
New strategies for developing cardiovascular stent surfaces with novel functions
(Review)
Pengkai Qi, Si Chen, Tao Liu, Jialong Chen, Zhilu Yang, Yajun Weng, Junying Chen, Jin Wang, Manfred F.
Maitz, and Nan Huang 
 
Citation: Biointerphases 9, 029017 (2014); doi: 10.1116/1.4878719 
View online: http://dx.doi.org/10.1116/1.4878719 
View Table of Contents: http://scitation.aip.org/content/avs/journal/bip/9/2?ver=pdfcov 
Published by the AVS: Science & Technology of Materials, Interfaces, and Processing 
 
Articles you may be interested in 
A device for rapid and quantitative measurement of cardiac myocyte contractility 
Rev. Sci. Instrum. 86, 034302 (2015); 10.1063/1.4915500 
 
A finite element study of balloon expandable stent for plaque and arterial wall vulnerability assessment 
J. Appl. Phys. 116, 044701 (2014); 10.1063/1.4891019 
 
Comparative study of CW, nanosecond- and femtosecond-pulsed laser microcutting of AZ31 magnesium alloy
stents 
Biointerphases 9, 029004 (2014); 10.1116/1.4866589 
 
Controlled surface adsorption of fd filamentous phage by tuning of the pH and the functionalization of the surface 
J. Appl. Phys. 109, 064701 (2011); 10.1063/1.3549113 
 
Announcement: A new feature—“Controversial Topics in Nonlinear Science: Is the Normal Heart Rate Chaotic?” 
Chaos 18, 030201 (2008); 10.1063/1.2960858 
 

http://scitation.aip.org/content/avs/journal/bip?ver=pdfcov
http://scitation.aip.org/search?value1=Pengkai+Qi&option1=author
http://scitation.aip.org/search?value1=Si+Chen&option1=author
http://scitation.aip.org/search?value1=Tao+Liu&option1=author
http://scitation.aip.org/search?value1=Jialong+Chen&option1=author
http://scitation.aip.org/search?value1=Zhilu+Yang&option1=author
http://scitation.aip.org/search?value1=Yajun+Weng&option1=author
http://scitation.aip.org/search?value1=Junying+Chen&option1=author
http://scitation.aip.org/search?value1=Jin+Wang&option1=author
http://scitation.aip.org/search?value1=Manfred+F.+Maitz&option1=author
http://scitation.aip.org/search?value1=Manfred+F.+Maitz&option1=author
http://scitation.aip.org/search?value1=Nan+Huang&option1=author
http://scitation.aip.org/content/avs/journal/bip?ver=pdfcov
http://dx.doi.org/10.1116/1.4878719
http://scitation.aip.org/content/avs/journal/bip/9/2?ver=pdfcov
http://scitation.aip.org/content/avs?ver=pdfcov
http://scitation.aip.org/content/aip/journal/rsi/86/3/10.1063/1.4915500?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/116/4/10.1063/1.4891019?ver=pdfcov
http://scitation.aip.org/content/avs/journal/bip/9/2/10.1116/1.4866589?ver=pdfcov
http://scitation.aip.org/content/avs/journal/bip/9/2/10.1116/1.4866589?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/109/6/10.1063/1.3549113?ver=pdfcov
http://scitation.aip.org/content/aip/journal/chaos/18/3/10.1063/1.2960858?ver=pdfcov


New strategies for developing cardiovascular stent surfaces with novel
functions (Review)

Pengkai Qi, Si Chen, and Tao Liu
Key Laboratory of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University,
Chengdu 610031, China and School of Material Science and Engineering, Southwest Jiaotong University,
Chengdu 610031, China

Jialong Chen
College of Stomatology, Anhui Medical University, Hefei 230032, China

Zhilu Yang, Yajun Weng, Junying Chen, and Jin Wang
Key Laboratory of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University,
Chengdu 610031, China and School of Material Science and Engineering, Southwest Jiaotong University,
Chengdu 610031, China

Manfred F. Maitz
Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden, Dresden
01097, Germany

Nan Huanga)

Key Laboratory of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University,
Chengdu 610031, China and School of Material Science and Engineering, Southwest Jiaotong University,
Chengdu 610031, China

(Received 22 March 2014; accepted 8 May 2014; published 21 May 2014)

In this review, the authors summarize the developments in surface modification of cardiovascular

materials especially in author’s laboratory. The authors focus on three different strategies to

construct multifunctional surfaces including coimmobilization of various biomolecules on stent

surfaces, stem cell based therapy systems, and a single-molecule multipurpose modification strategy

in vascular interventional therapy. The roles of various molecules like heparin, gallic acid, various

aptamers, and nitric oxide are highlighted in the new strategies for developing cardiovascular stent

surfaces with novel functions including excellent hemocompatibility, inhibiting smooth muscle cells

proliferation, and native endothelium regeneration. The success of these multifunctional surfaces

provides the tremendous potential in designing the next generation of vascular stents. VC 2014
American Vacuum Society. [http://dx.doi.org/10.1116/1.4878719]

I. INTRODUCTION

The last half of the 20th century has witnessed the emer-

gence of the medical device/implant industry. To our delight,

the technological revolution in healthcare is growing rapidly,

and most advances were in the area of cardiovascular tech-

nology.1 However, according to the statistics published by

the world health organization in 2012, cardiovascular dis-

eases (CVDs) continue to present the leading cause of death

in modern society.2 The majority of the CVDs are related to a

process called atherosclerosis, which is a chronic inflamma-

tory disease marked by thickening, hardening, and stiffening

of the arterial walls and results in impaired blood circulation.3

Severe impairment of the blood flow traditionally required

intervention with bypass surgery. Vascular stents or grafts to

treat these coronary and peripheral artery diseases emerged

as minimal invasive alternatives to the surgery.

Coronary bypass surgery with patients’ own saphenous

vein or internal mammary artery has been the standard surgi-

cal treatment method to reestablish the blood flow in occluded

arteries.4 Actually, there are difficulties in harvesting

sufficient lengths of autologous vascular grafts. Synthetic vas-

cular grafts made of ePTFE (expanded polytetrafluoroethyl-

ene), PET (polyethylene terephthalate), PU (polyurethane),

for example, are also used to replace or bypass diseased

arteries. However, these materials, originally designed for

industrial applications are associated with significant rates of

restenosis and thrombosis.5 In addition to vascular grafts, cor-

onary stenting has developed as a valid alternative method to

prevent abrupt vessel closure and to achieve excellent angio-

graphic results. Vascular stents are small expandable tubes,

which are mounted onto a balloon catheter, inserted and

expanded at the narrowed section of the vessel, acting like a

stabilizing scaffold for the artery to maintain the patency of

the vessel in order to treat narrowed or weakened arteries in

the body. Despite of intensive research on improving vascular

stents, failure cases of the implants still exist. In-stent resteno-

sis (ISR), which results from intimal hyperplasia, frequently

happened to patients implanted with the first generation of

stents, the bare metal stents (BMS).6 Late stent thrombosis

(LST) is a major complication of the patients who received

implantation of the following generation of stents, the drug

eluting stents (DES).7 Recently, new concepts of vascular

stents like endothelial progenitor cell (EPC) capture stents

and biodegradable stents (BDS) have emerged. In the clinical
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studies of the Genous Stent (anti-CD34 antibody coated sur-

face, capturing EPCs), no acute or subacute stent thrombosis

was observed. But CD34-positive cells can differentiate into

various kinds of cells including inflammatory cells and vascu-

lar smooth muscle cells (SMCs) and thus these kinds of stents

increased the risks of ISR and LST as well.8 Another promis-

ing approach to overcome these limitations is the application

of biodegradable cardiovascular stents, which could be made

of both polymers (lactic acid,9 glycolic,10 caprolactone fami-

lies,11 etc.) and metals (Mg-based,12 Fe-based alloys,13 Zn-

based,14 etc.). However, the degradation time of polymers of

about 2 yr is too long, and the uncontrollable degradation rate

of magnesium within less than six month is too fast. There is

still a gap between the degradation periods of existing stents

and an ideal BDS degradation period, which is assumed to be

about 6–12 months.15 Furthermore, the corrosion products, for

example, lactic acid from poly(L-lactic acid) and Mg(OH)2

from magnesium alloys, significantly disturb the local envi-

ronment by pH shifts, osmotic changes, and unphysiologic ion

concentrations. Not all of these products underwent in depth

evaluation yet.

Despite the impressive progress in the design of novel

vascular stents, the pursuit of improving stent performance

through surface modification has not stopped. From the

BMS to DES, and from BDS to EPC capture stents, a large

number of novel vascular stent models have been developed,

focusing on new stent platforms, new bioactive coatings,

novel functional surfaces, and new drug combinations. This

article reports the recent research and applications of devel-

oping cardiovascular stent surfaces with novel functions

emerged, especially in the author’s laboratory. The objective

of our work is to apply surface modification techniques for

making cardiovascular stents to smart interventional devices,

which can regulate blood-implant responses in a spatiotem-

poral way, accelerate the repair of endothelium and promote

the healing of atherosclerosis.

II. BASIC REQUIREMENTS OF AN IDEAL
VASCULAR STENT

Currently, numerous reviews have discussed the basic

characteristics of vascular stents. Mechanical factors and bi-

ological factors are the main considerations in the design of

a new stent.16 Mechanical factors include the following

aspects: (1) both flexibility and strength are basic require-

ments to the substrate material. On one hand, it must be

delivered to the small diameter atherosclerotic arteries; on

the other hand, the substrate material should overcome the

forces imposed by the vessel wall, avoid the recoil, and sup-

port vascular remodeling. That is why novel alloys, for

example, Co-Cr and Pt-Cr alloys, become popular instead of

316L stainless steel (SS). Hand in hand with the mechanical

properties of the material goes the stent geometry, the thick-

ness of the struts, the connections and the surface area.17 (2)

Magnetic resonance imaging (MRI) compatibility: With the

assistance of MRI, doctors are able to track the location of

the stent and inflate the balloon through a catheter to expand

the narrowed vessel wall. Taking Pt-Ir alloys for instance, it

shows excellent radiopacity and also present a reduction in

both thrombosis and neointimal proliferation. However, we

have to face the problem of poor mechanical properties.18

Fortunately, with the development of material science and

commercially available finite element solver, novel stent

designs that match the substrate materials with the strut for

better behavior has been a basic technique in almost all of

the medical device companies.

However, it must be admitted that the advanced substrate

materials only could provide a limited improvement of the

stent performance. There are generally compromises between

the optimized mechanical properties and the complex require-

ments of the bioenvironment. Consequently, sophisticated

surface engineering has to be performed to address all the bi-

ological circumstances.19 (1) Hemocompatibility and antith-

rombotic properties: Materials surface should be blood

compatible and able to resist plasma protein adsorption and

denaturation, platelets adhesion and activation, blood coagu-

lation factor activation, etc. (2) Suppression of SMCs:

Excessive proliferation of SMCs is one of the initial factors

in an atherosclerotic plaque. Also the SMCs associated neoin-

timal hyperplasia is the main failure mechanism of BMS. (3)

Endothelial cell-friendly microenvironment: Considering the

significant role of the native endothelium in healing after the

trauma of stent placement and as an antithrombotic surface,

the ideal stent surface should actively promote endothelializa-

tion.20 Based on this point, the concept of EPC capture stents

aiming at rapid endothelialization has raised up and plenty of

animal experiments and clinical tests are under evaluation.

The selectively targeted influence of the various vascular

cells [platelets, SMCs, endothelial cells (ECs), EPCs] by the

stent surface, however, is an ongoing and challenging task in

surface engineering science.

A. Surface functionalization strategies for improving
hemocompatibility

Blood–biomaterial interfacial events are considered as the

key point when evaluating the efficiency of a stent.21

Immediately after exposure of the stent to the blood, plasma

proteins adsorb to the surface of this foreign material and

undergo conformational changes. Blood platelets respond to

these external stimuli, especially to denatured fibrinogen on

the surface by adhesion, aggregation, and conversion to a

procoagulant state. In addition, the contact phase system

(factor XII and kallikrein) of the intrinsic pathway coagula-

tion cascade becomes activated, and the further progress of

the coagulation is propagated by the activated platelets.22

Afterwards, the activation and aggregation of platelets and

mononuclear cells and the generated fibrin form a stable

thrombus and narrow the blood vessel further.23 From this

point, limited hemocompatibility of DES substrate can lead

to ISR after the degradation of drug-loaded coating and

strongly contributes to the failure of these devices.

Surface modification techniques have been applied very

early to improve the hemocompatibility of the stents.24 The
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key approaches to control blood component responses have

been utilized to prepare surfaces with superior hemocompat-

ibility, including inhibition of fibrinogen denaturation, inhi-

bition of platelet aggregation and activation, blocking of the

active catalytic site of thrombin, minimizing the complement

associated inflammatory reactions, etc.25

B. Surface functionalization for inhibiting smooth
muscle cell proliferation

Poor hemocompatibility is not the only reason for the fail-

ure of BMS. As stated above, ISR by neointimal hyperplasia

is the leading complication of BMS. This intimal thickening,

containing mainly SMCs, is a reaction of the vessel wall to

the injury of stent expansion. The migrating SMCs cover the

luminal surface of stent struts and often overgrowing them

and cause the restenosis. Yet, the origin of the intimal SMCs

remains controversial.26,27 In addition to the SMCs from the

artery’s media, also bone marrow derived smooth-muscle

progenitor cells may participate in neointimal formation af-

ter vascular injury.28 It has been suggested that toxic ions

released from the cobalt-alloy implants induce monocyte

costimulatory molecule expression and release of proinflam-

matory cytokines and this may be the cause of the neointimal

formation and the clinical failure of stents.29

For the prevention of ISR, a revolutionary stent design

DES that combines drugs or agents with the medical devices

has been developed. This kind of stent suppresses the devel-

opment of lumen restenosis by the release of paclitaxel or

sirolimus, both of which are antiproliferative drugs used in

the treatment of cancer. Since its arrival in 2003, DES has

transformed the practice of interventional cardiology by dras-

tically reducing the restenosis rate and the need for revascu-

larization.30 Unfortunately, these kinds of drugs also suppress

the growth of ECs and delay the re-endothelialization.

Besides, the polymer carrier like poly(ethylene-co-vinyl ace-

tate) and poly(n-butyl methacrylate) in the first generation

DES (CypherTM and TaxusTM), the delayed endothelializa-

tion also leads to extended exposure of the drug-eluting poly-

mer coating to blood with the risk of LST. Nowadays,

polymer-free DES and metallic DES with biodegradable

polymers have been shown to improve the long-term safety

and efficacy as well and new DES with thinner struts releas-

ing limus-family analogues from durable polymers have fur-

ther improved the clinical outcomes.31 However, also in the

case of polymer-free DES and biodegradable carrier coated

DES, a bare metal surface remains in contact with the vessel

wall and/or the blood. The poor bio/blood compatibility of

the bare substrate still can stimulate coagulation and cells

dysfunction, especially soluble ions like Cr, Ni, and Co ions

released into the tissue may induce adverse tissue reactions.

In order to overcome the shortcoming of the above men-

tioned stents, the corresponding author of this paper pro-

posed the concept of a “time sequence functional stent,”

which combines a poly(lactic-co-glycolic acid) (PLGA)-

rapamycin coating on a Ti-O coated metal stent substrate.

The biodegradable PLGA controls the release of rapamycin

and the subsequently exposed Ti-O film on the substrate

presents good hemocompatibility. In the acute stage, the

released drug plays a crucial role to suppress restenosis.

Then the drug carrier PLGA starts to degrade and the Ti-O

film with good thromboresistant properties is exposed to

blood; it suppresses blood coagulation and supports endothe-

lialization.32 In the late stage, the Ti-O film coating on the

stent also prevents the release of toxic elements from the

stent into the surrounding tissue and increases the long-term

biocompatibility. One year clinical results showed that the

restenosis rate and late thrombus events are significantly

lower than the reference DES controls.33

C. Construction of ECs friendly stent surface

At present, DES are very popular and considered as a

breakthrough in interventional cardiology. As a revolution-

ary medical device combining drug and stent, DES show

statistically lower rate of ISR than BMS.34 However, the

long-term safety of DES was questioned at the European

Society of Cardiology Congress in 2006, and subsequent,

studies reported that sirolimus or paclitaxel eluting stents

were associated with similar risks of death or myocardial in-

farction as compared to BMS.35 Late thrombosis has

emerged as a major concern for DES implanted patients and

those suffering from late DES thrombosis reminded us of the

importance of arterial endothelium healing. The recent clini-

cal results have elucidated that the complete endothelializa-

tion with ability of inhibiting SMCs’ proliferation is an

essential process for maintaining arterial health. The loss of

endothelium is indeed a precondition for arterial thickening

and restenosis. The drug released from DES inhibits both the

growth of SMCs and ECs, slowing down the process of ISR

but delaying the repair of endothelium. Actually, a healthy

endothelium normally provides an anticoagulant and antipro-

liferative surface, acting as an effective natural protection

against thrombosis.36

Nowadays, there is a development to design stent surfa-

ces, which support endothelialization better. There is search

for new drugs or molecules with selective cytotoxicity to

SMCs but not to ECs for the application in DES. Apart from

utilizing DES, improving stents without drug release, but

stable modified with ligands for ECs adhesion molecules and

EPCs capture molecule is another exciting and encouraging

approach. Perhaps, future DES designs based on drug devel-

opment will be guided more from the expertise of clinicians

and pharmaceutical experts. Surface engineers are much

more interested in the design of multifunctional surfaces

which satisfy all the requirements of an ideal vascular stent

to the greatest extent, typically via directing the cell develop-

ment using bioactive molecules.

III. NOVEL STRATEGIES IN CONSTRUCTING
MULTIFUNCTIONAL STENT SYSTEM

Since the success application of the Ti-O film based time

sequence functional stents in our laboratory, we have paid

more attention on new strategies for developing cardiovascular
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stent surfaces with novel functions in the recent years. In the

following part, we would like to review our attempts for devel-

oping cardiovascular stent surfaces with novel functions,

including our latest discoveries in three fields: (1) multifunc-

tion synergy by coimmobilization of biomolecules; (2) stem

cell based strategies applied on vascular stents; (3) realization

of multifuntionalization by single molecule based surface

modification.

A. Multifunction synergy by layer-by-layer
coimmobilized biomolecules

Multifunctional surfaces based on the coimmobilization

of two or more biomolecules with synergistic action are fre-

quently desired. At present, various techniques are available

for immobilization of biomolecules on vascular stent surfa-

ces including physical adsorption, monolayer self-assembly,

and layer-by-layer (LBL), functional groups mediated

anchoring and direct solution mixed covalent immobiliza-

tion. The method of electrostatic LBL assembly with a cati-

onic and an anionic polyelectrolyte, such as various growth

factors and other proteins has been widely applied to con-

struct a multifunctional surface.37 Aiming at constructing an

anticoagulant, endothelialization supporting or EPC captur-

ing surface, different polyelectrolytes, for example, heparin,

adhesion proteins, and antibodies were chosen to construct

the multifunction surface.

In the recent decade, many groups have adopted LBL to

construct multifunctional surfaces. In the field of cardiovas-

cular materials modification, this method is highly attractive,

as it can be applied also to complex shaped surfaces. In 2009,

Meng et al. alternatively deposited chitosan and heparin onto

a coronary stent to accelerate the re-endothelialization and

healing process after coronary stent deployment. The LBL

technique was confirmed to be easily applied onto DES sys-

tem and stable during sterilization and storage.38 With the

same strategy, Luan et al. chose soluble complement receptor

1 and heparin as the assembled molecules to construct a sur-

face that inhibits blood coagulation and complement activa-

tion and thus prolongs graft or stent survival.39 Recently,

categories of assembling molecules have extended varying

from the original proteins or charged polymers to novel drug-

loaded micelles or specific biomolecules like siRNA and

antibodies. In 2009, Kim et al. reported a multilayer for stent

system composed of anionic poly(lactic-co-glycolic acid)

grafted hyaluronic acid micelles encapsulating paclitaxel,

heparin, and PLL via an LBL fashion. The heparin and pacli-

taxel in suitable amount in the multilayer were readily con-

trolled for a sustained release and effectively inhibited the

proliferation of SMC.40 Lu et al. (2013) published their sys-

tematic results of ePTFE grafts coated with anti-CD133 func-

tionalized heparin/collagen multilayers. Histopathological

staining and scanning electron microscopy indicated that the

anti-CD133 antibody accelerated the attachment of vascular

endothelial cells onto the ePTFE grafts. They also empha-

sized that tailoring early rapid endothelialization had been

of great significance in designing novel vascular grafts or

stents.41 In the same year, hyaluronic acid/chitosan films with

incorporated small interfering RNA (siRNA) nanoplexes

were achieved by Wendel and Krastev groups.42 This stent

surface suggested the low adhesion of blood cells on the poly-

electrolyte multilayers, as it prevents thrombosis after stent-

ing. Gene eluting system might offer a powerful technique

for novel DES to prevent restenosis in the future.43

Fortunately, fabrication of multilayers by consecutive adsorp-

tion of polyanions and polycations provides a flexible plat-

form for alternative deposition of novel biomolecules for

tailored multifunction architecture.

Our group has been working on the construction of multi-

functional stent surfaces via LBL techniques for a few years.

Li et al. improved blood compatibility and endothelialization

utilizing heparin and fibronectin (Hep/Fn) LBL coimmobili-

zation. The effect of different pH conditions on the assem-

bling effect depending was investigated and compared with

covalent immobilization methods. All results suggested that

the coimmobilized films of Hep/Fn confer good antithrom-

botic properties and with good endothelialization.44,45 Also,

inflammatory responses of these modified samples were fur-

ther evaluated. The results showed that Hep/Fn modified tita-

nium revealed a lower inflammatory response than pristine

Ti, as determined by the release of the TNF-a, MCP-1 and

IL-1b from macrophages and endothelial cells seeded onto

the materials.46 Also extracellular matrix components such

as collagen,47 fibronectin,48 laminin and their derived pep-

tide sequences RGD, REDV, YIGSR, etc., were integrated

in together with heparin in LBL deposited coatings on tita-

nium surfaces, and these surfaces were shown to improve

EC adhesion and proliferation and enhance the hemocompat-

ibility. However, the detailed mechanism of multifunctional

synergy of heparin and adhesive proteins remains unclear,

which still needs further investigation.

B. Stem cell based strategies applied on vascular
stents

A novel strategy of in vivo/in situ endothelialization of

vascular implant for accelerating vessel repair after stent im-

plantation has been recently developed. Supporting the hom-

ing of stem cells or progenitor cells at the site of the injury,

accelerates endothelialization and presents a self-healing

system with accelerated repair of the damaged endothe-

lium.49 The responsible cell source for re-endothelialization,

the EPCs has been first described by Asahara in 1997.50 In

the recent decades, this small population of CD34þ circulat-

ing mononuclear cells derived from bone morrow gained

increasing interest, because of its capability to differentiate

into mature ECs and participate in therapeutic angiogenesis

in vivo.

1. Stem cell capture surface for rapid
endothelialization

In 2005, Genous stent received CE mark and became the

first commercial vascular stent applying an EPC-capture sys-

tem based on immobilized anti-CD34 antibodies.51 Despite
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absence of acute or subacute stent thrombosis or stenosis in

clinical trials, there appeared the possibility that the stent

also pilots smooth muscle progenitor cells, which cause neo-

intimal proliferation. Continuous improve of EPC capture

stents therefore is still a huge task for the stent designers.

Lin et al. applied LBL techniques to construct a coated anti-

CD34 functionalized heparin–collagen multilayer with good

results concerning in situ endothelialization and as a possible

solution against in-stent restenosis.52 Anti-CD34 antibodies

also were grafted on a titanium surface via oriented immobi-

lization techniques.53 This coated surface could promoted

EPC adhesion under static and flowing condition in vitro,

and induced rapid endothelialization of a stent in vivo.

Although these designs could ensure a sufficient amount of

CD34þ stem cells, the cells did not differentiate further to

endothelium. Taking this limitation into account, heparin,

CD34 antibody and vascular endothelium growth factor

(VEGF) were coimmobilized on the stent surface, striking the

balance of antithrombosis and effective ECs-promotion.54 As

shown in Fig. 1, avidin was absorbed onto titanium via elec-

trostatic interactions. Afterwards, biotinylated heparin and

Protein A were immobilized onto the avidin coated surface

through biotin–avidin system. Subsequently this layer was

used to immobilize the anti-CD34 antibody and VEGF,

respectively, which is based on the specific binding of protein

A and Fc segments of CD34 antibody and the specific affinity

of heparin and VEGF. It was concluded that a biofunctional

LBL on titanium, constructed by assembling the anti-CD34

antibody, VEGF, and heparin, significantly improves the en-

dothelialization and anticoagulation.

Even though these designs proved to be safe and effec-

tive, the success of this fascinating technique largely

depends on the selection of optimal target molecules on the

membrane of the EPC surface. Wendel et al. questioned that

the concept of EPC capture stents is hype or hope. The chal-

lenge is if the capture molecules bind even weakly to other

blood cells (e.g., platelets, monocytes, and neutrophils) or

plasma proteins (fibrinogen, etc.), this technique will fail.

The immobilized capture molecules will be immediately

covered by competing proteins or cells considering their sig-

nificantly higher concentration in the blood stream than

EPCs.55 In literature, numerous molecules for capturing

EPCs have been applied to achieve self-endothelialization of

blood-contacting materials including monoclonal antibodies,

selectins and their ligands, peptide or DNA aptamers, and

even magnetic molecules.56 In 2013, Lee et al. compared

endothelialization and neointima formation of two EPC cap-

ture stents with CD34þ antibodies or vascular endothelial-

cadherin, respectively, coated on BMS. The VE-cadherin

worked out as the more suitable target molecule than CD34

for EPC-capturing stents.57 Our group also has made

attempts on constructing EPC capture surface. Using the

FIG. 1. Fluorescent images of EPCs, which adhered under flow conditions on bare titanium (Ti) or SS surface, or on these metals functionalized with EPC-

capture peptide- or DNA-aptamers or anti-CD34 antibodies. The peptide aptamer was grafted via Schiff’s base reaction on a polydopamine coating, the DNA

aptamer via electrostatic adsorption onto a plasma polymerized allylamine coating and the antibody together with heparin and VEGF in an electrostatic layer-

by-layer deposition technique. Cell nuclei are stained blue (DAPI) and cytoplasma in green/red (Rhodamine).
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biotin-avidin system, a peptide aptamer(TPSLEQRTVYAK-

GGGC-K-Biotin) and bovine serum albumin (BSA) were

immobilized onto titanium via mussel-inspired dopamine

film as shown in Fig. 1 (unpublished data). In vivo experi-

ments showed that the aptamer and BSA coimmobilized sur-

face had only low antithrombogenic property but also

accelerated the self-endothelialization in situ. Another trial

was the immobilization of DNA aptamers to construct an

EPC-capture surface on a plasma polymerized allylamine

(PPAam) film. The modified samples captured more EPC

under a nonstatic conditions and present a cell friendly sur-

face for both EPCs’ and ECs’ proliferation (Fig. 1, unpub-

lished data). However, there are also limitations with this

design. Peptide or DNA aptamers that specifically bind to

EPC were obtained through an in vitro selection process

known as phase display58 and systematic evolution of

ligands by exponential enrichment,59 respectively. Their bio-

safety and biostability are still unknown because in vivo ani-

mal tests and long term evaluation have not been conducted

systematically. However, taking advantages of EPC-specific

molecules to utilize the self-healing system of the organism

by fishing EPC to the vascular lesion have brought a para-

digm change in surface modification concepts for in vivo en-

dothelialization. Our group continuously performs more

basic studies and animal tests to optimize the EPC capture

surface in order to develop a novel generation vascular stent

based on this principle.

2. Stem cells mediated vessel healing in multiple
dimensions

EPCs can be isolated and labeled by incubation with

superparamagnetic iron oxide (SPIO) particles via phagocy-

tosis processes. This method to capture and to retain mesen-

chymal stem cells or circulating EPCs at the vascular injury

site provides a novel approach to realize a targeted guidance

of the cells. Li et al. labeled EPCs with silica coated SPIO

nanoparticles and an applied exterior magnetic field to guide

it toward the ischemic region in a mouse model of middle

cerebral artery occlusion in vivo.60 Riegler et al. also demon-

strated that conjugation with SPIO nanoparticles does not

exhibit adverse effects on cell viability, differentiation, or

secretion patterns. The increase in stem cell retention

resulted in a decrease in the restenosis level three weeks af-

ter cell delivery.61 Hence, our group prepared polyethylene

glycol (PEG) and anti-CD34-coated magnetic nanoparticles

(MNPs) to guide stem cells to a target destination in vivo by

MNPs in a magnetic field. Hemolysis rate and clotting time

(APTT) were determined to ensure the safety of the applica-

tion in the cardiovascular system. The ability of nanopar-

ticles to target stem cells in vitro and the influence of the

magnetic field strength on the stem cells capture effect were

evaluated as well. The designed MNPs possessed good

hemocompatibility and specifically bound to stem cells

(Fig. 2). The suitable response to an external magnetic

field helped to deliver stem cells to the lesion sites.62

Inspired from Polyak group’s work,63 our synthetic magnetic

nanoparticles were applied to construct an EPC captured sur-

face under exterior magnetic field. Different from EPC-

binding device surfaces, CD34þ binding MNPs can harvest

enough EPCs from the whole blood and guide these cells to

the location of the stent implantation by an external mag-

netic field.

With the development of biodegradable vascular stents,

Fe-based alloys also gained interest.13 However, the low cor-

rosion rate and difficulty in biological surface modification

limit the application of these materials in vascular stent

design.15 MNP guidance of EPCs, the magnetic iron stent

may find a revival in the future. Rapid endothelialization on

an iron stent surface may be accomplished under a magnetic

field. MNP-labeled stem cells can be accumulated at the

magnetic iron surface to achieve a native endothelium layer.

At various time points, repeatedly fresh MNPs can be

injected into the body to capture regenerated stem cells to

the desired location. From this conceive, stem cells mediated

injured vessel healing in multiple dimensions (time-space

relationship) is achieved as a more efficient treatment.

C. Multifuntionalization by single molecule based
surface modification

Currently, multifunction surfaces become the goal of

novel stent designs. Nevertheless, realization of multifunc-

tion requires the cooperative work of multiple molecules.

More extended clinical evaluation of isolated and combined

hazards to the patients are necessary with these more com-

plex devices. Therefore, a single molecule with multiple

functions, i.e., endothelialization promotion, anticoagulant,

antiplatelet, SMC suppression, and remedying atherosclero-

sis, for immobilization on the stent surface was sought.

During few years’ exploration in our group, several promis-

ing molecules were identified and immobilized. For instance,

heparin, GA, and nitric oxide (NO) donor systems have been

successfully introduced.

1. Heparin associated multifunctional stent coatings

Heparin, a highly sulfated polysaccharide, was discovered

in 1959.64 It is known as an anticoagulant drug and interacts

with a wide range of proteins, chemokines, and growth fac-

tors, and these interactions are implicated in immunology,

physiological, pathological processes, and many other bio-

logical processes, such as tissue structuring and organization,

blood clotting, and cell growth.65 Figure 3 reveals the multi-

ple functions of heparin. As an anticoagulant polysaccharide,

heparin of 18 or greater saccharide units catalyzes the inter-

action of antithrombin and thrombin, leading to the forma-

tion of covalent thrombin–antithrombin complexes, and thus

exhibits anticoagulant activities. A pentasaccharide sequence

of heparin already is sufficient to inhibit the coagulation fac-

tor Xa. This knowledge has been used for long time to pro-

duce anticoagulant coatings on surfaces by immobilizing

heparin at high concentrations to a surface using various

methods,66 up to the recent development of feedback-

controlled, coagulation triggered heparin release systems.67
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Besides this, heparin inhibits platelet function and indu-

ces the expression of markers of contractile SMC phenotype

and thus reduces SMC proliferation, which is considered as

the major mechanism by which local heparin therapy inhibits

restenosis.68 Heparin also presents anti-inflammatory proper-

ties by inhibition of the complement cascade and promotes

endothelium regeneration in some cases. The possible princi-

ple is the high affinity of various growth factors and other

proteins with an anion binding site to heparin. However, the

mechanism by which heparin promotes human endothelial

cell growth is not clear yet.

In our group, a heparinized surface was constructed via

covalently immobilization or ionic adsorption to a PPAam

film to explore the role of the heparin immobilized surfaces

in the direction of ECs and SMCs fate and re-endothelializa-

tion.69 The results [Fig. 4(a)] suggest that ECs on the

Heparin-PPAam undergo the general adhesion processes of

substrate attachment, spreading, and cytoskeleton develop-

ment and then proliferation. In addition to EC, also the mor-

phology, proliferation, and viability of SMCs were analyzed.

The Heparin-PPAam surface can effectively inhibit cell ad-

hesion, survival, proliferation, and increase the level of

SMCs apoptosis [Fig. 4(b)]. We also noticed that the PPAam

surface covalently immobilized with 3.6 lg/cm2 heparin

exhibited reduced adhesion and proliferation of ECs com-

pared to bare PPAam but higher adhesion and proliferation

of ECs than on 316L SS. PPAam functionalized with only

0.28 lg/cm2 heparin in a noncovalent manner showed much

greater ability to enhance EC adhesion and proliferation than

the 316L SS as well as the control PPAam.70 Another hepari-

nized surface was constructed in our group by immobilizing

heparin/poly-L-lysine nanoparticles conjugated at different

pH onto a dopamine coated surface, where a heparin density

gradient on a surface was generated by immobilizing nano-

particles of different heparin: poly-L-lysine ratios.71 The AT

III binding quantity on this surface was significantly

enhanced, and APTT and TT coagulation times were pro-

longed, depending on the heparin density. Also, a low hepa-

rin density is sufficient to prevent platelet adhesion and

activation. Meanwhile, the biological compatibility evalua-

tion suggested that a high heparin density above 20 lg/cm2

was unsuitable for vascular cell proliferation and endothe-

lium regeneration, while low heparin density up to

3.5 lg/cm2 selectively prevented SMCs proliferation but

accelerated endothelialization. Therefore, the sensitivity of

vascular cells to the heparin density is very different, high

FIG. 2. Prussian blue stained stem cells incubated with different magnetic nanoparticles for one day. Incubation without magnetic field in (a)–(c). Incubation

for two days under the different magnetic field intensities of 100 mT in (e), (g), and 300 mT in (f), (h), (d) without magnetic field as control.
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FIG. 3. Multiple functions of heparin and associated biomolecules.

FIG. 4. (a) Immunofluorescent images of cytoskeletal actin for ECs on the 316L SS and Hep-PPAam surfaces after 2, 12 h, and 24 h of culture. (b)

Immunofluorescent images of a-SMA for HUASMCs on 316 L SS, Hep-PPAam after one and three days of culture. (c) Schematic diagram of heparin adsorp-

tion on the protonated PPAam surface.
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heparin density suppresses the growth of all vascular cells,

while low heparin density selectively inhibits SMCs hyper-

plasia but promotes EPCs and ECs proliferation.

According to others’ previous report on heparinized surfa-

ces, for example, heparin-coated stent of Gong et al.72 and

heparin-doped polypyrrole by Stewart et al.,73 we conclude

that a material decorated with heparin, either bound in a

covalent or noncovalent manner, exhibits multiple functions

depending on the exposed heparin density. These results of

basic research promise a successful construction of multi-

functional heparinized surface which may reduce restenosis

and promote endothelialization, providing further concepts to

utilize heparin more effectively on surface modification of

vascular stents.

2. Gallic acid assisted surface modification of
vascular stents

GA (3,4,5-triphydroxyl-benzoic acid) is particularly

abundant in processed beverages such as red wines and

green teas. It is a polyphenyl natural product, which can be

obtained under acid hydrolysis of hydrolysable tannins.74 It

is a strong natural antioxidant and presents some therapeutic

properties including antitumoral, antibacterial, antiviral, and

anti-inflammatory activities as observed in previous stud-

ies.75 In addition, GA has been found to selectively induce

apoptotic cell death in SMCs but no cytotoxicity against nor-

mal ECs.76 Based on these considerations, we introduced

GA in multifunctional films in various studies.

Taking the pharmacological effect of GA into account,

the influence of different concentrations of GA on ECs and

SMCs was investigated through culture of single cell types

and coculture, and some systematic results are shown in

Fig. 5. The ratio of ECs to SMCs in coculture condition has

a significant rise for GA concentrations of 5 lg/ml. These

data indicate that GA exhibits a selective dose-dependent

effect on ECs and SMCs, which promotes the growth of

ECs, while inhibits the growth of SMCs. For the design of

novel DES, GA with a released concentration of 5 lg/ml

may be a suitable candidate to be loaded in a polymer coat-

ing.77 Another distinguishing feature of GA is the content of

catechol groups which can adsorb on metal surfaces.

Inspired of mussel derived dopamine self-polymerization,

GA, and hexamethylenediamine (HD) were used to form a

film (GAHD) under alkaline conditions (Tris 10 mM,

pH¼ 8.5). The possible copolymerization mechanism of GA

and HD has been elucidated and results of biocompatibility

evaluation of GAHD film have been reported in 2013 (Fig.

6). It shows the immobilization strategy of heparin, laminin,

or fibronectin on the film with the coexistence of multiple

functional groups.78 Except of these adhesive proteins, anti-

CD34 antibodies and VEGF were also coimmobilized onto

the GA modified PPAam surface. Cell culture results indi-

cated significant enhancement in capturing EPCs and the

proliferation of ECs.79 To our delight, the GA-involved mul-

tifunctional coating shows a huge potential in tailoring the

desired interfacial properties onto a wide range of materials.

It selectively induces SMCs apoptosis but supports ECs

growth, suggesting a promising application for the design of

an ideal multifunctional vascular stent that is able to address

the issues of re-endothelialization and restenosis.80

3. Nitric oxide signal mediated stent design with
multifunctional surface

NO is a signaling molecule that plays a pivotal role in the

diagnosis, treatment, and prevention of life threatening car-

diovascular disorders such as coronary artery disease, essen-

tial hypertension, stroke, vascular complications of diabetes,

and related diseases.81 This cell signaling molecule that was

first discovered in the 1980s and once as endothelium-

derived relaxing factor it is constitutively and inducibly

expressed from ECs through enzymatic conversion of L-argi-

nine by various nitric oxide synthases (NOS).82 It has been

the subject of significant research not only in the basic scien-

ces, but also in applied sciences such as the biomaterials

field.83,84 As a star molecule in the cardiovascular system,

NO released from healthy endothelium simultaneously pos-

sesses anticoagulant,85 antiproliferative86 properties and has

the ability to promote the regeneration of healthy endothe-

lium87 (Fig. 7). Even in other cases, NO-delivery platform

present antibacterial properties88 and accelerate wound

FIG. 5. (a) Ratio of ECs and SMCs in cell numbers and cell area coverage in coculture after one day in medium containing GA. (b) Fluorescence micrographs

of EC (green) and SMC (orange). Scale bar is 100 lm.
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healing process.89 Also, it plays a critical role in regulating

immune responses90 and inducing differentiation of stem

cells.91 These unique advantages make NO a very promising

molecule in the design of an ideal vascular stent.

Over the past few years, researchers (typically Meyerhoff

group) have been devoting themselves on the development

of efficient NO-releasing and -generating materials for clini-

cal therapies. Unique strategies for designing NO releasing

materials have been widely reviewed.92 Micelle, nanopar-

ticles, or dendrimers were synthesized with NO donors such

as S-nitrosothiols. Polysaccharide-based, metal complex-

based, heparin combined, and adhesive protein-combined

surface were also reported. These NO-donors type, particle-

type, and coating platforms present multiple biological func-

tions. However, there still exist some limitations of this kind

of material. A great challenge lies in the fabrication of cardi-

ovascular biomaterials while accommodating NO donors

due to their reactivity, nature, instability during storage, and

leaching of toxic byproducts.93 To overcome the present lim-

itations, recent strategies focus on transition metal-ions

FIG. 6. (a) Chemical structures and functional groups on polymerized GA and HD films. B) Fluorescence image of GAHD (blank). (c) Distribution of laminin

(green) and fibronectin (red) coconjugated to the GAHD surface via Schiff base reaction and carbodiimide chemistry, respectively. (d) Quantization of Fn and

Ln immobilized on Fn-GAHD and Ln-GAHD samples.

FIG. 7. Nitric oxide’s role in the vascular endothelium and its effects on cellular activities.
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mediated catalysis (Cu2þ, Fe2þ, Hg2þ, Agþ, organosele-

nium/tellurium compounds, or cystamine) to generate NO

from endogenous NO donor-RSNOs via specific glutathione

peroxidase(GPx)-like catalytic activity reactions.94,95 The

catalytic NO generation strategy was adopted to construct

multifunctional surfaces. The main reason is the expected

long-term release of NO via an endogenous NO donor

improves the stent performance.

In 2010, our group has taken an attempt on immobilizing

selenocystamine onto the Ti-O film to prepare a NO-

generation surface.96 Briefly, Ti-O was deposited onto 316L

SS via unbalanced magnetron sputtering. Multilayers of

polydopamine were grafted to the TiO2 surface by immer-

sion of the substrates in a 2 mg/ml dopamine solution. The

subsequent oxidation process depends on the reaction of

amine groups of the selenocystamine(SeCys) via schiff base

reaction and Michael addition [Fig. 8(a)]. This SeCys modi-

fied surface presents GPx-like activity and catalytically gen-

erates NO with a rate of about 1� 10�10 mol cm�2 min�1,

which approaches the normal NO synthesis and release from

healthy endothelial cells.97 Through the release of NO, the

modified surface remarkably inhibited the adhesion of plate-

lets and SMCs. In addition, it inhibited collagen-induced

platelet activation and aggregation. The increase of the intra-

cellular cGMP concentration confirmed that these phenom-

ena were due to NO specific signaling in platelets and SMCs

[Figs. 8(b) and 8(c)]. SeCys immobilized stents were

implanted into canine femoral arteries and the two months

in vivo implantation results showed significantly inhibited

intimal hyperplasia [Fig. 8(d)], suggesting the great promise

of the NO-releasing stent surface for cardiovascular therapy.

The NO-generating coatings therefore are also very promis-

ing candidates for a new generation of stents due to their ver-

satile abilities to improve hemocompatibility, enhance

endothelialization, inhibit SMC proliferation combined with

the potential biological functions of NO generation in

immune response, antibacterial behavior, inflammation pre-

vention, and healing atherosclerosis. Current and future

FIG. 8. (a) Schematic diagram of SeCys immobilization on polydopamine modified surface (TiO-SeCys). (b) cGMP concentration of platelets and SMCs on

Ti-O film and Ti-O-SeCys samples. (c) Platelets and SMCs adhesion on Ti-O film and Ti-O-SeCys samples. The unactived state platelets and absent adhesion

of SMCs on the Ti-O-SeCys samples are shown. (d) Optical photographs of the cross section slices of canine femoral arteries with SeCys functionalized (TiO-

SeCys) and control (SS) stents. The circle shows the differences in intimal hyperplasia. In the detail magnifications, lumen loss can be easily recognized in the

control but TiO-SeCys also keeps patent after two months.
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research on constructing NO releasing surfaces especially

stent surfaces will undoubtedly attract scientists, engineers,

and clinicians the opportunity to make significant advances

in the treatment and prevention of life threatening cardiovas-

cular disorders such as atherosclerosis.98

However, an ideal stent surface that could address all the

problems does not exist. For each method of multifunctional

surfaces, the specific disadvantages and limitations should

be carefully considered. Since most of the presented results

are based on in vitro or animal in vivo studies, few designs

have undergone the clinical evaluation yet. It has not been

proven so far, that the multifunctional surface performs well

in a complex biological environment. For example, the bio-

stability of the immobilized molecules is a crucial point

especially under long-term interactions with various

enzymes or other specific molecules. In the case of NO

releasing systems, the sufficiency of the NO-donor loading is

unclear, or a possible block of the catalytic reaction sites

(e.g., biomimetic organoselenium catalyst) can provide chal-

lenges in the designing of this surface type. MNPs-assisted

stem cell delivery system might avoid the above mentioned

disadvantages. Yet, cellular uptake, intracellular trafficking,

and cytotoxicity of MNPs as a matter of particle size await

further investigation. Also, as the MNPs get systemic distri-

bution, the biosafety of MNPs concerning other vital organs

needs to be evaluated.99 Thus, there is still a long way before

application of these strategies in future stents.

IV. CONCLUSION

With the objective of developing an innovative cardiovas-

cular stent surface to simultaneously improve hemocompati-

bility, endothelialization, and antiproliferative properties,

multifunctional surfaces were constructed in the author’s

group via different techniques. Tailoring BMS, DES, and

EPC capture stents, different molecules including heparin,

gallic acid, and various aptamers became our candidates for

novel stent designs. The systematic evaluation in vitro and

in vivo encouraged us to deeper exploration of these stent

models, and further basic experiments, animal tests, and clin-

ical trials need to be carried out. Also, we are looking for-

ward to the applications of nitric oxide releasing or

generating coatings in an ideal stent design, which presents a

huge potential in the cardiovascular system. Moreover, there

even exists the possibility of healing atherosclerosis due to

the diverse functions of nitric oxide. However, despite exten-

sive research to vascular stent for endothelium regenerative

purposes, not many biofunctionalized stents have been suc-

cessfully translated into the clinic. There are difficulties in

combining multiple signals to satisfy the microenvironment

where stent behaviors, which result in the unsuccessful

application in clinic. Therefore, the multifunctional stent sur-

face involved physical, biological, and chemical properties

need to be integrated and tuned for better control the differ-

ent processes of endothelium healing. We believe that our

various multifunctional stent surfaces will present good bio-

compatibility in the ongoing in vivo animal tests and enter

clinical trials in the near future. Scientists will spare no effort

on improving stent properties, providing systematic evalua-

tion of novel stents combining advanced surface modifica-

tion equipment and cellular or molecular biological

techniques and also in the same time, greatly enhance the

safety, cost-effectiveness, and efficacy of vascular stent in

applications of cardiovascular tissue regeneration and even

promote atherosclerosis healing.
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