mixed Erlang distributions with different
scale parameters and describes various distributional properties related to applications in insurance
risk theory. Some representations involving scale mixtures, generalized Esscher transformations,
higher-order equilibrium distributions, and residual lifetime distributions are derived. These results
allows for the study of stop-loss moments, premium calculation, and the risk allocation problem.
Finally, some results concerning minimum and maximum variables are derived and applied to pricing
joint life and last survivor policies.
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1 Introduction

In recent years there has been a great deal of study in the actuarial literature on multivariate models
in a variety of insurance related contexts. Applications in ruin and surplus analysis, survival modelling,
and insurance loss analysis have capitalized on the ready availability of computational resources. In
particular, the aggregation of risks associated with dependent portfolios of insurance in group insurance
or lines of business have received much attention. Various classes of distributions or copulas (e.g. Joe,
1997) have been employed both for loss and premium deficiency testing in aggregate for an entire line
of business as well as for determination of regulatory risk capital requirements. Applications in other
modelling situations such as competing risks involving simultaneous failure events, as in death to organ
failure have also been studied.

In insurance applications, quantities of interest in connection with capital allocation to dependent
risks include risk measures such as Tail Value-at-Risk (TVaR), which have been widely discussed in
both the actuarial and finance areas. See Denault (2001), Denuit et al. (2005), Dhaene et al. (2008),
Bargès et al. (2009), and Cossette et al. (2012) for a detailed discussion of the use and importance of
dependency in insurance applications. Also see Artzner et al. (1999) and Goovaerts et al. (2010) for
further details on risk measures.

For analysis of problems such as those described above, various multivariate distributions for the
insurance losses have been utilized. Examples include multivariate normal distributions by Panjer
(2002), multivariate Tweedie distributions by Furman and Landsman (2008, 2010), multivariate Pareto
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distributions by Chiragiev and Landsman (2007) as well Asimit et al. (2010). Multivariate gamma
distributions are also of interest (e.g. Mathai and Moschopoulos (1991), Furman and Landsman (2005),
and Kotz et al. (2000, Chapter 48)).

In recent years multivariate distributions with mixed Erlang marginals have been the subject of
much research. For example, Cossette et al. (2013) utilized such a model under the Farlie-Gumble-
Morgenstern (FGM) copula assumption. A systematic study of mathematical and statistical properties
of multivariate mixed Erlang distributions with applications in insurance has been provided by Lee
and Lin (2012). Such models share with multivariate phase-type distributions (MPH) (e.g. Assaf et
al. (1984), Kulkarni (1989), and Cai and Li (2005a,b)) a semiparametric nature, as well as denseness
in the set of all distributions on [0,∞)n. The use of multivariate mixed Erlang distributions is par-
ticularly convenient by virtue of the fact that a wide variety of attractive analytic properties enjoyed
by univariate mixed Erlang distributions (e.g. Willmot and Lin (2011), Willmot and Woo (2007),
and references therein) may be extended to a multivariate setting. The combination of analytic and
computational tractability, together with the inherent flexibility of shape, bodes extremely well for the
use of these models in a wide variety of insurance related modelling situations.

One of the features of the Lee and Lin (2012) model is the use a common scale parameter for all of
the mixed Erlang components. This may be viewed to be a somewhat unnatural and/or inconvenient
assumption in some insurance applications involving various lines of business. In particular, different
scale parameters allow us to incorporate dependence structures across the company as well as to allow
for distinct claims experience on different types of insurance.

In this paper we consider an extension of the model of Lee and Lin (2012) which involves different
scale parameters. We first demonstrate that the use of different scale parameters is in principle only
slightly more general than that involving the same scale parameter. That is, it may be assumed without
loss of generality that the scale parameters are the same, but the support of the mixing weights must
be assumed to be countable rather than simply finite. Indeed, this is a small and not inconvenient
assumption which suggests that the model of Lee and Lin (2012) is actually extremely versatile, and
perhaps more so than has previously been thought.

By virtue of the similarity of our model to that of Lee and Lin (2012), many of the analytic properties
derived under the same scale parameter assumption extend without modification to the case with
different scale parameters. As such, a second goal of the present paper is to study other useful analytic
properties enjoyed by this very rich and important class of multivariate mixed Erlang distributions.
These include analysis with scale mixtures which allows for incorporation of parameter uncertainty,
generalized Esscher-type transforms, and higher-order equilibrium distributions. In addition, we study
mean excess (or residual lifetime) distributions which are particularly important both for loss modelling
in the presence of deductibles and for modelling future lifetimes, given attainment of fixed ages. These
results allow for analysis of stop-loss moments, premium calculation, and risk allocation.

By judicious choice of the multivariate mixing weights, the present model is seen to include the
joint distribution of arbitrary independent but not necessarily identically distributed mixed Erlang
random variables. In this context, it is useful to study the distribution of the minimum and maximum
of the jointly distributed random variables in the multivariate mixed Erlang model. We demonstrate
that the minimum and maximum in our multivariate mixed Erlang model is again of mixed Erlang
form, regardless of the nature of any dependency assumptions. This property, in conjunction with
the multivariate mean excess results which we derive, allows for a direct application to joint-life and
last-survivor insurance under a dependent mixed Erlang setting.

This paper is organized as follows: in the following section, we first introduce the multivariate
mixed Erlang distribution with different scale parameters and derive some distributional properties
which show that this class of distribution preserves its form under different types of transformations
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such as a scale mixture, a generalized Esscher transformation, conditional distribution, and residual
lifetime distribution. In Section 3, these results derived in the previous section have useful applications
in an actuarial context including in particular calculation of risk capital allocation based on the risk
contribution of the individual loss or business line involving TVaR and covariance. Finally, in Section
4, distributions of the minimum and the maximum variables are derived.

2 Distributional properties

We begin by introducing the form of multivariate mixed Erlang distribution. First, let τj,β(y) be
Erang-j density given by

τj,β(y) =
β(βy)j−1e−βy

(j − 1)!
, (1)

and its k-th moment is β−k(k+ j− 1)!/(j− 1)!. Then consider the random vector Y = (Y1, Y2, . . . , Yk)
having multivariate mixed Erlang with probability density function (pdf) (e.g. Lee and Lin (2012))

h(y) = h(y1, y2, . . . , yk) =
∞∑

m1=1

· · ·
∞∑

mk=1

ϕm

{ k∏
i=1

τmi,β(yi)

}
, (2)

where ϕm is a joint probability function (pf) defined as ϕm = ϕm1,...,mk with
∑∞

m1=1 · · ·
∑∞

mk=1 ϕm = 1.
The Laplace transform (LT) of (2) which can be obtained by the characteristic function in Lee and
Lin (2012), is given by

∞∑
m1=1

· · ·
∞∑

mk=1

ϕm

k∏
i=1

(
β

β + si

)mi
= Ψ

(
β

β + s1
,

β

β + s2
, . . . ,

β

β + sk

)
, (3)

where

Ψ(z) = Ψ(z1, z2, . . . , zk) =

∞∑
m1=1

· · ·
∞∑

mk=1

ϕm

( k∏
i=1

zmii

)
. (4)

Now we consider different rate parameters in (2), i.e. τmi,βi(yi) instead of τmi,β(yi). In the following
proposition, it can be shown that it is a still of the form (3). In this case, the marginal loss random
variable (rv) Yi is spread out differently.

Proposition 1 The multivariate mixed Erlang with (2) with different scale parameters can be re-
expressed as

f(y) =
∞∑

m1=1

· · ·
∞∑

mk=1

pm

{ k∏
i=1

τmi,β(yi)

}
, (5)

where

pm =

m1∑
n1=1

· · ·
mk∑
nk=1

ϕn

k∏
i=1

(
mi − 1

ni − 1

)(
βi
β

)ni (
1− βi

β

)mi−ni
, (6)

and
∑∞

m1=1 · · ·
∑∞

mk=1 pm = 1 (see Willmot and Woo (2007) for univariate case).
Proof: Assuming that βi ≤ β for the multivariate mixed Erlang with different scale parameters, we
first have

βi
βi + si

= Qβi/β

(
β

β + si

)
,
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where
Qφ(z) = φz/{1− (1− φ)z} (7)

(e.g. Willmot and Woo (2007)). Hence, for the more general LT P (z) = P (z1, z2, . . . , zk) than (3), we
have for any β ≥ supi βi,

∞∑
m1=1

· · ·
∞∑

mk=1

ϕm

k∏
i=1

(
βi

βi+si

)mi
= P

(
β1

β1+s1
,

β2

β2+s2
,. . .,

βk
βk+sk

)
= Ψ∗

(
β

β+s1
,

β

β+s2
,. . .,

β

β+sk

)
,

(8)
where Ψ∗(z) = P

{
Qβ1/β(z1), Qβ2/β(z2), . . . Qβk/β(zk)

}
. Thus, the result follows.

Its tail distribution F (y) = Pr(Y1 > y1, . . . , Yk > yk) is given by (e.g. Lee and Lin (2012)),

F (y) = e−β
∑k
i=1 yi

∞∑
m1=0

· · ·
∞∑

mk=0

Pm

{ k∏
i=1

(βyi)
mi

mi!

}
= β−k

∞∑
m1=1

· · ·
∞∑

mk=1

Pm−1

{ k∏
i=1

τmi,β(yi)

}
, (9)

where

Pm = Pm1,...,mk =

∞∑
n1=m1+1

· · ·
∞∑

nk=mk+1

pn, (10)

and Pm−1 = Pm1−1,...,mk−1. Also, the failure rate (or hazard rate or force of mortality) is given by

λ(y) = λ(y1, y2, . . . , yk) =
f(y)

F (y)
=

βk
∞∑

m1=0
· · ·

∞∑
mk=0

pm+1

{∏k
i=1

(βyi)
mi

mi!

}
∞∑

m1=0
· · ·

∞∑
mk=0

Pm

{∏k
i=1

(βyi)mi

mi!

} ,

where pm+1 = pm1+1,...,mk+1. Thus, one finds µ(0) = βkp1 where 0 = (0, . . . , 0) and p1 = p1,...,1.
Furthermore, a joint pdf proportional to a product of mixed Erlang pdfs can be written as

g(y) ∝
k∏
i=1

{ ∞∑
mi=1

qmiτmi,β(yi)

}
=

∞∑
m1=1

· · ·
∞∑

mk=1

qm

{ k∏
i=1

τmi,β(yi)

}
,

which is a form of the multivariate mixed Erlang in (2).
Throughout the paper, we consider the multivariate mixed Erlang distribution with different scale

parameters but its joint pdf given in (5) is re-expressed in the form (2), which was considered in Lee
and Lin (2012). Therefore, the results obtained therein also hold for this case. For example, the
marginal distribution of Yi obtained from the multivariate distribution with the LT in (8) is a mixed
Erlang with a scale parameter β, and also the marginal distribution of Y1 + Y2 + · · · + Yk is again
a univariate mixed Erlang with parameter β. Also, direct applications for several measurements for
bivariate dependency such as correlation coefficient, Spearman’s rho and Kendall’s tau are available.

2.1 Scale mixtures

Now, we consider the mixture of (8) over a scale parameter β, with the Laplace transform given by∫ µ

0
Ψ∗
(

β

β + s1
,

β

β + s2
, . . . ,

β

β + sk

)
dU(β) = P ∗

(
µ

µ+ s1
,

µ

µ+ s2
, . . . ,

µ

µ+ sk

)
,
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where P ∗(z1, z2, . . . , zk) =
∫ µ

0 Ψ∗
{
Qβ/µ(z1), Qβ/µ(z2), . . . , Qβ/µ(zk)

}
dU(β) and Qφ(z) is given by (7).

This is still of the form in (4). To see this, we identify a joint probability function p∗n = p∗n1,n2,...,nk

where P ∗(z1, z2, . . . , zk) =
∑∞

n1=1 · · ·
∑∞

nk=1 p
∗
n

(∏k
i=1 z

ni
i

)
. Note that from (5)

Ψ∗ {Qφ(z1), Qφ(z2), . . . , Qφ(zk)} =
∞∑

m1=1

· · ·
∞∑

mk=1

pm

k∏
i=1

{Qφ(zi)}mi , (11)

and {Qφ(z)}mi = zmi
{

φ
1−(1−φ)z

}mi
=
∑∞

ni=mi

(
ni−1
ni−mi

)
φmi(1 − φ)ni−mizni , with the usual notational

convention that
(
x
0

)
= x0 = 1 for x ∈ (−∞,∞). Thus,

k∏
i=1

{Qφ(zi)}mi =

∞∑
n1=m1

· · ·
∞∑

nk=mk

{ k∏
i=1

(
ni−1

ni−mi

)}
φ
∑k
i=1mi(1− φ)

∑k
i=1(ni−mi)

( k∏
i=1

znii

)
.

In turn, (11) can be rewritten as

Ψ∗ {Qφ(z1), Qφ(z2), . . . , Qφ(zk)}

=
∞∑

m1=1

· · ·
∞∑

mk=1

∞∑
n1=m1

· · ·
∞∑

nk=mk

pm

{ k∏
i=1

(
ni−1

ni−mi

)}
φ
∑k
i=1mi(1− φ)

∑k
i=1(ni−mi)

( k∏
i=1

znii

)

=
∞∑

n1=1

· · ·
∞∑

nk=1

( k∏
i=1

znii

) n1∑
m1=1

· · ·
nk∑

mk=1

pm

{ k∏
i=1

(
ni−1

ni−mi

)}
φ
∑k
i=1mi(1− φ)

∑k
i=1(ni−mi).

Finally, replacing φ by β/µ and integrating over β followed by equating coefficients of zn1
1 zn1

2 · · · z
nk
k

results in

p∗n =

n1∑
m1=1

· · ·
nk∑

mk=1

pm

{ k∏
i=1

(
ni−1

ni−mi

)}∫ µ

0

(
β

µ

)∑k
i=1mi

(
1− β

µ

)∑k
i=1(ni−mi)

dU(β), (12)

and the integral is easy to evaluate if U(·) is a rescaled beta distribution.

Example 1 With a beta mixing distribution U ′(β) = Γ(a+b)
µΓ(a)Γ(b)(βµ)a−1(1 − β

µ)b−1 for a, b > 0 and

0 < β < µ, the integral in (12) becomes a mixed binomial with a beta mixing distribution obtained as∫ µ

0

(
β

µ

)∑k
i=1mi

(
1− β

µ

)∑k
i=1(ni−mi)

dU(β) =
Γ(a+b)Γ(a+

∑k
i=1mi)Γ(b+

∑k
i=1 ni−

∑k
i=1mi)

Γ(a)Γ(b)Γ(a+b+
∑k

i=1 ni)
.

Therefore (12) becomes

p∗n =

n1∑
m1=1

· · ·
nk∑

mk=1

pm

{ k∏
i=1

(
ni−1

ni−mi

)}
Γ(a+b)Γ(a+

∑k
i=1mi)Γ(b+

∑k
i=1 ni−

∑k
i=1mi)

Γ(a)Γ(b)Γ(a+b+
∑k

i=1 ni)
.
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2.2 Generalized Esscher transformation

Let us consider a generalized Esscher transform of (5), which we define as

f∗(y1, y2, . . . , yk) =

k∏
i=1

ynii e
−µyif(y1, y2, . . . , yk)

∫∞
0 · · ·

∫∞
0

(
k∏
i=1

tnii e
−µti

)
f(t1, t2, . . . , tk)dt1 · · · dtk

, (13)

where ni = 0, 1, 2, . . . and µ > −β. If ni = 0 for i = 1, 2, . . . , k, (13) reduces to the Esscher transform
of the multivariate mixed Erlang in (5). This result is relevant for premium calculation, as is discussed
in a later section.

It can be shown that (13) may be expressed in the form (5) as

f∗(y1, y2, . . . , yk) =

∞∑
m1=1

· · ·
∞∑

mk=1

q∗m

{ k∏
i=1

τmi+ni,µ+β(yi)

}
, (14)

where the Erlang density τ(y) is given by (1), and the mixing weights are given by

q∗m = qm1,...,mk =

pm
k∏
i=1

(
β

µ+β

)mi (mi+ni−1
ni

)
∞∑
r1=1
· · ·

∞∑
rk=1

pr
k∏
i=1

(
β

µ+β

)ri (ri+ni−1
ni

) ,
which is proportional to pm and the Pascal distribution (a special case of negative binomial with an
integer-valued shape parameter).

In particular, when ni = 0 for i = 1, 2, . . . , k, the above result simplifies to the Esscher transform
of (5), which is the multivariate mixed Erlang with the scale parameter shifted by µ with the joint pdf
given by

fE(y1, y2, . . . , yk) =

∞∑
m1=1

· · ·
∞∑

mk=1

qEm

{ k∏
i=1

τmi,µ+β(yi)

}
, (15)

where

qEm =

pm
k∏
i=1

(
β

µ+β

)mi
∞∑

n1=1
· · ·

∞∑
nk=1

pn
k∏
i=1

(
β

µ+β

)ni . (16)

From (9), its tail distribution is F
E

(y1, y2, . . . , yk) =
∑∞

m1=1 · · ·
∑∞

mk=1Q
E
m−1

{∏k
i=1

τmi,µ+β(yi)

µ+β

}
, where

Q
E
m−1 = Q

E
m1−1,...,mk−1 =

∑∞
n1=m1

· · ·
∑∞

nk=mk
qEn .

2.3 Conditional distributions and moments

Assume that n variables Xi for i = 1, 2, . . . , n are jointly distributed with pdf (5). Let the conditional
pdf of k random variables given the other n−k random variable be given by gn−k(x1, x2, . . . , xk|xk+1, . . . , xn)
= f(x1, x2, . . . , xn)/{

∫∞
0 . . .

∫∞
0 f(x1, x2, . . . , xn)dx1 . . . dxk}, and the (n − k)-variate marginal in the
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denominator is a (n− k)-variate mixed Erlang (Lee and Lin (2012)), i.e.

gn−k(x1, x2, . . . , xk|xk+1, . . . , xn) =

∞∑
m1=1

· · ·
∞∑

mn=1
pm

{
n∏
i=1

τmi,β(xi)

}
∞∑

m1=1
· · ·

∞∑
mn=1

pm

{
n∏

i=k+1

τmi,β(xi)

} .
Hence, with x−k = (xk+1, xk+2, . . . , xn), it can still be expressed in the form (5) as

gn−k(x1, x2, . . . , xk|xk+1, . . . , xn) =

∞∑
m1=1

· · ·
∞∑

mk=1

pmk
(x−k)

{ k∏
i=1

τmi,β(xi)

}
, (17)

where the mixing probability function is

pmk
(x−k) = pm1,...,mk(xk+1, . . . , xn) =

∞∑
mk+1=1

· · ·
∞∑

mn=1
pm

{
n∏

i=k+1

τmi,β(xi)

}
∞∑
r1=1
· · ·

∞∑
rn=1

pr

{
n∏

i=k+1

τri,β(xi)

} .

Then, the r-th conditional moment of (X1, X2, . . . , Xk) given the n− k variables is simply

E[(X1X2 · · ·Xk)
r|Xk+1 = xk+1, . . . , Xn = xn] =

∞∑
m1=1

· · ·
∞∑

mk=1

pmk
(x−k)

{ k∏
i=1

β−r(mi + r − 1)(r)

}
,

where the notation (mi+r−1)(r) = (mi+r−1) · · ·mi is used for the r-th descending factorial of (mi+r−1).
For the bivariate case having the joint pdf given in (5), the conditional pdf of X1|X2 (i.e. when n = 2

and k = 1) is from (17) g1(x1|x2) =
∑∞

m1=1 pm1(x2)τm1,β(x1), where pm1(x2) =
∑∞

m2=1 pm1,m2τm2,β(x2){∑∞
n1=1

∑∞
n2=1 pn1,n2τn2,β(x2)

}−1
, and the conditional r-th moment of Y1 is obtained as E[Xr

1 |X2 =

x2] = β−r
∞∑

m1=1
pm1(x2)(m1 + r − 1)(r).

2.4 The higher-order equilibrium distribution

In connection with the analysis of the multivariate stop-loss moments, it is useful to study the r-th
equilibrium distribution (e.g. Willmot et al. (2005)) of the aggregate loss SN =

∑N
i=1Xi where the

individual losses (X1, . . . , Xk) follow the multivariate mixed Erlang distribution with the joint LT in
(8) and N is a discrete rv having pf pn = Pr(N = n). Since the mixed Erlang distribution may
be viewed as a compound random sum of exponential rvs, the aggregate loss can be rewritten as
SN =

∑M1+···+MN
i=1 Ei where Ei is an exponential rv with mean 1/β, and Mis are discrete rvs with the

joint pf pm given by (6).
From Theorem 5.1 in Lee and Lin (2012), when the joint pdf of the Xis is assumed to be given

by (2), it follows that the distribution of Sk (i.e. the sum of Xis) is a univariate Erlang mixture with
mixing weights given by

∑
m1+···+mk=i ϕm for i = 1, 2, . . .. Instead, we consider the distribution of SN

(i.e. the compound sum of Xis) which is a univariate Erlang mixture with mixing weights given by∑
m1+·+mN=i pm for i = 1, 2, . . . , then it is convenient mathematically to utilize the Laplace-Stieltjes

transform (LST), given as

g̃(s) =

∞∑
n=1

qn

(
β

β + s

)n
, (18)
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where the mixing weights are given by

qn =
∞∑
i=1

p0,i Pr(M1 + · · ·+Mi = n) =
∞∑
i=1

p0,i

{ ∑
m1+···+mi=n

pm

}
, n = 1, 2, . . . , (19)

where p0,i = pi/(1− p0). Then, the pdf of SN is the mixed Erlang pdf

g(x) =

∞∑
n=1

qnτn,β(y), (20)

where qn and τn,β(y) are given by (19) and (1) respectively.
Assume that the tail distribution of SN is G(y) = 1−G(y) where G(y) is the distribution function

(df) of SN , and define the equilibrium distribution function (df) for SN as G1(y) =
∫ y

0 G(t)dt/E[SN ],
then from (9), its pdf g1(y) = G′1(y) is g1(y) = G(y)/{

∫∞
0 G(t)dt} =

∑∞
j=1 q

∗
j τj,β(y), where q∗j =

Qj−1/{
∑∞

n=1 nqn} with Qj =
∑∞

k=j+1 qk. Then, using the result in Example 2.1 of Willmot et al.

(2005), the r-th equilibrium df of SN recursively defined as Gr(y) =
∫ y

0 Gr−1(t)dt/
∫∞

0 Gr−1(t)dt can
be obtained as

Gr(y) = e−βy
∞∑
n=0

Qr,n
(βy)n

n!
= β−1

∞∑
n=1

Qr,n−1τn,β(y), r = 1, 2, . . . , (21)

where Qr,n =
∑∞

j=0

(
j+r
r

)
qn+j+1

/{∑∞
j=0

(
j+r
r

)
qj+1

}
. Also, its tail is easily obtained as∫ ∞

x
Gr(y)dy = β−1e−βx

∞∑
j=0

Q
∗
r,j

(βx)j

j!
, (22)

where Q
∗
r,j =

∑∞
n=j+1Qr,n−1 =

∑∞
n=j Qr,n. As discussed in Willmot and Lin (2011), asymptotic results

(e.g. Embrechts et al. (1985), Grandell (1997), Willmot (1989b)) may be used to yield asymptotic
estimates for (21) and (22).

Furthermore, the multivariate equilibrium or integrated tail distribution of (Y1, Y2, . . . , Yk) with a
tail df given in (9) is

fe(y) =
F (y)∫∞

0 · · ·
∫∞

0 F (y)dy1 · · · dyk
=

∞∑
m1=1

· · ·
∞∑

mk=1

qem

{ k∏
i=1

τmi,β(yi)

}
, (23)

where

qem =
Pm−1∑∞

n1=1 · · ·
∑∞

nk=1 Pn−1
, (24)

again the multivariate mixed Erlang distribution but with different mixing weights, and then its tail
F e(y) =

∫∞
y1
· · ·
∫∞
yk
fe(x)dx1 · · · dxk is given by

F e(y) = e−β
∑k
i=1 yi

∞∑
m1=0

· · ·
∞∑

mk=0

Q
e
m

{ k∏
i=1

(βyi)
m
i

mi!

}
= β−k

∞∑
m1=1

· · ·
∞∑

mk=1

Q
e
m−1

{ k∏
i=1

τmi,β(yi)

}
, (25)

where Q
e
m =

∑∞
n1=m1+1 · · ·

∑∞
nk=mk+1 q

e
n.
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2.5 The residual lifetime distribution

Assume that there are “deductibles” given by x = (x1, x2, . . . , xk) for the individual losses X =
(X1, X2, . . . , Xk) with a joint pdf given in (5). We are interested in the multivariate excess loss (or
residual life time), i.e. Yx = X − x|X > x. Its pdf is given by (e.g. Theorem 5.3 in Lee and Lin
(2012)),

fx(y) =
f(y + x)

F (x)
, where x = (x1, . . . , xk).

Using τj,β(x+ y) = β−1
∑j

i=1 τi,β(x)τj−i+1,β(y) and (5), it follows that

fx(y) =
β−k

F (x)

∞∑
m1=1

· · ·
∞∑

mk=1

pm

{ k∏
i=1

mi∑
ni=1

τni,β(yi)τmi−ni+1,β(xi)

}
=

∞∑
n1=1

· · ·
∞∑

nk=1

pn(x)

{ k∏
i=1

τni,β(yi)

}
,

(26)
where

pn(x)=
β−k

F (x)

∞∑
m1=n1

· · ·
∞∑

mk=nk

pm

{ k∏
i=1

τmi−ni+1,β(xi)

}
=
β−k

F (x)

∞∑
m1=1

· · ·
∞∑

mk=1

pm+n−1

{ k∏
i=1

τmi,β(xi)

}
,

(27)
and F (·) is given by (9), i.e. again a multivariate mixed Erlang pdf as in (2) but with different mixing
weights.

In addition, the mean residual lifetime E[Yx] denoted as r(x) can be obtained by calculating∫∞
0 · · ·

∫∞
0 (
∏k
i=1 yi)fx(y)dy1 · · · dyk, i.e.

r(x) =

∫∞
0 · · ·

∫∞
0 (y1 · · · yk)f(y1 + x1, · · · , yk + xk)dy1 · · · dyk

F (x)
=

∫∞
x1
· · ·
∫∞
xk
F (y)dy1 · · · dyk
F (x)

, (28)

the last equality resulting from the integration by parts on the previous k integrals on y1, . . . , yk. From
(26), one finds

r(x) = β−k
∞∑

n1=1

· · ·
∞∑

nk=1

pn(x)

{ k∏
i=1

ni

}
, (29)

where pn(x) is given by (27), and it implies that when x1 = x2 = · · · = xk = 0,

r(0) = E[Y] = β−k
∞∑

n1=1

· · ·
∞∑

nk=1

pn

{ k∏
i=1

ni

}
= β−k

∞∑
m1=1

· · ·
∞∑

mk=1

Pm−1,

due to pn(0) = pn from (27). Alternatively, we first find the failure rate of the multivariate equilibrium
distribution using (23) and (25),

λe(x) =
fe(x)

F e(x)
=

F (x)∫∞
x1
· · ·
∫∞
xk
F (y)dy1 · · · dyk

=
1

r(x)
,

which is the same as the reciprocal of the mean residual lifetime in (28) as in the univariate case which
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is well known. Hence, from (9) with (23) and (25) one finds

r(x) =

β−k
∞∑

m1=1
· · ·

∞∑
mk=1

Q
e
m−1

{∏k
i=1 τmi,β(xi)

}
F (x)/{β−k

∑∞
m1=1 · · ·

∑∞
mk=1 Pm−1}

=
β−2k

F (x)

∞∑
m1=1

· · ·
∞∑

mk=1

∞∑
n1=m1

· · ·
∞∑

nk=mk

Pn−1

{ k∏
i=1

τmi,β(xi)

}
,

where Q
e
m−1 =

∑∞
n1=m1

· · ·
∑∞

nk=mk
qen and qen is given by (24). Because,

∞∑
l1=m1

· · ·
∞∑

lk=mk

P l−1 =
∞∑
l1=1

· · ·
∞∑
lk=1

∞∑
n1=l1

· · ·
∞∑

nk=lk

pn+m−1 =
∞∑

n1=1

· · ·
∞∑

nk=1

pn+m−1

{ k∏
i=1

ni

}
,

it gives the same expression as (29) with (27).

3 Applications

3.1 Stop-loss moments

In the previous section, the pdf of the aggregate loss SN =
∑N

i=1Xi where (X1, X2, . . . , Xk) has the
multivariate mixed Erlang pdf given in (5) was obtained as (20) and its LST is given in (18). Hence,
using (e.g. Willmot (2007)) g(x+ y) = β−1

∑∞
j=0

∑∞
k=0 qj+k+1τj+1,β(x)τk+1,β(y), where qn is given by

(19), the stop loss moment of any positive order can be obtained as (e.g. Willmot and Woo (2007,
p.106), Willmot and Lin (2011, p.8)),

E{(SN − x)r+} =

∫ ∞
x

(y − x)rdG(y) = e−βx
∞∑
j=0

aj,r
(βx)j

j!
, (30)

where x+ = max(x, 0) and aj,r = β−r
∑∞

k=1 qj+k
Γ(r+k)
(k−1)! . Certainly, when r = 0 the tail distribution of S

can be obtained, and when r = 1, (30) results in the stop-loss premium with aj,1 = β−1
∑∞

k=1 kqj+k =
β−1

∑∞
i=j qi where qn =

∑∞
m=n+1 qm. In particular, when N = k (i.e. p0,k = 1 for i = k in (19) and

then qn =
∑

m1+···+mi=n pm ), it reduces to the stop-loss premium result by Lee and Lin (2012, p.167)

in the presence of a deductible level d as E{(Sk − d)+} = β−1e−βd
∑∞

j=0

(∑∞
i=j qi

) (βd)j

j! .

3.2 Premium calculations

In this section, we calculate several types of premiums previously considered in the literature when the
multivariate loss variables have a joint pdf with the form (5) (e.g. see Kijima (2006) for multivariate
extension of equilibrium pricing transform).

First, consider the Esscher premium defined as E[XeµX ]/E[eµX ] in the univariate case (e.g. Bühlmann
(1980), Gerber (1980a)). For multivariate mixed Erlang losses, this premium can be easily obtained
from (15) by

∞∑
m1=1

· · ·
∞∑

mk=1

qEm

{ k∏
i=1

mi

µ+ β

}
,

where qEm is given by (16).
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Second, the joint size-biased distribution of order ni for each rv Yi is defined as (13) with µ = 0,
e.g. see Patil and Ord (1976) for the univariate case. Then from (14) its pdf is still a multivariate
mixed Erlang with the same scale parameter β, but with new shape parameters shifted by ni and new
mixing weights. The weighted premium defined as E[X1+c]/E[Xc] where c ∈ (0, 1] for the univariate
loss, is also calculated in this case assuming ni ∈ (0, 1] for i = 1, 2, . . . , k instead of c. It is a simply
the expectation of the multivariate random vectors with (14) when µ = 0 (i.e. multivariate mixed
gamma), that is,

∞∑
m1=1

· · ·
∞∑

mk=1

q∗m

{ k∏
i=1

mi + ni
β

}
.

Similar to what Furman and Zitikis (2008) pointed out, this premium converges to the net premium
as ni → 0 for all i, and to the modified variance premium (e.g. Heilmann (1989)) as ni → 1 for all i.

Lastly, as first studied in Furman an Landsman (2006), here we calculate the tail variance pre-
mium for multivariate mixed Erlang losses. In the univariate case, this premium is defined with two
risk measures including the conditional tail expectation (CTE) and conditional tail variance (TV) as
CTEp[X] + αTVp[X] where α ≥ 0 and p ∈ (0, 1). In this case, from (5) one finds

k∏
i=1

yni f(y1, . . . , yk) =
∞∑

m1=1

· · ·
∞∑

mk=1

pm

{ k∏
i=1

β−n
(n+mi − 1)!

(mi − 1)!
τmi+n,β(yi)

}
,

and calculate q = Pr(X1 > F−1
X1

(p), . . . , Xk > F−1
Xk

(p)) with the quantile F−1
Xi

(p) for each Xi where FXi
is a marginal cumulative distribution function (cdf) for Xi for i = 1, 2, . . . , k. Then, the first term of
the formula for the tail variance premium in this multivariate case is given by

q−1

{∫ ∞
F−1
X1

(p)
· · ·
∫ ∞
F−1
Xk

(p)
h1(x1, . . . , xk)dx1 · · · dxk

}
,

and similarly the second term is also found using hn when n = 2. Since its evaluation is straightforward
using the tail of the Erlang distribution in (1), it is omitted here.

3.3 Risk capital allocation

In this section, we study the capital allocation problem based on the risk contribution of the individual
loss or business line Xj to the total risk S =

∑k
i=1Xi where the joint LT of these losses (or line

of business) is given by (8). Here we use two different rules (based on TVaR and covariance) as in
Cossette et al. (2013). They studied capital allocation problems when the multivariate distribution of
Xis are defined via the FGM copula with mixed Erlang marginals and the total risk is a sum of these
Xis.

3.3.1 Tail Value-at-Risk (TVaR)

To begin, let us define the Value-at-Risk (VaR) for X at level t ∈ (0, 1) by VaRX(t)=inf{x :FX(x)≥ t},
and the TVaR at level t for the continuous distribution as

TVaRX(t) = E[X|X > VaRX(t)] =
1

1− t

∫ 1

t
VaRX(u)du.

11



Let vt be the VaRS(t) of the total loss S at level t, then from the tail df of S, it is the solution of the
equation (e.g. Corollary 5.1 of Lee and Lin (2011)),

1− t = e−βvt
∞∑
n=0

Qn
(βvt)

n

n!
= β−1

∞∑
n=1

Qn−1τn,β(vt), (31)

where Qn =
∑∞

j=n+1 qj with qn given by (19) when p0,i = 1 for i = k and p0,i = 0 for i 6= k, and τn,β(y)
is given by (1). Then, its TVaR at level t is obtained as TVaRS(t) = vt +E[S− vt|S > vt] = vt + r(vt)
where r(vt) is the mean residual lifetime of Svt = S − vt|S > vt. Then using (23)-(25) with Qn instead
of Pn, it follows

r(vt) =

∞∑
m=0

Q
e
m

(βvt)m

m!

β
∞∑
n=0

qen+1
(βvt)n

n!

=
β−1

1− t

∞∑
m=0

( ∞∑
n=m

Qn

)
(βvt)

m

m!
,

since qen+1 = Qn/
∑∞

n=1Qn−1 = Qn/
∑∞

j=1 jqj in this case, and the denominator is simplified using
(31).

Given the total risk capital at level t, let us define the risk capital Ci(t) allocated for the individual
loss i or business line i based on its TVaR, as Ci(t) = TVaRXi|S(t) = E[Xi|S > vt]. Then a sum of all
individual risks equal to the total risk, i.e.

TVaRS(t) =
k∑
i=1

Ci(t), (32)

and the amount of capital requirement for risk i for i = 1, 2, . . . , k, given (32) is obtained as

Ci(t) = E[Xi|S > vt] =
1

1− t

∫ ∞
vt

E[Xi|S = y] g(y)dy =
1

1− t

∫ ∞
vt

∫ y

0
xfXi,S(x, y)dxdy, (33)

where g(y) is a pdf of S given by (20) when N = k. Then, the expression for Ci(t) can be found in the
following theorem.

Theorem 1 Assuming that the individual losses (X1, . . . , Xk) follow the multivariate mixed Erlang
distribution with the joint pdf in (5), the risk capital required for loss Xi for i = 1, 2, . . . , k in (33) can
be found as

Ci(t) =
1

1− t

∞∑
m1=1

· · ·
∞∑

mk=1

am

∫ ∞
vt

τm+1,β(y)dy =
1

1− t

∞∑
m1=1

· · ·
∞∑

mk=1

am

{ m∑
n=0

e−βvt(βvt)
n

n!

}
,

where m =
∑k

j=1mj and

am = pm

m−i−1∑
j=0

β−1(−1)m−i−1−jm(m−i+1)

(m−i−j−1)!j!(m− j)
. (34)

Proof: To obtain Ci(t), it is necessary to evaluate∫ y

0
xfXi,S(x, y)dx =

∫ y

0
xfXi,S−Xi(x, y − x)dx. (35)
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Let S−i = S −Xi = X1 + · · ·+Xi−1 +Xi+1 + · · ·+Xk, and since Xi and S−i are dependent, the joint
pdf of (Xi, S−i) is obtained as

fXi,S−i(x, y − x)

=

∫ y−x

0

∫ y−x−x1

0
· · ·
∫ y−x−

∑k−1
j=1,j 6=i xj

0
f(x1,. . ., xi−1, x, xi+1,. . ., y−x−

k−1∑
j=1,j 6=i

xj)dx1 · · · dxi−1dxi+1 · · · dxk−1,

and note that from (5) the above integral involves a convolution of independent (k − 1) Erlang rvs
with each shape parameter mj for j = 1, 2, . . . , k and j 6= i, and a common scale parameter β, i.e.
univariate Erlang with a shape parameter m−i = m1+· · ·+mi−1+mi+1+· · ·+mk. Thus, it follows that

fXi,S−i(x, y − x) =
∞∑

m1=1

· · ·
∞∑

mk=1

pmτmi,β(x)τm−i,β(y − x)

=

∞∑
m1=1

· · ·
∞∑

mk=1

pm

{
e−βxxmi−1βmi

(mi − 1)!

}{
e−β(y−x)(y − x)m−i−1βm−i

(m−i − 1)!

}

=
∞∑

m1=1

· · ·
∞∑

mk=1

pm

{
e−βyxmi−1βm

(mi − 1)!(m−i − 1)!

}{m−i−1∑
j=0

(
m−i − 1

j

)
yj(−x)m−i−1−j

}
, 0 < x < y,

(36)

where m = mi +m−i =
∑k

j=1mj . Substitution of (36) into (35) results in∫ y

0
xfXi,S(x, y)dx =

∞∑
m1=1

· · ·
∞∑

mk=1

pm

{m−i−1∑
j=0

e−βyβm(−1)m−i−1−j

(mi−1)!(m−i−1)!

(
m−i−1

j

)
yj
(∫ y

0
xm−j−1dx

)}

=

∞∑
m1=1

· · ·
∞∑

mk=1

pm

{m−i−1∑
j=0

β−1(−1)m−i−1−jm!

(mi−1)!(m−i−j−1)!j!(m− j)

}
τm+1,β(y). (37)

In turn, the result follows.

3.3.2 Covariance

According to Hesselager and Andersson (2002), the covariance principle can also be used for the capital
allocation problem in a risk sharing scheme for a multi-line of an insurance company. If we apply the
covariance-based rule to calculate the capital allocation amount Ci(t) given (32), for each individual i,
we can obtain

Ci(t) = E[Xi] +
Cov(Xi, S)

Var(S)
(TVaRS(t)− E[S]), i = 1, 2, . . . , n.

Since E[Xi] and VaR(S) are immediately available using the marginal distribution of Xi and the
distribution of S provided previously, and TVaRS(t) is given in previous section, we conclude this
section with the expression for E[XiS] required for covariance calculation. From (36), we have
fXi,S(x, y) = fXi,S−i(x, y − x) for x < y, and then using (37), one finds

E[XiS] =

∞∑
m1=1

· · ·
∞∑

mk=1

am

∫ ∞
0

yτm+1,β(y)dy =

∞∑
m1=1

· · ·
∞∑

mk=1

am

(
m+ 1

β

)
,

where am is given by (34) and m =
∑k

i=1mi.
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4 Minimum and maximum in multiple lives

In this section, we derive distributions of the minimum and the maximum variables where the joint
distribution of k variables is assumed to be (5). Mixed Erlang models for human lifetimes are potentially
very useful because these distribution can accurately approximate any positive distributions (e.g. Lee
and Lin (2012)), even those as complicated as human survival distributions. Utilizing the distribution
of the minimum and maximum random variables, we study the pricing of the joint and the last
survivor statuses of several lifetimes. Some classes of multivariate distribution have nice properties
which provide well-defined forms of joint distributions of the minimum and the maximum (even order
statistics) such as a MPH distribution (e.g. Cai and Li (2005b)), a multivariate normal distribution
(e.g. Gupta and Gupta (2001)), and a generalized exponential distributions (e.g. Franco and Vivo
(2009)).

First, let pm in (5) be a joint probability mass function (pmf) of (N1, N2, . . . , Nk), i.e.

pm = Pr(N1 = m1, N2 = m2, . . . , Nk = mk) = Pr
(
∩kl=1 {Nl = ml}

)
,

and let its tail df in (10) be,

Pm = Pr(N1 ≥ m1 + 1, N2 ≥ m2 + 1, . . . , Nk ≥ mk + 1) = Pr
(
∩kl=1 {Nl ≥ ml + 1}

)
.

Note that for j = 1, 2, . . . , one has

− d

dy
τj,β(y) = β{τj,β(y)− τj−1,β(y)},

where we define τ0,β(y) = 0. Then, the tail df of the minimum Y(1) = min(Y1, . . . , Yk) is obtained as

Pr(Y(1) > y) = F (y, . . . , y), and from (9) and the product rule the pdf of Y(1) denoted by f(1)(y) is

− d

dy
F (y, . . . , y) =

∞∑
m1=1

· · ·
∞∑

mk=1

Pr
(
∩kl=1 {Nl ≥ ml}

) k∑
j=1

{τmj ,β(y)− τmj−1,β(y)}
k∏

i=1,i 6=j

τmi,β(y)

β
. (38)

Because

∞∑
mj=1

Pr
(
∩kl=1 {Nl ≥ ml}

)
τmj−1,β(y) =

∞∑
mj=0

Pr
(
Nj ≥ mj + 1, ∩kl=1,l 6=j {Nl ≥ ml}

)
τmj ,β(y)

=
∞∑

mj=1

Pr
(
Nj ≥ mj + 1, ∩kl=1,l 6=j {Nl ≥ ml}

)
τmj ,β(y),

(due to τ0,β(y) = 0 in the last line), it follows that

∞∑
mj=1

Pr
(
∩kl=1 {Nl ≥ ml}

)
{τmj ,β(y)− τmj−1,β(y)} =

∞∑
mj=1

qj,mτmj ,β(y),

where qj,m = Pr
(
Nj = mj , ∩kl=1,l 6=j {Nl ≥ ml}

)
. Thus (38) may be expressed as

− d

dy
F (y, . . . , y) =

k∑
j=1

∞∑
m1=1

· · ·
∞∑

mk=1

qj,m

∏k
i=1 τmi,β(y)

βk−1
. (39)
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Also, note that in combinatorial notation
(

n
n1,n2,...,nk

)
= n!

n1!n2!···nk! , it follows that

∏k
i=1 τmi,β(y)

βk−1
=

( ∑k
i=1mi−k

m1−1,m2−1,...,mk−1

)
k
∑k
i=1mi−k+1

{
τ∑k

i=1mi−k+1,kβ(y)
}
,

and so (39) can be expressed in mixed Erlang form as

− d

dy
F (y, . . . , y) =

k∑
j=1

∞∑
m1=1

· · ·
∞∑

mk=1

qj,m

( ∑k
i=1mi−k

m1−1,m2−1,...,mk−1

)
k
∑k
i=1mi−k+1

{
τ∑k

i=1mi−k+1,kβ(y)
}
. (40)

Finally, from (40)

f(1)(y) =
∞∑
n=1

wnτn,kβ(y),

where

wn = k−n
k∑
j=1

∑
An,k

qj,m

(
n− 1

m1 − 1,m2 − 1, . . . ,mk − 1

)
and

An,k =

{
(m1,m2, . . . ,mk)

∣∣∣∣ k∑
i=1

mi = n+ k − 1, mi ≥ 1 for all i

}
. (41)

Next, to find the pdf of the maximum Y(k) = max(Y1, . . . , Yk), recall that∫ y

0
τn,β(x)dx = 1−

∫ ∞
y

τn,β(x)dx = 1− e−βy
n−1∑
m=0

(βy)m

m!
= e−βy

∞∑
m=n

(βy)m

m!
,

and thus ∫ y

0
τn,β(x)dx =

∞∑
m=n

τm+1,β(y)

β
=

∞∑
m=n+1

τm,β(y)

β
.

Then, from (5), using the above result yields the joint df of (Y1, Y2, · · · , Yk) as

F (y1, y2, . . . , yk) =
∞∑

n1=1

· · ·
∞∑

nk=1

pn

{ k∏
i=1

∫ yi

0
τni,β(xi)dxi

}
=

∞∑
m1=2

· · ·
∞∑

mk=2

m1−1∑
n1=1

· · ·
mk−1∑
nk=1

pn

k∏
i=1

τmi,β(yi)

β
,

i.e.

F (y1, y2, . . . , yk) =
∞∑

m1=1

· · ·
∞∑

mk=1

Pr
(
∩kl=1 {Nl ≤ ml}

) k∏
i=1

τmi+1,β(yi)

β
.

Therefore, the pdf of the maximum Y(k) is, as in (38),

d

dy
F (y, . . . , y) =

∞∑
m1=1

· · ·
∞∑

mk=1

Pr
(
∩kl=1 {Nl ≤ ml}

) k∑
j=1

{τmj ,β(y)− τmj+1,β(y)}
k∏

i=1,i 6=j

τmi+1,β(y)

β
. (42)

As

∞∑
mj=1

Pr
(
∩kl=1 {Nl ≤ ml}

)
τmj ,β(y) =

∞∑
mj=0

Pr
(
Nj ≤ mj + 1, ∩kl=1,l 6=j {Nl ≤ ml}

)
τmj+1,β(y)
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it follows (noting that Nj ≥ 1) that

∞∑
mj=1

Pr
(
∩kl=1 {Nl ≤ ml}

)
{τmj ,β(y)− τmj+1,β(y)} =

∞∑
mj=0

qj,mτmj+1,β(y),

where qj,m = Pr
(
Nj = mj + 1, ∩kl=1,l 6=j {Nl ≤ ml}

)
. Thus, because Nj ≥ 1 for all j, (42) may be

expressed as in (39), namely,

d

dy
F (y, . . . , y) =

k∑
j=1

∞∑
m1=0

· · ·
∞∑

mk=0

qj,m

∏k
i=1 τmi+1,β(y)

βk−1
=

k∑
j=1

∞∑
m1=1

· · ·
∞∑

mk=1

qj,m−1

∏k
i=1 τmi,β(y)

βk−1
,

and the rest is the same as the minimum case. Essentially, the pdf of the maximum is given by

f(k)(y) =
∞∑
n=1

w∗nτn,kβ(y),

where

w∗n = k−n
k∑
j=1

∑
An,k

qj,m−1

(
n− 1

m1 − 1,m2 − 1, . . . ,mk − 1

)
and, as in (41), An,k =

{
(m1,m2, . . . ,mk)

∣∣∑k
i=1mi = n+ k − 1, mi ≥ 1 for all i

}
.

Lastly, we remark that the joint life and last survivor statuses are easily dealt with using the residual
lifetime result obtained from (26), which is still of the form in (5) but with new mixing weights. Also,
as mentioned, the use of the lifetime model can be justified by the denseness of the multivariate mixed
Erlang as shown by Lee an Lin (2012).
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