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Abstract. A directional Bollinger bands (BB) method for the detection of defects in plain and twill fabric is pre-
sented, whereas a previous BB method was for patterned Jacquard fabric. BB are constructed using the moving
average and standard deviation to characterize any irregularities (i.e., defects) in a patterned texture. Every
patterned texture constitutes a primitive unit that can be used to generate the texture by a translational rule.
The regularity property for a patterned texture can be implicitly regarded as the periodic signals on the rows
and columns of an image. To utilize such a regularity property, an embedded shift-invariant characteristic of
BB is explored. The original BB method is further developed using directional rotation iterations, which enables
the detection of directional defects in plain and twill fabric. The directional BB method is an efficient, fast, and
shift-invariant approach that enables defective regions to be clearly outlined. This approach is also immune to
the alignment problem that often arises in the original method. The detection accuracies for 77 defective images
and 100 defect-free images are 96.1% and 96%, respectively. In a pixel-to-pixel evaluation comparing the detec-
tion results of the defective images with the ground-truth images, a 93.51% detection success rate is achieved.
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1 Introduction
Automated fabric inspection using automatic visual inspec-
tion (AVI) has been a popular research topic in the fields of
automation and image processing for several decades. AVI
can be facilitated using either an on-loom or off-loom inspec-
tion machine equipped with overhead digital cameras to
monitor the manufacturing product. The automated inspec-
tion process aims to reduce manufacturing defects, improve
product quality, reduce labor costs and time, and decrease
the level of human inspection error. The traditional human
inspection approach is controversial as it depends on the
experience of skilled workers and only results in about
60% to 75% of defects1 being eliminated. The AVI methods
for fabric can be broadly classified into two main groups,
motif-based2 and nonmotif-based, based on the fundamental
structure of a patterned texture, which is termed the motif.
All patterned textures can be classified into 17 wallpaper
groups2 based on a motif which can be either a rectangular,
square, or triangular shape. Each motif can generate a pat-
terned texture for one particular wallpaper group by prede-
fined symmetry rules: translation, rotation, reflection, and
glide-reflection. Figure 1 illustrates the defective samples
of plain and twill fabric (or so-called unpatterned fabric)
that are examined in this paper. Under the wallpaper group
classification, the plain and twill fabric belong to the p1
group, which is the most popular research target. Most of
the developed detection methods can be classified into
five main groups, the statistical, spectral, model-based, learn-
ing, and structural approaches. Some of the existing methods
are capable of producing outstanding results; for example,

the wavelet-based method3 and the neural network (NN)
method,4 were shown to have accuracies of 95.8% and
94.38%, respectively. The previous Bollinger bands (BB)
method5 was designed for other patterned fabrics in the
p2, pmm, and p4m groups and has obtained satisfactory
detection results. In this paper, we extend the existing BB
method for patterned fabrics to defect detection in plain
and twill fabric.

Although the BB approach was originally developed for
financial technical analysis, it has proven to be very effective
and efficient in analyzing patterned fabrics. Mathematically,
the BB approach is essentially composed of the moving
average and standard deviation. The BB method extracts the
upper and lower BB and applies these two bands to every
detected image. By fast training with several defect-free sam-
ples, the maximum and minimum values of the upper and
lower bands are learned as the threshold set. The BB method
has embedded shift-invariant properties and can effectively
characterize periodic patterned textures. The BB method has
been shown to perform robustly for dot-, star-, and box-pat-
terned fabrics. However, it remains unknown whether BB
can also be applied to twill and plain fabric. In a preliminary
evaluation, the BB method failed to recognize some defec-
tive samples. For example, as Fig. 2 shows, the BB method is
weak at differentiating defects with directional features, such
as the diagonal strips on the incorrect draw in Fig. 2(a). The
discriminatory power of the BB method is sharpened when a
defect appears orthogonally to the movement (i.e., horizontal
or vertical direction) of the BB calculation. Figure 6 in Sec. 3
will demonstrate such an effect. Therefore, research is needed
to optimize the discriminative power of the BB approach.
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The directional BB approach presented in this paper
further extends the regularity property of the existing BB
method to directional defects. First, every input image is
rotated along four orientations: θ ¼ 0, 30, 45, and 60 deg.
Every rotated image is then cropped to a standard size and
processed by the upper and lower bands of the BB on the
rows and columns, respectively. Next, the processed upper
and lower bands undergo thresholding using the set of
threshold values obtained from the training stage. Four
intermediate binary images are generated, for which 1 (white
pixels) denotes a defective pixel and 0 (dark pixel) denotes
a defect-free pixel. One of the four intermediate images is
selected as the final image by comparing the maximum num-
ber of white pixels.

This paper makes the following contributions to the
literature:

1. The directional BB method, developed with four rota-
tional representations, is shown to be a shift-invariant
and fast fabric defect detection approach that is effec-
tive on the most popular plain and twill fabric.

2. A sound theoretical foundation of the BB method is
constructed, which describes the regularity property of
patterned textures, the invariant property of the BB
method on patterned textures, the formulation of the
defect detection rules, and the directional rotational
approach, and provides strong theoretical support for
the previous results.5

3. The detection accuracies for the plain and twill fabric
reach 96.1% for defective images and 96% for defect-
free images. The original BB method is based on the
classical statistical measures of the moving average
and standard deviation. However, it is weak at dealing
with directional defects. The directional BB method
presented in this paper can deal with less-prominent
directional defects and, hence, is a significant advance
on the existing models.

4. The directional BB method successfully extends the
original BB approach and is evaluated using a ground-
truth database of eight types of defective images,
which is rare in the literature on unpatterned fabric
inspection. In a pixel-to-pixel ground-truth evaluation,
an average of 93.51% is obtained, which demonstrates
the robustness of the directional BB method.

The remainder of this paper is organized as follows. In
Sec. 2, we survey the literature on defect detection in plain
and twill fabric. Section 3 outlines the directional BB method
and its procedure. In Sec. 4, we evaluate the performance of
the directional BB method for plain and twill fabric. Finally,
Sec. 5 concludes the paper.

2 Literature Review on Defect Detection in
Plain and Twill Fabric

As this paper is concerned with detecting defects in plain and
twill fabric (the p1 group), the literature review focuses on
the existing methodologies for defect detection in this fabric
group. For fabric defect detection in the other 16 wallpaper
groups, a number of methods have recently been developed,
such as the wavelet-preprocessed golden image subtraction
method,6 the regular bands method,7 the co-occurrence matrix
method,8 the local binary patterns method,9 and the motif-
based method.2,10 Although plain and twill fabric are the
most commonly used fabric in fabric defect detection, only
a few methods have demonstrated good results.

The Fourier transform (FT) is a spectral approach that is
commonly used for defect detection in plain and twill fab-
ric.11–16 The spatial domain is generally sensitive to noise and
small amount of noises could affect the color distribution
and deteriorate an image quality, making it challenging to
identify defects. However, the FT characterizes defects in the
frequency domain because defect-free patterns always dem-
onstrate a similar spectrum regardless of the presence or
absence of noise. A central spatial frequency spectrum16 was
proposed for plain fabric defect classification with seven
parameters for outstanding characteristics. However, only a
few defective samples from four classes of plain fabric defect
were tested. The Gabor transform is another popular spectral
approach for fabric inspection. Three detection schemes17

using Gabor wavelet features have been proposed for plain
and twill fabric. In the first, a supervised defect segmentation
was performed using a threshold value based on the magni-
tude of the Gabor filtered images of defect-free samples. The

Fig. 1 Samples of plain and twill fabric: (a) broken end (bn1), (b) dirty
yarn (dy1), (c) mispick (mp1), (d) netting multiple (n1), (e) slack end
(se1), (f) thick bar B (tkbb1), (g) thin bar (tn1), and (h) incorrect draw
(wd1).

Fig. 2 Failure of the Bollinger bands (BB) approach in detecting
a defective image in the original orientation: (a) sample of wrong
draw (wd6) and (b) detection result after the BB method.
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second involved an unsupervised web defect segmentation
with a multichannel filtering approach that permitted a multi-
resolution analysis resembling the approach of Jain and
Farrokhnia.18 The test method used defective images from four
twill and four plain weave fabrics. Both of these schemes
enabled the defects to be outlined after segmentation. In the
third approach, a fast web inspection was conducted using
only the imaginary Gabor function with two one-dimensional
projection signals on the rows and columns. This scheme was
able to detect and locate most defects in the horizontal and
vertical directions in 13 images (of various defects), although
the explicit shapes were not shown. As Gabor transform
indeed is a special case of short-time FT, it inherits it advan-
tages and disadvantages. However, the reliability of the three
schemes has yet to be addressed. In addition, there are other
Gabor-based fabric inspection methods.19–22

Wavelets are often used in the feature extraction for plain
and twill fabric inspection. Wavelet transforms (WTs) could
remove noises on the background texture in their approxi-
mated subimages and extract the texture details by using
horizontal, vertical, or/and diagonal detailed subimages.
Hence, the onboard fabric defect detection machine using
WT and edge fusion as preprocessing tools23,24 was able to
suppress the background texture and enhance the defect
appearance on spun-yarn, filament-yarn, and sheeting
fabrics. The defect detection, which was achieved by deter-
mining any nonhomogeneous regions after thresholding,
provided 89% accuracy from a database of 26 defect types.
A fine resolution vibration-free 4096-element line-scan cam-
era was installed to identify any defects in the weave. Despite
the fair accuracy rate, this method is one of the few to have
been evaluated with a large test sample.

In general, the wavelet basis is heuristically chosen in the
standard WT to capture the most significant features of each
defect type. An adaptive wavelet-based feature extractor25

using a Euclidean distance-based detector was proposed for
plain and twill fabric inspection. An undecimated discrete
WT was used to extract the fabric features in a multiscale
representation and the processed image was partitioned into
gray level samples of size 32 × 32. This method achieved
97.5% detection accuracy with five known defect types and
93.3% detection accuracy (a slight drop) with three unknown
defect types in an evaluation. The method is considered to
be reliable because all of the images are of good quality.

The discriminative feature extraction (DFE) method com-
bines the design of the directional wavelet with the design of
the detector parameters to minimize the detection error
rate. Yang et al.3 compared six wavelet-based classification
methods using various discriminative training approaches
on eight defect types of plain and twill fabric. The DFE
method using the directional wavelet outperformed the other
methods, although the defect classification accuracy slightly
decreased to 95.8% in a larger plain fabric database of eight
defect types compared to the aforementioned one.25 From
both methods,3,25 a tailor-made wavelet filter was designed
in a shift-invariant representation and based on the charac-
teristics of defects.

In machine learning, a back-propagation NN of a 16-tap
Daubechies wavelet decomposition26 was presented for
real-time fabric inspection. The NN used the gray level
difference method to characterize the wavelet subimage
features. The defect classification accuracy reached 85%

(with noise in the input images) and 94% (without noise)
for 50 defective and defect-free images. However, to reduce
the computational complexity, the device can only imple-
ment finite defect types. A three-layer back-propagation
NN4 was suggested for plain white fabric inspection and a
defect recognition accuracy of 91.88% was obtained using
160 defective images of four defect types. In this case,
the capacity to conduct high-dimensional system modeling
using a nonlinear regression algorithm was an advantage.
A preprocessed filtering back-propagation network and
thresholding of the image analysis were tested on the
same kind of fabric in Ref. 27 and 94.38% accuracy was
achieved using 240 samples of the four defect classes.
Although both methods4,27 obtained good detection accura-
cies, the test image quality was poor. The back-propagation
NN has the advantage of excellent generalization learning
capability due to the ability of learning abstract features
of the input (whereas the single-layer network could not),
and a tunable inner-layer number with respect to other
NNs. However, its shortcomings include a longer training
time due to the larger number of inner layers and the danger
of over-training.

In summary, besides our previous work on the BB
method,5 few studies have applied the periodicity property of
a patterned texture to fabric inspection. In this paper, we
extend the previous BB method, which is only controlled
by one parameter, by exploiting its directional property for
defect detection in plain and twill fabric.

3 Directional BB Method

3.1 Formula of BB

Our previous presentation5 of the formula of BB for defect
detection contained a number of typographical mistakes.
An updated definition of the BB is as follows:

Definition 1. For a particular row i in an image X ¼ ðxijÞ
of size p × q, the middle band (moving average) is defined as

τi;rm ¼
�Prm

j¼r1
xij
�

m
; (1)

the upper band is defined as

ui;rm ¼ τi;rm þ d · σi;rm ; (2)

the lower band is defined as

li;rm ¼ τi;rm − d · σi;rm ; (3)

and σi;rm is defined as

σi;rm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXrm
j¼r1

ðxij − τrmÞ2∕m
vuut ; (4)

where d denotes the number of standard deviations, denotes
the row dimension of the repetitive unit, and xij is the pixel
value at row i, column j of the image X, the summation
of which is from the r1th pixel to the rmth pixel with 1≤
r1≤rm≤q, rm ¼ r1 þm, r1 ∈ ½1; q −m�, rm ¼ ½1þm; q�,
and τrm ; urm ; lrm ∈ R.
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The upper and lower BBs can amplify the defective infor-
mation after the row and column processing and suppress the
information of the patterned texture background. The BB
method requires the tuning of two parameters, namely m and
d, to obtain the optimal detection result. The nominal values
for m and d are 20 and 2 (Ref. 28), respectively.

3.2 Mathematical Properties of Directional BB

Definition 2. (Regularity property of a patterned texture)
Suppose m and n denote the row and column dimensions of
a repetitive unit for any patterned texture image X ¼ ðxijÞ of
size p × q. A repetitive unit can generate an entire patterned
texture by using a certain translational rule such as a shift in
the repetitive unit from i to i ¼ iþ kn on a row, or from j to
jþ tm on a column. The regularity property on a patterned
texture image X ¼ ðxijÞ is defined as

xiþkn;j ¼ xij or (5)

xi;jþtm ¼ xij (6)

for any integers k; t ∈ Z, 1 ≤ m, 1 ≤ n, iþ kn ≤ p,
jþ tm ≤ q.

Figure 3 demonstrates the regularity property in the 100th
row and 100th column of the plain and twill fabric samples.
Regular peaks and valleys can be observed in Fig. 3.

Lemma 3. (the shift-invariant property of BB) For the
regularity property of any patterned texture image X ¼
ðxijÞ, the BB are shift-invariant such that τi;rmþtm

¼ τi;rm ,
ui;rmþtm

¼ ui;rm , li;rmþtm
¼ li;rm where m × n denotes the row

and column dimensions of a repetitive unit, and there is
a shift of pixel location from i to iþ km on a row for any
integer k; t ∈ Z.

Proof. By the regularity property of the pixels in a pat-
terned texture image X ¼ ðxijÞ, a shift-invariant property for
middle band BBs on a row can be demonstrated as follows:

τi;rmþtm
¼
 Xrmþtm

j¼r1þtm

xij

!
∕m ¼

 Xrm
j¼r1

xi;jþtm

!
∕m

¼
 Xrm

j¼r1

xij

!
∕m ¼ τi;rm : (7)

Similarly, for the upper and lower bands,

ui;rmþtm
¼ τi;rmþtm

þd · σi;rmþtm
¼ τi;rm þd · σi;rm ¼ ui;rm ; (8)

li;rmþtm
¼ li;rm ;where (9)

Fig. 3 (a) Defect-free plain and twill fabric samples of size 256 × 256, (b) pixel intensity in the 100th
column, and (c) pixel intensity in the 100th row.
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σi;rmþtm
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXrmþtm

j¼r1þtm

ðxij − τj;rmþtm
Þ2∕m

vuut

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXrm
j¼r1

ðxij − τj;rmÞ2∕m
vuut ¼ σi;rm ; (10)

for any integers d; t ∈ Z, 1 ≤ m, jþ tm ≤ q. ▯
Similarly, the same shift-invariant property can be found

on the column side for any patterned texture image.

Remark: Lemma 3 is also true for the shift-invariant
property of BB on the column side.

The shift-invariant property of the BBs allows the upper
and lower bands to be sensitive to any change of pixel inten-
sity along a row or a column of a patterned image. Any break
in the regularity in a row or a column will be enhanced by
the calculation of the BBs, especially by the accentuation of
the standard deviation at the upper and lower bands.

Lemma 4. (range of BB and the defect detection rules)
For the regularity property of any patterned texture image

X ¼ ðxijÞ with a m × n repetitive unit, the ranges of the
upper and lower bands on rows are

τi;rmþtm
þ d · σi;rmþtm

− e ≤ ui;rmþtm
≤ τi;rmþtm

þ d · σi;rmþtm
þ e

(11)

and

τi;rmþtm
− d · σi;rmþtm

− e ≤ li;rmþtm
≤ τi;rmþtm

− d · σi;rmþtm
þ e;

(12)

where e denotes the error term on the patterned texture
image.

Figure 4 shows that the normal range of the upper bands
on the rows of a netting multiple defective sample is about

[0.5, 1.5]; the errors e are found to be outside this range,
which is why the defect detection can only be performed
after obtaining the suitable threshold values on the ranges of
the upper and lower bands.

Definition 5. (Rotation of a patterned image)
For a patterned texture image X ¼ ðxijÞ, let v be a basis

vector of X, such that there exists a nonsingular rotation
matrix

A ¼
�

cos θ sin θ
− sin θ cos ϑ

�
; (13)

where θ represents the degree of rotation from v to v 0, such
that v 0 ¼ Av. In our experiment, two sets of different scales
of rotation are applied: θa ¼ 0 to 360 deg (over an interval of
30 deg) and θb ¼ 0 to 360 deg (over an interval of 45 deg).
Due to the symmetry properties of the BB, the rotation
angles can be simplified to θ ¼ 0, 30, 45, and 60 deg.

After applying the rotation on a defective image (first row
of Fig. 5), four rotated images of degrees θ ¼ 0, 30, 45, and
60 deg are obtained (second row of Fig. 5). The thresholded
images of the corresponding rotated images are shown in the
third row of Fig. 5. Note that the rotated image has been
cropped to the size 180 × 180 to maintain the aspect ratio
and square shape for processing the directional BB method
on the rows and columns. The thresholded image is a binary
image where 1 denotes a defective pixel and 0 denotes
a defect-free pixel.

After a patterned texture image is rotated, nothing is
changed except its geometrical feature (orientation), and
hence its regularity property remains. Because the regularity
property of the BB is preserved in the rotated images, some
defective images with directional defects should be detected
at a certain rotation angle. Figure 6 shows an example of a
60-deg rotated image that offers robust detection (the thresh-
olded image in the bottom right of the third row).

Fig. 4 (a) Netting multiple sample (n1), (b) side view of upper bands on rows, and (c) longitudinal view of
upper bands on rows.
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3.3 Procedure of the Directional BB Method

The procedure of the directional BB approach is given in
Fig. 7. The training stage of the directional BB method is
as follows:

1. Input the images of the three defect-free plain and
twill fabric.

2. Rotate each image around the four orientations of
θ ¼ 0, 30, 45, and 60 deg.

3. Apply the BBs on the rows and columns of each
rotated image.

4. Obtain the set of threshold values (for details refer
to Ref. 5).

The detection stage of the directional BB method com-
prises the following steps:

1. Input the defect-free or defective test images.
2. Rotate each image around the four orientations of

θ ¼ 0, 30, 45, and 60 deg.
3. Apply the BBs on the rows and columns of each

rotated image.

Fig. 5 (First row) defective sample of netting multiple (n1); (second row) cropped images with rotation
angles of 0, 30, 45, and 60 deg; and (third row) thresholded images after the BB processing.

Fig. 6 (First row) Effectiveness of the directional BB detection approach in a defective wrong draw sam-
ple (wd6); (second row) cropped images with rotation angles of 0, 30, 45, and 60 deg; and (third row)
thresholded images after the BB processing. The image rotated 60 deg generates a good detection
result.
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4. Threshold and combine the row and column results.
5. Obtain the intermediate resultant image.
6. The intermediate result with the highest number of

white pixels is then selected as the final resultant
image.

The intermediate image with the highest number of
white pixels is chosen because it is believed that the BBs
intersect with the most responsive direction of the defects
in the rotated images. It also indicates that rotated image has
been tuned to the corrected direction for the directional BB
method.

4 Performance Evaluation
The evaluation used a database of 100 defect-free and 77
defective images of plain and twill fabric. Each image is
of size 256 × 256 in 24-bit depth. The performance evalu-
ation involved two phases: (1) determination of the defect
detection accuracy by counting the white pixels after thresh-
olding and (2) in-depth evaluation of the detected results
using various measurement metrics. The first phase follows
the procedure of our previous methods.5 However, the sec-
ond phase is newly added to evaluate the degree of success of
the proposed method in detecting defects. Herein, a corre-
sponding ground-truth image database for defective images
is newly constructed visually in a manually labeled pixel-by-
pixel manner for this unpatterned fabric. The ground-truth
image is a binary image where 1 indicates a defective pixel
and 0 indicates a defect-free pixel. More details of the
evaluation are described next. The final resultant defective
image of the directional BB method is compared with the
ground-truth image to obtain more measurement metrics.
Specifically, true positive (TP), true negative (TN), false

positive (FP), and false negative (FN) are defined as follows.
TP means that the pixels in both the compared image and the
ground-truth image are numbered 1, while TN means that the
pixels in both the compared image and the ground-truth
image are numbered 0. FP means that the pixel of the com-
pared image is 1 but the pixel of the ground-truth image is 0,
while FN means the reverse. Based on TP, TN, FP, and FN,
several measurement metrics are further defined, as follows:
The detection success rate ðDSRÞ¼ ðTPþTNÞ∕ðTPþFPþ
TNþFNÞ; the positive predictive value, ðPPVÞ ¼ TP∕
ðTPþ FPÞ; and the negative predictive value, ðNPVÞ ¼
TN∕ðTNþ FNÞ. The PPV can be regarded as a precision on
the number of TP cases among the number of positive calls in
a detection experiment. These metrics help us to determine
how the directional BB method performs in analyzing the
defective plain and twill fabric samples.

In the evaluation, a repetitive unit of an unpatterned fabric
is about 7 × 11 in size, as shown in Fig. 8. Therefore, the
parameters used in the BB method were set to m ¼ 7 (the
row dimension) and n ¼ 11 (the column dimension). As
reported in Ref. 5, the final detection result is not greatly
affected if the values of m and n are approximately equal
to or greater than the lengths of the row and column of a
repetitive unit. The standard deviation σ is still set to 2 as
Ref. 5.

4.1 Intermediate Detection Results for the Four
Rotation Angles θ ¼0, 30, 45, and 60 deg

To investigate the robustness of the directional BB method,
some intermediate detection results for samples from eight
defect types of unpatterned fabric are shown in Fig. 9 (bro-
ken end, dirty yarn, mispick, netting multiple, slack end,
thick bar B, thin bar, and wrong draw). Herein, all of the
images for one defect type have the same orientation. One
sample of each defect type is processed by the directional
BB method under the four rotation angles: θ ¼ 0, 30, 45,
and 60 deg. In Fig. 9, the first row of each defect type
illustrates the rotated 0, 30, 45, and 60 deg images, whereas
the second row illustrates their corresponding thresholded
images before the selection of the final resultant image.

The thresholded image from the 0-deg rotated image can
be regarded as the same result as the original BB method.5

Hence, it is observed that the original BB method can deal
with most defect types, especially those with large defects
such as dirty yarn [Fig. 9(b)] and defects with a clear appear-
ance, such as the netting multiple [Fig. 9(d)]. However, the

Fig. 7 Procedure for the directional BB method.

Fig. 8 A mispick sample and its repetitive unit (highlighted by the red
line) of size 7 × 11.
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Fig. 9 (First row of each defect type) cropped defective images
(180 × 180) with rotation angles of 0, 30, 45, and 60 deg and
their corresponding thresholded images. (Second row of each defect
type) thresholded images (170 × 174). (a) Broken end (bn7), (b) dirty
yarn (dy5), (c) mispick (mp1), (d) netting multiple, (e) slack end (se9),
(f) thick bar B (tkbb1), (g) thin bar (tnb3), and (h) incorrect draw (wd7).
The number of samples used is given in parentheses after the defect
name.

Table 1 Average DSR, PPV, and NPV values of the eight types of
defective samples.

Rot. ang. DSR PPV NPV

Broken end (10) 0 98.26 3.66 98.39

30 98.11 11.19 98.18

45 97.96 22.22 97.99

60 98.06 31.71 98.14

Dirty yarn (7) 0 92.55 43.54 94.04

30 91.86 46.70 92.90

45 91.06 45.43 92.96

60 91.41 43.03 93.45

Mispick (15) 0 92.68 83.92 92.79

30 90.77 76.24 90.81

45 90.12 88.52 90.13

60 90.96 83.27 90.97

Netting multiple (7) 0 96.87 62.58 97.23

30 95.93 60.65 96.14

45 95.45 57.75 95.74

60 95.95 58.22 96.29

Slack end (10) 0 98.38 40.29 98.47

30 98.15 38.36 98.22

45 97.80 41.07 97.88

60 98.11 39.84 98.19

Thick bar B (10) 0 82.72 13.26 82.91

30 80.45 40.84 80.48

45 79.31 74.74 79.33

60 80.92 53.00 80.97

Thin bar (10) 0 94.78 27.97 95.11

30 95.42 43.30 95.45

45 95.89 40.50 95.92

60 95.42 37.70 95.46

Incorrect draw (8) 0 98.21 11.90 98.26

30 97.96 25.05 98.01

45 97.70 36.90 97.72

60 98.12 79.23 98.17

Note: Rot. ang., rotated angle. Bold values represent the largest val-
ues and the best performance for that metric.
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directional BB method can tackle directional defects with
less-clear and relatively smaller appearance such as broken
end [Fig. 9(a)], thick bar B [Fig. 9(f)], and wrong draw
[Fig. 9(h)]. Table 1 lists the average values of DSR, PPV,
and NPV for the 77 defective samples from the eight defect
types of unpatterned fabric. The number of samples tested in
the evaluation is given in parentheses after each defect type.
The DSRs of most of the defect types are more than 90% in
any rotated degree, six defect types are over 95%, and three
defect types are within 90–95%. Only the thick bar B defect
type offers a lower DSR, with the highest being 82.72% for
the 0-deg rotated images.

The PPVs (number of positive cases among all positive
calls) are consistent with the detection results for the thresh-
olded images of particular rotated images in the directional
BB method. If an angle of rotation has a significantly higher
PPV than the others, this angle is the most suitable for that
defect type in the directional BB method. For example, the

thresholded image [Fig. 9(a)] of the 60-deg rotated broken
end (bn7) image, the thresholded image [Fig. 9(f)] of the
45-deg rotated thick bar B (tkbb1) image, and the thresh-
olded image [Fig. 9(h)] of the 60-deg rotated incorrect draw
(wd7) image generate the best detection results and give
much higher PPVs in Table 1. Moreover, the thresholded
images of the four rotated images of defects such as dirty
yarn (dy5) in Fig. 9(b) and netting multiple (n2) in Fig. 9(d)
have very similar PPVs.

4.2 Overall Results of the Directional BB Method

First, regardless of whether an image is defect-free or defec-
tive, the average numbers of white pixels in the final resultant
images are shown in Table 2. The 100 defect-free images
contain an average of 18.79 white pixels whereas the
defective images contain from 48.20 (broken end) to
2305.6 (dirty yarn) pixels. In our experiment, a threshold
of 40 white pixels is set to determine whether a final resultant
image is defective; the defect detection rule is that if the num-
ber of white pixels exceeds 40 pixels, the final resultant
image is classified as a defective image; otherwise, it is con-
sidered defect-free. Four final resultant defect-free images
exceed this threshold value and three final resultant defective
images (one of broken end and two of slack end) are below
the threshold value. Therefore, the error rates for defect-
free and defective images are ð4∕100Þ ¼ 4% and
ð3∕77Þ ¼ 3.9%, respectively. The detection accuracy of sim-
ply counting the white pixels on the positive images
is 96.05%.

Table 2 Average number of white pixels in the final resultant image
for each defect type.

Mean Max Min Std

Defect-free (100) 18.79 50 6 9.78

Broken end (10) 48.20 60 31 8.11

Dirty yarn (7) 2305.6 9260 19 3277.2

Mispick (15) 357.47 419 307 34.00

Netting multiple (7) 407.71 778 101 245.63

Slack end (10) 55.50 77 31 15.44

Thick bar B (10) 155.30 371 56 93.32

Thin bar (10) 149.6 255 96 58.69

Incorrect draw (8) 75.50 149 46 36.48

Note: Std, standard deviation.

Table 3 Average DSR, PPV, and NPV values of the eight types of
defective samples when compared with the ground-truth images.

DSR PPV NPV

Broken end (10) 98.20 12.70 98.34

Dirty yarn (7) 91.37 41.17 93.51

Mispick (15) 92.68 83.92 92.79

Netting multiple (7) 96.52 55.88 96.96

Slack end (10) 98.12 42.69 98.22

Thick bar B (10) 79.94 61.85 80.00

Thin bar (10) 94.78 27.97 95.11

Incorrect draw (8) 98.12 36.90 98.17

Overall average 93.51 47.86 93.86

Fig. 10 Eight types of (second column) rotated defective samples;
(third column) the corresponding ground-truth images; and (fourth
column) the final resultant images. The selected angles of rotation
(rot. ang.) are recorded below each defective sample.
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We then compare the final resultant images with images
from a ground-truth image database in a pixel-by-pixel
manner using the various measurement metrics, namely
DSR, PPV, and NPV, introduced in Sec. 4.1. Figure 10 illus-
trates the eight types of rotated defective samples and the
corresponding ground-truth and final resultant images. The

directional BB method is able to clearly outline the defective
regions. Figure 11 shows the corresponding DSR plots
on the ground-truth images for each defect type. Table 3
compares the results of the eight defect types and their
overall average values: DSR ¼ 93.51%, PPV ¼ 47.86%,
and NPV ¼ 93.86%. According to Fig. 11 and Table 3, the

Fig. 11 The eight defect types and the corresponding DSR plots on the ground-truth images.

Table 4 Average values of number of white pixels in each defect type
of Canvas-48 in the Outex database in the first phase of the directional
Bollinger bands (BB) method in the first phase (N1 ¼ 5, N2 ¼ 5).

Mean Max Min Std

Defect-free (20) 26.60 93.00 6.00 22.43

Dirty yarn (3) 194.00 205.00 173.00 18.19

Slack end (3) 69.33 86.00 50.00 18.15

Netting multiple (3) 291.00 346.00 255.00 41.01

Incorrect draw (3) 222.00 241.00 203.00 26.87

Table 5 Average DSR, PPV, and NPV values of the four defect-type
samples of Canvas-48 in the Outex database when compared with
the ground-truth images in the second phase.

DSR PPV NPV

Dirty yarn (3) 98.49 85.59 98.85

Slack end (3) 97.97 69.70 98.24

Netting multiple (3) 97.34 46.28 99.48

Incorrect draw (3) 97.17 45.23 98.95

Overall average 97.74 61.70 98.88
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broken end, slack end, and wrong draw defects provide the
highest DSRs (over 98%), whereas the thick bar B [see
Fig. 10(f), for example] defect provides the lowest DSR
(around 80%). This result is reasonable because the real
defect appearance of the thick bar B [Fig. 10(f) column 2]

is scattered and difficult to trace even visually. However,
the ground-truth images of thick bar B are labeled as defec-
tive in the dilated regions [Fig. 10(f) column 3]. The PPVs
are in the range of 12.70% and 83.92%. A high rate is diffi-
cult to achieve because the ground-truth images are labeled
in a pixel-by-pixel manner and the labeled defect is presented
in a discrete format. Therefore, it is very challenging for the
detected final resultant image to perfectly match the man-
ually labeled defect.

4.3 Directional BB Method on Outex Database

In order to verify the reliability of the directional BB method,
an extended evaluation has been carried out on the Outex
database.29 As the Outex database contains mostly various
natural textures, the samples of the Canvas-48 texture was
selected because it is the pattern that is closest in appearance
to our research target: unpatterned fabric, in this paper. Since
the samples of Canvas-48 texture are all defect-free, four
types of defective images: dirty yarn (dy), slack end (se), net-
ting multiple (nn), and wrong draw (wd) are man-made and
resembled to the unpatterned fabric database in Sec. 4.2.
Each defect type has three samples; hence, a total of 20
defect-free and 12 defective samples from the Outex data-
base for the extended evaluation. Table 4 lists the average
number of white pixels in each defect type. The average
number of white pixels of defect-free samples after the first
phase of the directional BB method is 26.6, which is much
lower than four defect-type samples.

Fig. 12 Four types of (second column) rotated defective samples;
(third column) the corresponding ground-truth images; and (fourth
column) the final resultant images. The selected angles of rotation
(rot. ang.) are recorded below each defective sample.

Table 6 Comparison of other methods and directional BB method.

Method Wavelet-based25 Wavelet-based3 GLCM30 BB method5 Directional BB

Training DFE training Neural network Unknown Direct BB
calculations

Direct BB
calculations

Training parameters Many Many Many The dimensions
of the row and
column of a
repetitive unit

The dimensions
of the row and
column of a
repetitive unit

Number of training
samples

240 33 19 3 3

Detection level Partitioned image
with a window size
of 32 × 32. Coarse
detection results

Partitioned image
with a window size
of 32 × 32. Coarse
detection results

Partitioned image
with a window size
of 16 × 16. Coarse
detection results

The whole
image. Gives
fine detection
results

The whole image.
Gives fine detection
results

Fabric Unpatterned Unpatterned Unpatterned Patterned Unpatterned

Defect types 8 8 5 Less than 8 8

Directional defect Capable Capable Unable Unable Capable

Ground-truth images
evaluation

None None None None Yes

Accuracy (based on
different setups)

97.5% on five
known defect
types; 93.3% on
three unknown
types

95.8% 88.69% 98.59% 96.02% detection
accuracy; 93.52%
DSR on ground-truth
images

Optical Engineering 073106-11 July 2015 • Vol. 54(7)

Ngan and Pang: Robust defect detection in plain and twill fabric. . .

Downloaded From: http://opticalengineering.spiedigitallibrary.org/ on 09/23/2015 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



In second phase, the best parameters of N1 and N2 are 5
in both cases by evaluating the results of dy1 and se1 effec-
tive samples, in which the best DSRs are obtained. Table 5
shows the average DSR, PPV, and NPVof all defective sam-
ples of the Canvas-48 texture in the Outex database are
97.74%, 61.70%, and 98.88%, respectively. Figure 12 illus-
trates the best rotated angles for the directional BB method
on four-type defective samples of the Canvas-48 texture in
the Outex database. It demonstrates the directional BB
method offers promising results in this database as well.

4.4 Comparison with Previous Methods for
Unpatterned Fabrics

When the results of the directional BB method are compared
with the previous methods, the closest results should be for
the wavelet-based defect classification methods3,25 and the
gray-level co-occurrence matrices (GLCM).30 However,
although the wavelet-based methods3,25 offer good detection
results, they require a large number of training samples, sig-
nificant training time (i.e., NN3), and numerous parameters
and training samples (e.g., 240 in Ref. 25 and 33 in Ref. 3).
Moreover, the wavelet-based detection methods are based on
partitioned images with a window of size 32 × 32. A GLCM
with an NL-means algorithm30 extracted texture features and
achieved 88.69% detection accuracy. Table 6 outlines the
differences between the wavelet-based method, the original
BB method, and the directional BB method presented in this
paper. Table 7 provides a comparison of computational time
in the original BB and directional BB methods. The comput-
ing facility is a Macbook Air with an Intel i7-4650U CPU
and 8 Gb RAM. The directional BB method takes the advan-
tage with a smaller processing size of rotated and cropped
image that the computational times in both the training and
testing phases are shorter than the original BB method.
However, as the borders of the original image are eliminated
in the directional BB method, some defect details may be
missed. In short, the directional BB method can be seen
to offer a fast (compared to the BB method) and efficient
defect detection results (compared to previous methods)
for unpatterned fabric.

5 Conclusion
The directional BB method presented in this paper provides a
shift-invariant, fast, and efficient means of detecting defects
in unpatterned fabric. Using four rotational representations
(θ ¼ 0, 30, 45, and 60 deg). the directional BB method can

identify directional defects with less prominent appearance,
which was previously untreatable by the original BB
method. The average detection accuracy of the directional
BB method reaches 96.05% for all defective and defect-
free images. Comparison with the ground-truth database of
defective images demonstrates a 93.51% DSR on the man-
ually labeled defect locations. Future work can further opti-
mize the algorithm design of the directional BB method to
obtain more-clear detected defective regions in the final
resultant images. This method can help industrial practi-
tioners to build fast and effective detection methods. This
research is beneficial to tile, ceramics, textile, wallpaper, air-
craft window, and printed circuit board industries.
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