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Abstract

In theory, ruin probabilities in classical insurance risk models can be expressed in

terms of an infinite sum of convolutions, but its inherent complexity makes efficient

computation almost impossible. In contrast, Fourier transforms of convolutions could

be evaluated in a far simpler manner. This feature aligns with the heuristic of the re-

cently popular work by Fang and Oosterlee, in particular, they developed a numerical

method based on Fourier transform for option pricing. We here promote their philoso-

phy to ruin theory. In this paper, we not only introduce the Fourier-cosine method to

ruin theory, which has O(n) computational complexity, but we also enhance the error

bound for our case that are not immediate from Fang and Oosterlee (2009). We also

suggest a robust method on estimation of ruin probabilities with respect to perturba-

tion of the moments of both claim size and claim arrival distributions. Rearrangement

inequality will also be adopted to amplify the Fourier-cosine method, resulting in an

effective global estimation.
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1. Introduction

In 2008, Fang and Oosterlee [1] was the first to introduce a novel Fourier-

cosine method for evaluating European options. The proposed Fourier-cosine
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method not only reduces the computational complexity to linear order for Eu-

ropean options, but also provides a concrete error bound for the approximation.5

The Fourier-cosine method provides an alternative method for solving integra-

tion problems such as evaluating
∫
Γ
f(x)dx, with a non-explicit integrand f

whose only known information is its Fourier transform; before [1], the usual

approach for dealing with this problem is to first calculate the inverse Fourier

transform, either analytically or numerically, and then substitute the result ob-10

tained back into the original integration. Instead, the trick in Fourier-cosine

method is to directly incorporate the Fourier-cosine expansion of f under the

integration and to derive an approximation with the aid of Fubini’s theorem;

this method avoids the need of inverting a Fourier transform as to be shown

later. Their results have been further applied to other financial derivatives, such15

as Bermudan options, barrier options and Asian options in the following works

[2, 3, 4], all of these illustrate the effectiveness of their method for pricing op-

tions with early exercising features and also with stochastic volatility models.

In light of the apparent versatile nature of the Fourier-cosine method, we here

attempt to promote this elegant approach to ruin theory.20

Knowing the contingency of ruin is always the main goal of insurance compa-

nies and academia in actuarial science, various researchers devote intense inter-

est in quantitatively studying such risk (See [5, 6, 7, 8, 9]. However, it is usually

hard to compute ruin probabilities, even sometimes explicit representation for-

mula exists such as Pollaczek-Khinchin formula, which express ruin probabilities25

under Lévy subordinator models in terms of infinite sum of convolutions [10].

Nevertheless, this kind of complex formula makes effective computation prac-

tically impossible. Instead, researchers turn their focus on approximating ruin

probabilities for general surplus process. It has been a long history of effort on

trying to approximate ultimate ruin probabilities. Some research dated back to30

60’s, like [11]. Recently, Grande [12] analysed estimations of ruin probabilities

based on claim sizes moments. Shimizu [13] used Edgeworth type expansion

for providing a polynomial ruin approximation, when the risk loading is small

enough. Also, there are lots of researches on improving the Monte Carlo tech-
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niques of finding ruin probabilities, e.g. [14] and [15]. Furthermore, a good35

number of researchers tried to take advantages of the explicit form of Pollaczek-

Khinchin formula; Coulibaly and Lefèvre [16] proposed the estimation for ruin

probability by calculating convolutions in the formula with quasi-Monte Carlo

method; Albrecher et al. [17] proposed an approximate for ruin probabilities

based on higher-order approximation of the tail probability of claim size distri-40

bution.

On the other hand, Lévy subordinator’s Fourier transform/Laplace trans-

form can be found easily via Lévy -Khinchine’s formula as the Fourier trans-

form can be obtained from an algebraic equation; the algebraic equation makes

the evaluation of Fourier transforms of ruin probability density a much simpler45

task. This led to a lot of estimation schemes based on Fourier/Laplace trans-

form. One outstanding example is Albrecher et al. [18], whom developed an

approximation for ruin probability based on an improved inverse Laplace trans-

form procedure; they replaced e−xu with a rational function rn(−xu) in the

inverse Laplace transform formula and obtained a simple approximation based50

on rn with an explicit error bound. However, their method is limited to mod-

els with holomorphic Laplace transform. However, most of the approximations

depending on numerical inversion of Laplace transform involves unstable error.

Here we propose an alternative method based on the Fourier-cosine expansion.

This approach not only fits the rationale of applying Fourier transform via an55

application of Pollaczek-Khinchin formulas in recent literature, but also pro-

vides an explicit error bound. Also note that the complexity of Fourier-cosine

method applied to ruin probability approximations should be truly linear as in

[1] without any need of prior calculation. As it turns out, our method is similar

to the ad-hoc Laplace inversion method in Abate and Whitt [19]; however their60

derivations based on Poisson summation formula is completely different from

our systematic study here.

Furthermore, by sophisticatedly using different Fourier series identities [20]

and a number of bounding result with Gibbs phenomenon [21], we significantly

improve and enhance the error bound proposed by [1], and these aspect add65
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another dimension of our contribution to the literature.

Lastly, the original Fourier-cosine method does not guarantee the estima-

tion to be monotone, which is a key property of ruin probabilities. We shall

further improve the global estimation error for ruin probabilities, by using the

rearrangement technique as first proposed in [22].70

This paper is organised as follows. Section 2 will introduce the model used

in this paper and relevant formulae of ruin probabilities. Section 3 will discuss

implementing Fourier-cosine method. The establishment of error bound is the

main topic in Section 4. Section 5 will provide a robust approximation based

on the moments of claim size and claim arrival distributions and Section 6 will75

introduce rearrangement technique . Finally, the effectiveness of our method is

shown in Section 7 and we conclude the paper in Section 8.

2. Problem Setting

In this section, the model for the underlying surplus process is introduced

and relevant formulas of ruin probabilities are also discussed.80

Let Rt denote the surplus process of an insurance company

Rt = u+ ct− Lt, (1)

with u ≥ 0 being the initial reserve of the insurance company. c > 0 denotes

the premium rate charged by the insurance company. Claim process is modeled

by Lt, which is a Lévy subordinator defined as follow. Lt is an infinite divisible

stochastic process with L0 = 0 and consists of only a deterministic drift part

and a pure positive jump random process. The characteristic function of Lt is

given by

φLt
(ω) = E[exp(iωLt)] = exp(ibωt+ t

∫

(0,∞)

(eiωx − 1)ν(dx)), (2)

where b ∈ R. ν is the Lévy measure on (0,∞), that is a positive Borel measure

with
∫∞

0 (|x|2 ∧ 1)ν(dx) < ∞. Details can be found in [23] and the reference

therein.
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Without loss of generality, we assume b = 0 throughout this paper. The

rationale behind this assumption is that whenever we have a model with non-85

zero b, we can consider a new model with c′ = c−b and L′
t be the pure jump part

of Lt and the two models will agree with each other. Here ν is also assumed to

satisfy µ1 :=
∫
(0,∞) xν(dx) <∞. Moreover, the safety loading condition c > µ1

is imposed to avoid almost sure ruin.

2.1. Ruin Probabilities90

The probability of ruin is defined by

ψ(u) := P

{
inf
t≥0

{t : Rt < 0} <∞|R0 = u

}
. (3)

By applying the Pollaczek-Khinchin formula, see Equation (1.3) in [10], it is

possible to obtain an explicit infinite sum representation for the ruin probabil-

ity as below. Define h(x) as h(x) = ν(x,∞)/µ1 and denote ρ := µ1/c, ruin

probability can then be written as:

ψ(u) = ρ− (1− ρ)

∞∑

j=1

ρj
∫ u

0

h∗j(x)dx = ρ− (1 − ρ)

∫ u

0

f(x)dx, (4)

where f :=
∑∞

j=1 ρ
jhj∗ and h∗j denotes the jth order convolution for a function

h:

h∗j(x) =

∫ x

0

h∗(j−1)(x− y)h(y)dy, (5)

with h∗1 = h.95

Since h(x) ≥ 0 for all x ∈ [0,∞) and
∫∞

0 h(x)dx = 1, ((1 − ρ)/ρ)f can

be seen as the probability density of a compound geometric random variable

V := Y1 + Y2 + · · · + YM , where Y is i.i.d. with distribution h(x) and P(M =

k) = (1− ρ)ρk−1. Henceforth,
∫∞

0
((1− ρ)/ρ)f(x)dx should be equal to 1, so it

is natural to assume that ((1 − ρ)/ρ)f and f are L1(R) functions.100

3. Fourier-cosine Method

In this section, we derive an approximation for ruin probabilities based on

Fourier-cosine expansion, this method is inspired by the recent breakthrough
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of [1]. We shall rewrite the integral in Formula (4) by replacing f with its

Fourier-cosine series.105

For any function g : [0, π] → R, there is a natural extension for extending

this function into an even function on R. This even function is define ğ by

ğ(x) =





g(x), x ≥ 0

g(−x), x < 0
. (6)

All even functions can be expressed as Fourier-cosine series [24],

ğ(x) =
∞∑

k=0

′Ak cos(kx), (7)

with

Ak =
1

π

∫ π

−π

ğ(x) cos(kx)dx =
2

π

∫ π

0

g(x) cos(kx)dx. (8)

The notation
∑

′ denotes a summation with its first term is weighted by half.

Since g is part of ğ, the expansion is also valid for g itself. Fourier-cosine series

expansion for any function supported on [0, a] can also be obtained through a

change-of-variable y = xπ/a.

We now return to ruin probabilities, the first step is to rewrite Formula (4)

as the following form:

ϕ(u) = ρ− (1− ρ)

∫ a

0

1{x≤u}f(x)dx, for a ≥ u. (9)

Despite f being defined on [0,∞) in Section 2, here we restrict ourselves to110

consider f as a function defined on [0, a], a is a fixed number that is greater

than the initial reserve u. We shall treat a as a given constant in this section.

The method to determine a will be left in Section 4. Since 1x≤uf(x) = 0 in

(u, a], the value of the integration in (9) is exactly the same as in (4). We will

later show that the domain we pick for f will have an effect on the overall error,115

therefore, we introduce a new factor a here instead of simply defining f on [0, u].

We can apply Fourier-cosine expansion for function f ,

f(x) =

∞∑

k=0

′Ak cos(kπ
x

a
), (10)
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with

Ak =
2

a

∫ a

0

f(s) cos(kπ
s

a
)ds, (11)

and then substitute f back to Formula (9) by this Fourier-cosine expansion (10),

ϕ(u) = ρ− (1− ρ)

∫ a

0

1{x≤u}

∞∑

k=0

′Ak cos(kπ
x

a
)dx. (12)

Simple application of Fubini’s theorem, we obtain

ϕ(u) = ρ− (1− ρ)

∞∑

k=0

′Ak

∫ u

0

cos(kπ
x

a
)dx = ρ− (1− ρ)

∞∑

k=0

′Akχk(0, u), (13)

where

χk(c, d) :=





[sin(kπ d
a
)− sin(kπ c

a
)] a

kπ
, k 6= 0

d− c, k = 0
. (14)

Next, it is clear that Ak can be rewritten as:

Ak ≡
2

a
ℜ

(∫ a

0

f(x)ei
kπx
a dx

)
, (15)

where ℜ(·) denotes the real part of a complex function. We can compare the

integral in this formula with the characteristic function of f itself.

∫ a

0

f(x)ei
kπx
a dx ≈

∫ ∞

0

f(x)ei
kπx
a dx = φf (

kπ

a
), (16)

where φf is the Fourier transform of f . Due to their similarity, we would use φf

in place of
∫ a

0 f(x)e
i kπx

a dx in the original integral, and obtain an approximate

value. We define

Fk :=
2

a
ℜ{φf (

kπ

a
)}, (17)

replace all AK by FK and obtain the approximation:

ϕ(u) ≈ ρ− (1− ρ)

∞∑

k=0

′Fkχk(0, u). (18)

We then truncate the series summation and only include the first N terms,

so we arrive with our approximate ϕe(u,N):

ϕe(u,N) = ρ− (1− ρ)

N−1∑

k=0

′Fkχk(0, u). (19)
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There are two major advantages of implementing the Fourier-cosine method

for approximation of ruin probabilities. The first one is that instead of calcu-

lating convolution of h directly, we only need to acquire the value of the Fourier

transform of f . In fact, φf can be calculated explicitly through the following

Formulae (20) and (21). To begin with, the characteristic function of h is:

φh(ω) =
1

µ1

∫ ∞

0

eiωxν(x,∞)dx =
1

µ1

∫ ∞

0

eiωx − 1

iω
ν(dx), (20)

for ω 6= 0; otherwise φh(0) = 1. Then one can calculate φf as:

φf (ω) =

∞∑

j=1

ρjφjh(ω) =

ρ
µ1

∫∞

0
eiωx−1

iω
ν(dx)

1− ρ
µ1

∫∞

0
eiωx−1

iω
ν(dx)

=

∫∞

0
eiωx−1

iω
ν(dx)

c−
∫∞

0
eiωx−1

iω
ν(dx)

, (21)

when ω 6= 0; while φf (0) = ρ/(1− ρ).

Remark 3.1. Since the safety loading assumption ensures that c > µ1, to-

gether with |eiωx − 1| ≤ |ωx|, we clearly have
∣∣∣∣c−

∫ ∞

0

eiωx − 1

iω
ν(dx)

∣∣∣∣ ≥ c−

∫ ∞

0

∣∣∣∣
eiωx − 1

iω

∣∣∣∣ ν(dx) ≥ c− µ1 > 0,

and hence, (21) is well-defined.

The second advantage of using the Fourier-cosine approach is that we can

derive an explicit error bound, which will be shown in the next section; while120

for other approaches in the literature, the derivation of error bound is normally

hard, if not impossible. Also, our proposed approximate only involves elemen-

tary arithmetic operations and has a linear computational complexity.

4. Error Estimate

We now aim to show that there is a reasonable error bound for our approx-125

imation. Following the derivation in Section 3, the total error of the proposed

estimation consists of two parts:

1. The error related to approximating Ak by Fk in (19):

ǫ1 =

∣∣∣∣∣
2(1− ρ)

a

∞∑

k=0

′Re

{∫ ∞

a

eikπ
x
a f(x)dx

}
χk(0, u)

∣∣∣∣∣ ; (22)
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2. The series truncation error on [0,a]:

ǫ2 =

∣∣∣∣∣−(1− ρ)

∞∑

k=N

Fkχk(0, u)

∣∣∣∣∣ =
∣∣∣∣∣(ρ− 1)

∞∑

k=N

aFk

kπ
sin(kπ

u

a
)

∣∣∣∣∣ . (23)

The total error ǫ ≤ ǫ1 + ǫ2 is obviously bounded by these two parts. In this

section, we shall consider the error bound for these parts one by one. Although

we adopted the same philosophy as in [1] to derive our approximation, the130

establishment of error bound has been fundamentally enhanced here to cater

for our specific situation.

4.1. Approximation Error for Ak by Fk

Firstly, we shall show that ǫ1 is bounded by an integration range error. We

start with a finite sum instead of the infinite sum in ǫ1. Since f is a positive135

function in our setting, we have

(1− ρ)

∣∣∣∣∣
2

a

n∑

k=0

′χk(0, u)

∫ ∞

a

cos(kπ
x

a
)f(x)dx

∣∣∣∣∣

≤ (1− ρ)

∫ ∞

a

∣∣∣∣∣
2

a

n∑

k=0

′χk(0, u) cos(kπ
x

a
)

∣∣∣∣∣ f(x)dx. (24)

We claim the following at the moment.

Claim 4.1.
∣∣ 2
a

∑n

k=0
′χk(0, u) cos(kπ

x
a
)
∣∣ ≤ 1 + 2

π

∫ π

0
sin t
t
dt, which holds inde-

pendent of a and n.

Its proof shall be given after establishing bound for ǫ1. Applying Claim 4.1,140

(1− ρ)

∫ ∞

a

∣∣∣∣∣
2

a

n∑

k=0

′χk(0, u) cos(kπ
x

a
)

∣∣∣∣∣ f(x)dx

≤ (1− ρ)

(
1 +

2

π

∫ π

0

sin t

t
dt

)∫ ∞

a

f(x)dx. (25)

Taking the limit on both sides as n tends to infinity, we have

ǫ1 ≤ (1− ρ)

(
1 +

2

π

∫ π

0

sin(t)

t
dt

)∫ ∞

a

f(x)dx. (26)

As
∫∞

a
f(x)dx → 0 when a → +∞ and a > u is arbitrary, we can reduce this

part of error by choosing a suitably large value of a.
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Proof of Claim 4.1. For the sum 2
a

∑n

k=0
′χk(0, u) cos(kπ

x
a
), where x ∈ [a,∞),

we have

2

a

n∑

k=0

′χk(0, u) cos(kπ
x

a
) =

u

a
+

2

π

n∑

k=1

sin(kπ u
a
) cos(kπ x

a
)

k

=
u

a
+

1

π

n∑

k=1

sin(kπ u+x
a

)

k
+

1

π

n∑

k=1

sin(kπ u−x
a

)

k
.

=
u

a
+ Sn

(
u+ x

a

)
+ Sn

(
u− x

a

)
(27)

where Sn(y) :=
∑n

k=1 sin(ky)/k. Since SN (y) is periodic with a period 2π, and145

Sn(0) = Sn(π) = 0 and Sn(2π − y) = −Sn(y) for y ∈ (0, π), we only consider

Sn(y) =
∑n

k=1 sin(ky)/k for y ∈ (0, π). This Sn(y) is a well-known series with

an important role on the study of Gibbs phenomena. For the proof and further

information, we refer to check [21] and references therein.

Lemma 4.2. For all positive integer n, l = 0, 1, . . . , ⌊(n− 1)/2⌋ and y ∈ (0, π),150

the followings are true:

1. Sn (π/(n+ 1)) ≥ Sn(y);

2. Sn+1 ((2l+ 1)π/(n+ 2)) > Sn (((2l + 1)π)/(n+ 1)).

Applying Lemma 4.2, in particular with l = 0, for any y ∈ (0, π)

Sn(y) ≤ lim
n→∞

Sn

(
1

n+ 1
π

)

= lim
n→∞

n∑

k=1

(
n+ 1

π
sin

(
k

n+ 1
π

))
π

n+ 1

=

∫ π

0

sin(t)

t
dt. (28)

Together with the periodicity of Sn(y), we have |Sn(y)| ≤
∫ π

0
(sin(t)/t)dt for all

positive integer n and all real number y. Therefore,

∣∣∣∣∣
u

a
+

1

π

n∑

k=1

sin(kπ u+x
a

)

k
+

1

π

n∑

k=1

sin(kπ u−x
a

)

k

∣∣∣∣∣ ≤ 1 +
2

π

∫ π

0

sin(t)

t
dt. (29)

We complete our proof for the Claim 4.1. �155
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Remark 4.3. Classical Lundberg inequality can give us hints on finding a suit-

able value of a so that the error incurred could be within a given tolerance level.

In particular, note that
∫∞

a
f(x)dx = (ϕ(a)−ϕ(∞)/(1− ρ) = ϕ(a)/(1− ρ) and

let St = u−Rt = Lt − ct for general surplus process Rt. Citing the result from

[5], if {eκSt}t≥0 is a martingale for some constant κ > 0 and St tends to −∞160

almost surely, then ϕ(a) ≤ e−κa for all a ≥ 0, so one can use the Lundberg

inequality to find an upper bound for
∫∞

a
f(x)dx and hence to pick an appro-

priate value of a. Of course, other versions of Lundberg inequality are required

for other types of surplus process, but the rationale behind choosing a remains

unchanged.165

4.2. Series Truncation Error

For ǫ2, we consider the convergent properties of φf . The algebraic index of

convergence is defined as follows.

Definition 4.4. ([24] Definition 2 in Section 2.3) A sequence A has algebraic

index of convergence of s if s is the greatest number such that

lim sup
k→∞

|Ak|k
s <∞. (30)

It is natural to consider this property since for any f ∈ L1 which is differentiable

with non-zero derivative and f ′ ∈ L1,

aFk

2
=

∫ ∞

0

f(x) cos
(
kπ
x

a

)
dx = −

a

kπ

∫ ∞

0

f ′(x) sin
(
kπ
x

a

)
dx, (31)

in accordance with integration by parts. It shows that a
2 |Fk| ≤ (a/kπ)

∫∞

0 |f ′(x)|dx ≤

C/k and suggests that Fk commonly encountered under our model for surplus170

process should have an algebraic index of convergence of at least one.

Assuming that (a/2)Fk has an algebraic index of convergence of β, which

also means that

ǫ2 = (1 − ρ)

∣∣∣∣∣

∞∑

k=N

aFk

kπ
sin(kπ

u

a
)

∣∣∣∣∣ ≤ (1− ρ)

∞∑

k=N

∣∣∣∣
aFk

kπ
sin(kπ

u

a
)

∣∣∣∣

≤ (1 − ρ)
2

π

∞∑

k=N

C

kβ+1
≤ (1− ρ)

C̄

(N − 1)β
. (32)
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The last inequality comes from calculating the summation asymptotically by

carrying out an integration. Note that C̄ is a constant depends on and increases175

with a.

Therefore, the total error for applying Fourier-cosine method in approximat-

ing ruin probabilities which has a characteristic function with algebraic index

of convergence β is

ǫ = ǫ1 + ǫ2 ≤ (1− ρ)

[(
1 +

2

π

∫ π

0

sin(t)

t
dt

)∫ ∞

a

f(x)dx +
C̄

(N − 1)β

]
. (33)

The first part in the square-bracket can be made as small as possible by increas-

ing the value of a and is independent of N . The second term depends on both a

and N . It increases when a increases while decreases when N increases . When

applying our approximation, one should choose a first through the control of ǫ1180

and with such a fixed value of a, we can then pick an N such that it can reduce

the magnitude of ǫ2.

4.2.1. Enhancing Error Bound

The error bound can be further improved if we assume more properties on

ℜ{φf} such as its monotonicity. For any sequence {an}, define ∆an := an+1−an185

and we have the following theorem.

Theorem 4.5. For u ∈ [θ, a − θ] where θ > 0 and Fk = (2/a)ℜ{φf(kπ/a)}

satisfying:

1. (a/2)Fk has algebraic index of convergence β > 0, and so Fk → 0 as

k → ∞.190

2. There exists a large enough N ′ such that ∆Fk are of the same sign for all

k ≥ N ′.

Then ǫ2 = (1 − ρ) |
∑∞

k=N aFk sin (kπu/a) /(kπ)| ≤ Cθ/N
β+1 for some constant

Cθ (depending on θ and a) and N ≥ N ′

Remark 4.6. These two conditions also imply that all Fk are of the same sign195

for large enough k. Indeed, for if ∆Fk ≤ 0, it implies that Fk is decreasing for
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large k and Fk tends to 0 when k goes to infinity. This means that Fk has to

be positive when k > N ′. The argument for positive ∆Fk is similar.

Remark 4.7. As in most common models, Fk satisfies Condition 1 in Theorem

4.5. We only need to check Condition 2 in order to strengthen our error bound.200

In particular, both conditions are clearly satisfied when ℜ(φ(ω)) is a positive

differentiable decreasing function or negative differentiable increasing function

for large enough ω.

Proof. Firstly, u lying in [θ, a−θ] suggests that x := u
a
π is bounded away from

0 or π. Secondly, ∆ (Fk/k) is also of the same sign whenever k > N ′; indeed,205

∆

(
Fk

k

)
=

Fk+1

k + 1
−
Fk

k
=
k∆Fk − Fk

k(k + 1)
, (34)

which will always be of the same sign in accordance with Remark 4.6. Next, let

bk := Fk/k and clearly bk = −
∑∞

l=k ∆bl, which is well-defined since Fk/k → 0

as k → ∞.

∞∑

k=N

Fk

k
sin(kx) =

∞∑

k=N

bk sin(kx)

=

∞∑

k=N

[(
−

∞∑

l=k

∆bl

)
sin(kx)

]

= −
∞∑

l=N

∆bl

(
l∑

k=N

sin(kx)

)

= −
1

2 sin x
2

∞∑

l=N

∆bl

(
cos

[
(N −

1

2
)x

]
− cos

[
(l +

1

2
)x

])

=
cos
[
(N − 1

2 )x
]

2 sin x
2

(
−

∞∑

l=N

∆bl

)
+

1

2 sin x
2

∞∑

l=N

∆bl cos

[
(l +

1

2
)x

]

=
cos
[
(N − 1

2 )x
]

2 sin x
2

bN +
1

2 sin x
2

∞∑

l=N

∆bl cos

[
(l +

1

2
)x

]
. (35)
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Taking absolute value of both sides of (35),

∣∣∣∣∣

∞∑

k=N

Fk

k
sin(kx)

∣∣∣∣∣ ≤

∣∣∣∣∣
cos
[
(N − 1

2 )x
]

2 sin x
2

bN

∣∣∣∣∣+
1

2 sin x
2

∞∑

l=N

∣∣∣∣∆bl cos
[
(l +

1

2
)x

]∣∣∣∣

≤
|bN |

2 sin x
2

+
1

2 sin x
2

∞∑

l=N

|∆bl|

=
|bN |

2 sin x
2

+
1

2 sin x
2

∣∣∣∣∣

∞∑

k=N

∆bk

∣∣∣∣∣

=
|bN |

sin x
2

. (36)

Note that we use the fact that
∑

|∆(Fk/k)| = |
∑

∆(Fk/k)| since ∆ (Fk/k) is

of the same sign. Finally we have

ǫ2 = (1− ρ)

∣∣∣∣∣

∞∑

k=N

aFk

kπ
sin
(
kπ
u

a

)∣∣∣∣∣ ≤ (1− ρ)
a

π

1

sin x
2

|FN |

N
≤

Cθ

Nβ+1
, (37)

where Cθ is a constant depending on a and θ but is independent of N .210

Remark 4.8. In this section, the algebraic index of convergence of Fk is as-

sumed to be known and a strong error bound has been derived. However, the

algebraic index of convergence may not be explicit in general even if Fk is ex-

plicitly given. A more robust (but not as optimal) integrability condition will

be proposed to guarantee the convergence of Fk in our forthcoming paper on215

constructing modern Fourier-cosine method for Gerber-Shiu theory [25].

5. Robust Approximation

The Fourier-cosine method we have developed here relies on the structure

of the underlying model of the surplus process. Our approximation may change

dramatically if one switches from one model to another. However, the estimation

of surplus process models may not often be reliable. Hence, we here supplement

the Fourier-cosine method with a more robust approximation based on the mo-

ments of the distribution h, which is easier to be estimated statistically from

real data. Let Y be a random variable with probability density function h as

14



given in Section 2 and ιk (k = 1, 2, · · · ) be the k-th moment of h as given by

ιk =

∫ ∞

0

xkh(x)dx =

∫ ∞

0

xk
ν(x,∞)

µ1
dx =

1

(k + 1)µ1

∫ ∞

0

xk+1ν(dx). (38)

Assuming that limx→∞ xk+1ν(x,∞)/(k+1) = 0, so that the last equality holds,

and ι0 set to be 1. Using Taylor series expansion, we can express the character-

istic function of h in terms of its moments.220

φh(ω) = E[eiY ω] = E

[
m∑

k=0

(iY ω)k

k!
+

∫ Y ω

0

· · ·

∫ sm

0

eism+1dsm+1 · · · ds1

]

=

m∑

k=0

(iω)k

k!
ιk +R, (39)

where R := E

[∫ Y ω

0

∫ s1

0
· · ·
∫ sm

0
eism+1dsm+1 · · · ds2ds1

]
with

|R| ≤
|ω|m+1

(m+ 1)!
ιm+1. (40)

Assuming that the moment of h has no greater than polynomial growth, i.e.

there exists c > 0 such that ιk ≤ ck for all k, |R| → 0 as m→ ∞.

Next, we can derive an approximation of φf based on the above results:

φf (ω) =
ρφh(ω)

1− ρφh(ω)
=

ρφh(ω)

1− ρ
∑m

k=0
(iω)k

k! ιk − ρR
. (41)

Consider
∣∣ρR/(1− ρ

∑m

k=0(iω)
kιk/k!)

∣∣ for fixed ω. Since lim
m→∞

1−ρ

m∑

k=0

(iω)kιk/k! =

1−ρφh(ω) 6= 0 from Taylor series expansion,
∣∣ρR/(1− ρ

∑m
k=0(iω)

kιk/k!)
∣∣ tends

to zero as a whole asm tends to infinity. Therefore,
∣∣ρR/(1− ρ

∑m

k=0(iω)
kιk/k!)

∣∣ ≤225

1 for large enough m and we can write:

φf (ω) =
ρφh(ω)

1− ρ
∑m

k=0
(iω)k

k! ιk − ρR

=
ρφh(ω)

1− ρ
∑m

k=0
(iω)k

k! ιk
+O

(
ρR

1− ρ
∑m

k=0
(iω)k

k! ιk

)

=
ρ
∑m

k=0
(iω)k

k! ιk

1− ρ
∑m

k=0
(iω)k

k! ιk
+O

(
ρR

1− ρ
∑m

k=0
(iω)k

k! ιk

)
. (42)

So we can replace φf by φR(ω) := ρ
∑m

k=0
(iω)k

k! ιk/(1 − ρ
∑m

k=0
(iω)k

k! ιk) in our

approximate (19) and have a more robust estimation. This will give an extra

15



error term:
∣∣∣∣∣

N∑

k=1

2(1− ρ)

kπ
ℜ

(
φf

(
kπ

a

)
− φR

(
kπ

a

))
sin

(
kπu

a

)∣∣∣∣∣

≤ C(1− ρ) logN max
1≤l≤N





ρ|R|∣∣∣1− ρ
∑m

k=0
(ilπ)k

akk!
ιk

∣∣∣



 (43)

for some constant C. Therefore, the overall error bound for this robust approx-230

imate is

ǫR = (1 − ρ)

[(
1 +

2

π

∫ π

0

sin t

t
dt

)∫ ∞

a

f(x)dx+
C1

(N − 1)β

+C2 logN max
1≤l≤N





ρ|R|∣∣∣1− ρ
∑m

k=0
(ilπ)k

akk!
ιk

∣∣∣






 (44)

for some constants C1 and C2 independent of N and m, with C2 depending on

c in light of our assumption of ιk ≤ ck. It is clear from the expression that

with our assumption of ιk ≤ ck, the right hand side of (43) tends to zero as

m goes to infinity. Finally, when the safety loading is large, ρ can be smaller.235

It is obvious that ρ|R|/
∣∣1− ρ

∑m
k=0(ilπ)

kιk/a
kk!
∣∣ goes to zero when ρ goes to

0 for fixed m. So we conclude that our robust approximate works better in a

large loading environment and a smaller value of m can be used. It is suggested

that for a robust approximation on ruin probabilities in the case of small safety

loading, readers can refer to the interesting work of [13].240

6. Rearrangement Inequality

One fundamental property of ruin probability is that it is monotonically de-

creasing with respect to the initial reserve u. However, our approximate (19) is

not necessarily decreasing. This results from the fact that trigonometric func-

tions used in our approximation are periodic instead of monotonic. Nevertheless,245

a refining procedure proposed by Chernozhukov et al. [22] called rearrangement

can be adopted here to further improve our approximation. The resulting mod-

ified approximate not only is decreasing, but also reduces the Lp-norm of the

global error of the approximation for a suitable chosen p ≥ 1.
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Firstly, consider a measurable function m defined on the compact interval

[0, a] and mapping to a bounded set K ⊂ R. The decreasing rearrangement is

defined as follow:

m∗(x) := inf

{
y ∈ R

∣∣∣∣
[∫ a

0

1{m(u)≥y}du

]
≥ x

}
. (45)

The effect of this method is given by the following proposition. The propo-250

sition is from the paper [22]. Interested readers can refer to that paper for more

information.

Proposition 6.1. Consider a decreasing and bounded measurable function m :

[0, a] → K ⊂ R, K is a bounded subset in R and m̂(x), the approximation for the

given function m. For the rearrangement of m̂, m̂∗(x), the following statement255

is true.

1. m̂∗(x) is a weakly improved approximation in terms of Lp norm for p ∈

[1,∞],

[∫ a

0

|m̂∗(x)−m(x)|pdx

] 1
p

≤

[∫ a

0

|m̂(x) −m(x)|pdx

] 1
p

.

2. The improvement of rearranging become strict if the following conditions

are true. There exist two sets ℵ and ℵ′ such that their measures are greater

than δ > 0 and satisfy the following conditions. For any x ∈ ℵ and x′ ∈ ℵ′,

x′ > x, m̂(x) < m̂(x′) + ǫ and m(x′) < m(x) + ǫ for some ǫ > 0. For

p ∈ [1,∞),

[∫ a

0

|m̂∗(x) −m(x)|pdx

] 1
p

≤

[∫ a

0

|m̂(x)−m(x)|pdx−
δ

a
ηp

] 1
p

.

ηp := inf{|v− t′|p + |v′ − t|p − |v− t|p − |v′ − t′|p} with the infimum taken

over all v, v′, t, t′ in the set K such that v′ ≥ v + ǫ and t′ ≥ t + ǫ. It is

clear that ηp ≥ 0 for p ∈ (0,∞) .

Since ruin probabilities must satisfy all the conditions in Proposition 6.1.260

This rearrangement technique can be directly applied to the approximation of

ruin probabilities and helps us obtain better results. In practice, while we cannot
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derive the rearrangement analytically, it can be computed as follows. Let Π :=

{xi = ai/n|i = 0, 1, . . . , n} be the equidistant partition of [0, a]. Consider the set

of {m(xi)|xi ∈ Π}. By sorting the elements in this set in a decreasing order, one265

can get a rearrangement approximation for the original functionm. The number

of points n needed for an accurate result depends on the original functions

and the computational complexity of this method is the same as the ordering

operations of a sample size of n, where the best possible order is O(n log n).

Alternatively, a stochastic method can be used to compute the rearrangement.270

One can first generate a sample set of independently and uniformly distributed

random variables {Ui : i = 1, . . . , n} on [0, a], and then sort the elements in

{m(Ui) : i = 1, . . . , n} in decreasing order. More information can be found in

[22] and the references therein.

7. Numerical Studies275

We provide two studies on applying the Fourier-cosine method to approx-

imate ruin probabilities. The first model is compound Poisson processes with

exponential claim size distributions. This model satisfies the the conditions in

Theorem 4.5. Next, we conduct another study by assuming Lt a Poisson pro-

cess. It is used to demonstrate the case when conditions in Theorem 4.5 fail280

to hold. Also, one more example of using rearrangement inequality will be il-

lustrated for examining its global effect. Note that graphs in this section may

be in different scale for the purpose of demonstration. Computational time is

generated by a normal laptop computer with Mathematica.

Example 7.1. (Compound Poisson-Exponential Claim) Let Lt be a compound285

Poisson process whose intensity is 20 with exponentially distributed claim sizes

of mean 1. The Lévy measure for such process is ν(dx) = 20e−xdx. The pre-

mium rate is set as 25. The exact ruin probability in this case is given by

ψ(u) = 0.8e−0.2u. Here a is chosen to be 90. The result can be seen in Figure

1.290
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Figure 1: Comparison of Fourier-cosine approximation with reference curve where compound

Poisson process with exponential claim size as underlying model. Truncation range N is set

to be 4, 8, 16 and 32
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Figure 2: The graph of − log(|ϕe(7, N)− ϕ(7)|) against logN in Example 7.1.
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Figure 3: Comparison of Fourier-cosine approximation with reference curve using Poisson

process. Truncation range N is set to be 4, 8, 16 and 32
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Figure 4: The graph of the real part of Fourier transform used in Example 7.2
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Figure 5: The graph of − log(|ϕe(1, N)− ϕ(1)|) against logN in Example 7.2
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Figure 6: Improved approximation for Poisson process model by rearrangement inequality.

Being enlarged for showing the rearrangement result.
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Since ℜ(φf (ω)) = 4/(25ω2 + 1) in this model, it not only has an algebraic

index of convergence of 2, but also tends to 4/25ω2 when ω is large. This

gives that ℜ(φf (ω)) tends to a positive decreasing function. Consequently, our

improved error bound is applicable here and so one would expect that ǫ2 ≈

O
(
1/N3

)
. Figure 2 demonstrates that it is the case, indeed using simple linear295

regression, we find that the slope of this graph is 2.97308 and it suggests that

ǫ ≈ O
(
1/N2.97308

)
. Also note that since φf is monotone in this example,

ϕe(u,N) behaves like an alternating series in N for fixed u. As a result, the

plot points fluctuate around the regression curve in Figure 2.

Table 1: Fourier-cosine method for compound Poisson process with exponential claim model

as in Example 7.1 with u = 7.

N 32 64 128 256 512

Error 9.17 × 10−4 2.40 × 10−4 3.07 × 10−5 3.70 × 10−6 3.90 × 10−7

Example 7.2. Lt is assumed to be a Poisson process with λ = 1 and c = 2300

in this example. Figure 3 shows the result. It is clear that the approximation

curves do not converge to the true curve as quickly as the previous examples.

Figure 4 shows that ℜ(φf (ω)) is not monotone. Since the algebraic rate of

convergent is 1 for ℜ(φf (ω)), it would suggest that ǫ2 ≈ O
(

1
N

)
. Figure 5 shows

the convergence of error with respect to N when u = 1. The slope of this graph305

is approximately 0.999466.

Table 2: Fourier-cosine method for Poisson model as in Example 7.2 with u = 1. ; Reference

value = 0.17564129722......
N 32 64 128 256 512

Error 1.54 × 10−2 8.35 × 10−3 4.04 × 10−3 1.96 × 10−3 9.86 × 10−4

Example 7.2 also demonstrates another important property of the Fourier-

cosine method. Most of the numerical inversions of Laplace transform, for ex-

ample, the GWR and FT algorithms in [26], only provide tentative error bounds

without mathematical justification; indeed, the error bounds are not binding.310

In fact, both GWR and FT algorithms fail to realize their errors bounds in
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Example 7.2, yet the error bound based on the Fourier-cosine method can still

be applied.

Example 7.3. (Rearrangement) Using the same setting as in Example 7.2 on

the range [0, 6] and let N = 8. We performed rearrangement to improve our315

approximation. Obviously, Figure 6 shows that the curve is much closer to the

true curve after rearrangement.

8. Conclusion

In this paper, we promote the philosophy of Fourier-cosine method from [1]

to ruin theory with Lévy subordinator models and derive an error bound that320

follows its line of reasoning. We also shown that a stronger bound for error can

be obtained assuming monotonicity for ℜ(φf (u)). Moreover, we modified our

method to provide a robust approximation of ruin probabilities. Furthermore,

rearrangement technique is introduced for further improvement for the global

error. Finally, our numerical studies show the effectiveness of our approxima-325

tion.

Further research can be done on adopting our method to general situations,

for examples, extending the method to models including diffusion. Enhancing

the converging rate of the Fourier series through series acceleration method is

another possible research direction.330
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