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Abstract
In this work, we develop a general gauge-invariant theory for ACheat current throughmulti-probe
systems. Using the non-equilibriumGreen’s function, a general expression for time-dependent
electrothermal admittance is obtainedwherewe include the internal potential due to theCoulomb
interaction explicitly.We show that the gauge-invariant condition is satisfied for heat current if the
self-consistent Coulomb interaction is considered. It is known that theOnsager relation holds for
dynamic charge conductance.We show in this work that theOnsager relation for electrothermal
admittance is violated, except for a special case of a quantumdot systemwith a single energy level.We
apply our theory to a nano capacitor where the Coulomb interaction plays an essential role.Wefind
that, to the first order in frequency, the heat current is related to the electrochemical capacitance as
well as the phase accumulated in the scattering event.

1. Introduction

TheOnsager relation [1] is one of themost important relations in quantum transport, which is related to the
equilibrium fluctuation dissipation theorem. ForDC charge transport, the linear conductance in the presence of
amagnetic field satisfies = −αβ βαG B G B( ) ( ) as a result ofmicroscopic reversibility. In the nonlinear DC charge

transport, the departure of theOnsager relationwas investigated [2]. In the nonlinear regime, the self-consistent
Coulombpotential has to be included in order to preserve the gauge invariance [3]. As interpreted in [2], the
Coulombpotential is not an even function of themagneticfield, which is responsible for the departure of the
Onsager relation. In the linear regime of AC charge transport, the self-consistent Coulombpotential is still
needed to satisfy the current conserving and gauge-invariant condition [3]. In this case theOnsager relation is
shown to hold, even though theCoulombpotential is not an even function of themagnetic field [4]. In addition
to the charge, theflowof electrons also carries energy that produces the heat current. In theDC case, theOnsager
relation holds in the linear regime for the heat current and is violated in the nonlinear regime due to the presence
of the self-consistent Coulomb interaction.However, whether theOnsager relation is valid for ACheat
transport remains to be answered, since a self-consistent theory for ACheat current has not been formulated. It
would be interesting to address this issue.

As electrons traverse the scattering region, both electric current and heat current are generated. The
investigation of heat current has attracted a lot of attention. Themulti-channel Landauer formula for
thermoelectric transport was derived [5] in 1986 and later cast into a scatteringmatrix formalism [6]. This
formalism allows us to study both electric and heat transport as well as thermoelectric transport where a
temperature gradient is present. Recently the efficiency of nanoscale heat engines has been the focus of intense
studywhere heat current is driven by both bias voltage and temperature difference [7, 8]. Recently, the heat
current has been studied in the context of full counting statistics, where a generating function for the heat
current was calculated [9]. This enables one to study the efficiencyfluctuation of heat engines at nanoscale,
whichmay characterize the performance of nano heat enginesmore accurately [9].
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So farmost of the investigations focus onDCheat transport; less attention has been paid toACheat
transport [10]. Using the time-dependent scatteringmatrix,Moskalets and Buttiker [11] discussed the heatflow
and the quantum statistical noise properties of an adiabatic quantumpump atfinite temperature.Wang and
Wang have studied the heat current in a parametric quantumpump and derived a general formula for pumped
heat current atfinite frequency and pumping amplitude [12]. Comparing the heat current generated by the
adiabatic quantumpumpwith the Joule heat dissipated during the pumping process, Avron et al found a general
lower bound for the heat current [13]. This concept of optimal pumphas been generalized to the parametric
quantumpump connected by a superconductor lead [14]. The heat current through a carbon nanotube-based
quantumpumphas been explored by calculating the heat current order by order in pumping amplitude atfinite
frequencies, where the photon-assisted process has been found [15]. Recently, dynamic thermoelectric and heat
transport properties inmesocopic capacitors have been studied using the scatteringmatrix theory [16]. The
Coulomb interactionwas considered similar to the approach of reference [17], where a constant Coulomb
potential was assumed. It was found that by tuning the gate voltage, the thermocurrent can lead or lag the applied
temperature. In addition, the relaxation resistance of the heat current due to the temperature gradient is found
to be a universal value–half of the thermal resistance quanta. Dynamic energy current has also been investigated
within the scatteringmatrix theory, and new energy reactancewas identified [18]. Furthermore, heat current
noise was investigated using the scatteringmatrix theory [19, 20].We note that in all theseworks, except
reference [16], the self-consistent Coulomb interaction has not been considered.

First principles calculations using density functional theory (DFT)within the framework of a non-
equilibriumGreenʼs functionmethod (NEGF) have been carried out to amake quantitative prediction ofDC
charge transport properties for nano-devices [21–23]. The formalism has been extended to calculate the AC
charge current [24]. How to extend theNEGF-DFT formalism to treat ACheat current carried by electrons from
first principles is still an open question. The aimof this paper is to develop a theoretical formalism for heat
current under ACbias in the absence of electron–phonon interaction, using anNEGF theory thatwill pave the
way forfirst-principles heat current investigation.

It is known that the self-consistent Coulomb interaction should be included in order to satisfy two basic
requirements for theAC charge transport: gauge invariance and current conservation [3, 17]. In electronic heat
transport, the gauge-invariant conditionmust be satisfied, while the heat currentmay not be conserved due to
dissipation.We show in this paper that the self-consistent Coulomb interactionmust be included in order to
satisfy the gauge-invariant condition. Since the self-consistent Coulombpotential depends on time explicitly,
there is no closed-form solution for heat current atfinite frequency andfinite bias. In this paperwe use the
perturbation approach and expand frequency-dependent heat current in terms of external bias so that
frequency-dependent Coulombpotential can be considered. As an example, we obtain a general expression for
the frequency-dependent electrothermal admittancewith theCoulomb interaction included.Higher-order
nonlinear electrothermal admittance can be calculated in a similar fashion.We also examine the validity of the
Onsager relation for the electrothermal admittance and find that it is valid only for a special case for a quantum
dotwith a single energy level when a quasi-neutrality condition is assumed. Finally, we have applied our theory
to a nanocapacitor.We note that an important physical ingredient in the case of a nanocapacitor is the electron–
electron interaction [3]. Formacroscopicmetal plates this interaction is largely screened, but for nanoplates
where theDOS is low, the screening length can be long enough to play an important role, leading to a quantum
correction to capacitance. The analytic expression for heat current is obtained using the discrete potential
model.Wefind that the heat current is related to the electrochemical capacitance, up to the first order in
frequency.

This paper is organized as follows. In section 2, for amulti-terminalmesoscopic systemwe present a gauge-
invariant AC theory for heat current, taking into account the self-consistent Coulomb interaction. DC theory is
recovered as the frequency of bias voltage goes to zero. The gauge-invariant condition and theOnsager relation
are examined in theDC limit. In section 3, a general expression for the frequency-dependent heat current is
derived based on the non-equilibriumGreen’s function, including the self-consistent Coulombpotential in the
linear regime. The departure of theOnsager relation for the electrothermal admittance is discussed. In section 4,
the heat current of nanocapacitors is calculated. To obtain an analytic solution, a discrete potentialmodel is
used. Finally, a brief summary is given in section 5.

2. Theoretical formalism

Weconsider amulti-terminal system consisting of a central scattering region connected byN leads labeled byα
to the outside reservoirs, where ACbias ωαqv tcos is applied at the αth lead. TheHamiltonian of this system can
bewritten as ( = 1 ):
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∑= + +
α

αH t H t H t H tˆ ( ) ( ) ( ) ( ) (1)dot T

and,

∑ϵ=α α α αH t t a a( ) ( ) (2)
k

k k k
†

∑ ∑ϵ= +H t t d d V d d d d( ) ( ) (3)dot

n

n n n

nm

nm n n m m
† † †

∑= +
α

α αH t a d h c[ . . ] (4)T

k n

k n k n

, ,

†

where αH describes the non-interacting electrons in the leadαwith ϵ ϵ ω= +α α αt qv t( ) cos ,k k
0 and αak

†
αa( )k is

the creation (annihilation) operator in the corresponding lead αwith the electronic state labeled by k. The
second-termHdot stands for the quantumdot, and dn

† d( )n creates (annihilates) an electron in the quantumdot.
The electron–electron interaction is included inHdot. The third-termHT represents the coupling between the
quantumdot and the leadwith the coupling constant αt .k n Wewill work at low temperatures so that the influence
of electron–phonon interaction is less important and can be neglected.

2.1. Coulomb interaction
The electron–electron interaction is taken into account in the second termof equation (3) inHdot, whereVnm is
thematrix element of theCoulombpotential and is given by ′ = ∣ − ′∣V x x x x( , ) 1 in real space. In theHartree
approximation, equation (3) can be simplified as [4]

∑ ϵ= +H U d d( )dot

n

n n n n
†

where

∑=U V d d . (5)n

m

nm m m
†

Recalling the definition of the lesser Green’s function, = 〈 〉<G i d dnn n n
† , we can rewrite equation (5) in real

space as

∫= − ′ ′ ′ ′<U x i x V x x G x x( ) d ( , ) ( , )

fromwhichwe obtain the Poisson equation

 πρ π= − = − <U x t x t iq G t t U( , ) 4 ( , ) 4 [ ( , , )] . (6)xx
2

Making a double-time Fourier transformwith respect to time on equation (6), we find

 ∫Ω π π Ω= − +<U x q E G E E U( , ) 4 i (d 2 )[ ( , , )] . (7)xx
2

This equation has to be solvedwith a proper boundary condition.Wenote that the starting point of studying the
transport problem is to partition the system into two regions: lead regions and scattering regions. For the lead
region, the potential landscape is assumed to be either constant or periodic along the transport direction. This
way, thewavefunction of the semi-infinite lead can be obtained, which can be used as a boundary condition for
the central scattering region4.Otherwise, the transport problem for open systems cannot be solved. Physically,
this assumptionmeans that the potential in the lead region is completely screened so that the electric field is zero
deep inside the lead. Therefore, in solving equation (7), we choose a large scattering region so that the potential
of the lead region is completed screened. Thismeans that the total charge inside the scattering region is zero from
Gauss’s law,

∫ π Ω+ =<E G E E U(d 2 )Tr[ ( , , )] 0. (8)

Aswewill see later, this equation guarantees the current conservation inAC transport. In the presence of the
Coulomb interaction, the retardedGreen’s functionGr satisfies the followingDyson equation [4],

Σ= + +G G G UG G G . (9)r r r r r r r
0 0 0

4
In the language ofNEGF, the self-energy of the lead can be obtained using this assumption.

3
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For small-bias voltage, we expandU(t) in terms of αv ,

∑ ∑= + + +
α

α α
αβ

αβ α βU t U q u t v
q

u t v v( ) ( )
2

( ) ...eq

2

with the following sum rules:∑ =α αu t( ) 1and∑ ∑= =α αβ β αβu t u t( ) ( ) 0 [4]. Here αu t( ) is the time-

dependent characteristic potential, which is the first-order correction to the equilibriumCoulomb potential,
due to the external bias, whereas αβu is the second-order characteristic potential. The linear characteristic
potential is used to calculate theDC second-order nonlinear conductance and linear AC conductance, while the
second-order characteristic potential is needed forDC third-order nonlinear conductance and the second-order
nonlinear AC conductance.

In the linear bias regime, only first-order harmonics are involved; hence ∑=α α=±
−u t u nw( ) e ( )

n
nwt

1
i .

Taking the Fourier transformof ∫ Ω π=α
Ω

αΩ
−u t u( ) d e (2 )ti , wefind αΩu

π Ω δ Ω δ Ω= + + −αu w w( )[ ( ) ( )]. Hence, in Fourier space, the sum rule of αu t( ) becomes

∑ Ω =
α

αu x( , ) 1 (10)

whichwill be used to show the gauge invariance for charge current and heat current.

2.2. The electric and heat current in the presence of Coulomb interaction
In this subsection, we investigate the electric and heat current in the presence of theCoulomb interaction. Since
theHamiltonian of the leads depends on time throughACbias voltage, wewillmake a gauge transformation to
get rid of their time dependence in order to calculate the self-energy. This can be easily done, since the time-

dependent termdoes not depend on position. Specifically, we let ∑∫ τ τ= α α α αU q v a aexp i d ( )
t

k k k0
†⎡⎣ ⎤⎦ [25].

With this transformation, the operator â andHamiltonianwill transform according to: →a aUˆ ˆ and
→ + ∂H U HU i U Uˆ ˆ ( )t

† † . After the transformation, the explicit time dependence of αH is eliminated, while the

hopping strength αtk n inHT acquires a time-dependent phase factor: ∫ τ ταq vexp i d ( )
t

0

⎡⎣ ⎤⎦.
The heat current can be defined as the sumof themomentum-dependent particle currentmultiplied by its

energy,measured from the Fermi level, analogous to the definition for the electric current, i.e., the heat current
= −α α αI I E I ,h E

F where αI , is the particle current and αI E is the energy current defined as the time derivative of the

Hamiltonian describing the leads by =α αI ḢE [26, 27]. Therefore, the electric current αI e and the heat current αI h

operators of leadα are defined as5

∑=α
αI t q

N

t
( )

d ˆ

d
(11)e

k

k

∑ ϵ= −α α
αI t E

N

t
( ) ( )

d ˆ

d
(12)h

k

k F
k0

where EF is the Fermi energy and =α α αN a aˆ
k k k

† is the number operator of the lead α. Using theHeisenberg
equation ofmotion, the charge current and heat current coming from the lead α can be expressed as

∑= − +α α α
<I t q t G t t h c( ) ( , ) . . (13)e

kn

k n n k,
⎡⎣ ⎤⎦

∑ ϵ= − − +α α α α
<I t E t G t t h c( ) ( ) ( , ) . . (14)h

kn

k F k n n k
0

,
⎡⎣ ⎤⎦

where

≡ < >α α
<G t t i a t d t( , ) ( ) ( ) . (15)n k k n,

†

To simplify the calculational procedure, we introduce newquantities Σα
γ

t t˜ ( , )mn, 1 with γ = <r a, , ,which are
similar to the usual self-energy Σα

γ t t( , )mn, 1 [27],

∑Σ ϵ= −α
γ

α α α
γ

αt t E t t g t t t t˜ ( , ) ( ) ( ) ( ) ( ) (16)mn

k

k F k m k k n, 1
0 * 1 1,

5
Wenote that there is a different definition of heat current using the scatteringmatrix theory (SMT) [16, 18–20]. The definition of energy

current using SMTderived from the Schrödinger equation is equivalent to = +α α αI H H˙ ˙ 2E
T inNEGF theorywith ∑ =α αH HT T given in

equation (4) [18].

4
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and

∑Σ =α
γ

α α
γ

αt t t t g t t t t( , ) ( ) ( ) ( ) (17)mn

k

k m k k n, 1 * 1 1,

where α
γg t t( )k 1, are the usual Green’s functions of the leads, which have the following forms:

∫θ= ∓ ± ∓α
ϵ− ′ ′αg t t i t t( ) ( )e (18)k

r a t t,
1, 1

i d ( )
t

t

k
1

∫ϵ=α α
ϵ< − ′ ′αg t t if( ) ( )e . (19)k k

t t
1,

0 i d ( )
t

t

k
1

Using equations (17)–(12), equation (16) can bewritten as,

∑ ∫Σ ϵ Σ= − −α
γ

α α
γ ω− ′ ′αt t E t t˜ ( , ) ( ) ( )e (20)

k

k F k
i dt qv t

1
0

0 1
cos

t

t1

where∑ Σ −α
γ t t( )

k k0 1 is the equilibrium self-energy. Using the theoremof analytic continuation, the electric

and heat current can be expressed as ( = 1)

∫ Σ Σ

Σ Σ

= − +

− −

α α α

α α

< <

< <

I t q t G t t t t G t t t t

t t G t t t t G t t

( ) d Tr ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) (21)

e r a

a r

1 1 1 1 1

1 1 1 1

⎡⎣
⎤⎦

∫ Σ Σ

Σ Σ

= − +

− −

α α α

α α

< <

< <

I t t G t t t t G t t t t

t t G t t t t G t t

( ) d Tr ( , ) ˜ ( , ) ( , ) ˜ ( , )

˜ ( , ) ( , ) ˜ ( , ) ( , ) . (22)

h r a

a r

1 1 1 1 1

1 1 1 1

⎡⎣
⎤⎦

Performing the Fourier transformation on equations (21) and (22), the general frequency-dependent electric
and heat currents are given by,

∫ ∫Ω
π π

Ω Σ Ω Σ

Σ Ω Σ Ω

= −
′

+ ′ ′ + + ′ ′

− + ′ ′ − + ′ ′

α α α

α α

< <

< <

I q
E dE

G E E E E G E E E E

E E G E E E E G E E

( )
d

2 2
Tr ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

e r a

a r

⎡⎣
⎤⎦

∫ ∫Ω
π π

Ω Σ Ω Σ

Σ Ω Σ Ω

= −
′

+ ′ ′ + + ′ ′

− + ′ ′ − + ′ ′

α α α

α α

< <

< <

I
E dE

G E E E E G E E E E

E E G E E E E G E E

( )
d

2 2
Tr ( , ) ˜ ( , ) ( , ) ˜ ( , )

˜ ( , ) ( , ) ˜ ( , ) ( , ) . (23)

h r a

a r

⎡⎣
⎤⎦

It is straightforward tofind,

∫∑ Ω Ω
π

Ω= +
α

α
<I q

E
G E E( )

d

2
Tr[ ( , )] (24)e

which is the continuity equation for charge transport. Once the Poisson equation is solved, equations (8) and
(24) lead to∑ Ω =α αI ( ) 0,e which is the current conservation.Obviously, if the Coulomb interactionU is not

included in theGreen’s function, the current would not be conserved unless Ω = 0 (DC limit). The reason is
that without theCoulomb interactionU the displacement current is left out, and the current we calculate is just
the conduction current. It is the total current (conduction current plus displacement current) that is conserved.

In the linear regime, it has been shown in [4] that theOnsager relation holds

Ω Ω= −αβ βαG B G B( , ) ( , ) (25)

where αβG is the frequency-dependent conductance. Nowwe show that for amulti-probe system, theOnsager
relation togetherwith the gauge-invariant condition leads to the current conservation automatically. The gauge-
invariant conditionwith −B means∑ − =α βαG B( ) 0 [4], which is equivalent to current conservationwithB,

∑ =α αβG B( ) 0, from theOnsager relation.

In the next subsection, wefirst discuss theDC limit of our formalism and discuss the gauge-invariant
condition.

2.3.DCheat current
In theDC limit, the time translational symmetry is restored, and the two-timeGreen’s function depends only on
the time difference. Equation (22) can bewritten in energy space as follows

5
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∫ π
Σ Σ Σ Σ= − + − −α α α α α

< < < <I t
E

G E E G E E E G E E G E( )
d

2
Tr ( ) ˜ ( ) ( ) ˜ ( ) ˜ ( ) ( ) ˜ ( ) ( ], (26)h r a a r⎡

⎣⎢

where the self-energy is obtained according to equation (20)with ω = 0. In this limit, equation (20) gives a δ
function δ ϵ + −α αqv E( )k

0 after the Fourier transform. Finally wefind

Σ Σ= − −α
γ

α α
γ( )E E E qv E˜ ( ) ( ) (27)F

where Σα
γ E( ) is the self-energy of the charge transport. Therefore, theDCheat current is given by [28, 29]

∫∑
π

= − − −α
β

α α β αβ( )( )I E E qv f f E U
E

TTr ( , )
d

2
(28)h

F
⎡⎣ ⎤⎦

where, Γ Γ=αβ α βG GT r a is the transmissionmatrix.
Wewill show below that equation (28) is gauge invariant. To show the gauge invariance, we shift all the bias

by a constant amount v0, i.e., from αv to +αv v0. Keep inmind that we have included the self-consistent
CoulombpotentialU in theHamiltonian, andU becomes +U v0 after the shift. Since the self-energy Σ E( )r and
Fermi distribution function depend on − αE qv ,while theGreen’s function depends on Σ− − −E H U E( )r ,
we can shift the dummy energy variable from E to +E qv0. As a result, the heat current remains the same, which
is the gauge-invariant condition.

To show theOnsager relation for the linear heat current, wewill use the following relationswhen the
externalmagnetic field is reversed [4]

Γ Γ
= −
= −α α

G E B G E B

E B E B

( , ) [ ( , )]

( , ) [ ( , )] (29)

r a r a T

T

, ,

where the superscript T denotes the transpose, and Gr a, andΓ arematrices in real space. Define the
electrothermal admittance as

∫ π
= − −∂αβ αβG q E E f E

E
T( )[ ( )]Tr

d

2
.h

F E
⎡⎣ ⎤⎦

It is then straightforward to prove theOnsager relation

= −αβ βαG B G B( ) ( ). (30)h h

In the next subsection, we studyACheat current at small bias. In the limit of the small bias, we can expand
the expression of heat current to the linear and nonlinear order in terms of external bias to investigate the
electrothermal admittance. In the following, a procedure on how to expand the heat current is presented using
NEGF. The transport properties of the heat current in the presence of theCoulomb interactionwill also be
discussed.

2.4. Linear heat current
In the small bias limit, we can expand theGreen’s function γG t t( , )1 and self-energy Σα

γ
t t˜ ( , )1 up to thefirst

order in terms of the bias αv [30, 31].

= +γ γ γG t t G t t g t t( , ) ( , ) ( , ) (31)1 0 1 1 1

and

Σ Σ σ= +α
γ

α
γ

α
γt t t t t t˜ ( , ) ˜ ( , ) ˜ ( , ) (32)1 0 1 1 1

where G t t( , )r
0 1 is the equilibriumGreen’s function and g t t( , )r

1 1 is thefirst-order correction. After substituting

equations (31) and (32) into equation (22), the heat current αI t( )h
1 in the linear response regime is easily

obtained,

∫ σ Σ

σ Σ

= − +

+ + +

α α α

α α

< <

< <

I t t G t t t t g t t t t

G t t t t g t t t t c c

( ) d Tr ( , ) ˜ ( , ) ( , ) ˜ ( , )

( , ) ˜ ( , ) ( , ) ˜ ( , ) . . . (33)

h r r

a a

1 1 0 1 1 1 1 1 0 1

0 1 1 1 1 1 0 1

⎡⎣
⎤⎦

Note that the quantities appearing in equation (33)with the subscript 0 like γG t t( , )0 1 and Σα
γ

t t˜ ( , )0 1 are all the
equilibrium functions and only depend on the time difference −t t( ),1 while the other non-equilibrium
quantities depend on the double-time indices t and t .1 Taking the Fourier transform, the frequency-dependent
linear heat current is

6
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∫Ω
π

σ Σ σ

Σ σ Σ

σ Σ

= − + +

+ − −

− −

α α α α

α α α

α α

+
<

+ +
< <

+ +

<
+

<
+

<
+ +

+
< <

+

I
E

G E E E g E E E G E E E

g E E E E E G E E g E E

E E G E E g E E

( )
d

2
Tr ( ) ˜ ( , ) ( , ) ˜ ( ) ( ) ˜ ( , )

( , ) ˜ ( ) ˜ ( , ) ( ) ˜ ( ) ( , )

˜ ( , ) ( ) ˜ ( ) ( , )

h r r a

a a a

r r

1 0 1 1 0 0 1

1 0 1 0 0 1

1 0 0 1

⎡⎣

⎤⎦
whereω is the driving frequency,Ω is the response frequency, and Ω= ++E E .

To further simplify the expression, we need to calculate the newquantity Σα
γ

t t˜ ( , ).1 Expanding equation (20)

in powers of αv and taking the Fourier transform,wefind the 0th order and thefirst-order terms of Σα
γ

+E E˜ ( , )

Σ Σ= −α
γ

α
γE E E E˜ ( ) ( )( )F0 0

σ Σ Σ Ω= − +α
γ Ω

Ω α
γ

α
γ

+
αE E E E˜ ( , ) [ ˜ ( ) ˜ ( )]

qv
1

( )
0 0

where Ω π δ Ω ω δ Ω ω= + + −α αv v( ) [ ( ) ( )]and Σ α
γ E( )0 is the equilibrium self-energy.

Thefirst-order correction of the retarded, advanced, and lesser Green’s function <g r a
1

, , has been calculated in

reference [4]. Using the abbreviation ≡G E G( ) ,0 ≡+G E G( ) ¯0 , = +f f E¯ ( ), and ≡+g E E g( , ) ¯,1 etc., we have

σ= +g G U G¯ ¯ ( ¯ ) (34)r a r a r a r a
1

, ,
1

,
1

,

σ Σ Σ= + +< < < <g G G g G G g¯ ¯ ¯ ¯ ¯ ¯ ¯ (35)r a r a r a
1 1 1 0 0 1

where ∑Ω Ω Ω= α α αU q u v( ) ( ) ( )1 . In thewideband limit [32], the linewidth function is independent of the

energy, and the equilibrium self-energy of the lead α is Σ Γ= ∓α αi 2.r a, In this approximation, we have

∑

σ Ω
Γ

σ
Ω

Ω
Γ

Ω

Ω
Ω Γ Γ Γ

= ±

= − − −

=

=
−

+ +

α α
α

α
α

α

α
α α

+

<
+ +

+

<
+

E E qv

E E
qv

E E f E E f

g E E G U G

g E E q
f f

G v G qfG U G G qf G G U G

˜ ( , ) i ( )
2

˜ ( , )
( )

i ( ) ( ) ¯

( , ) ¯ ( )

( , ) i
¯

¯ ( ) i ¯ i ¯ ¯ ¯ . (36)

r a

F F

r a r a r a

r a r r a r a a

1
,

1

1
, ,

1
,

1 1 1

⎡⎣ ⎤⎦

Using equation (36) the linear frequency-dependent heat current becomes,

∫

∫

∑Ω
π Ω

Ω Ω Γ Ω Γ Γ

Ω Γ
π

Γ Ω

= −
−

+ − − −

+ + − + −

α α α
β

β β α

α α α( )

I
E f f

E E G G qv G qv G

G U G
E

f f G G qv U

( )
d

2

¯

2
Tr ( ¯ ) ( )i ¯ ( )

¯ i
d

4
( ¯)Tr ( ¯ )i ( ) , (37)

h
F

r a r a

r a a r

1

1 1

⎜ ⎟⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦
wherewe havemade the Thomas–Fermi approximation [3]. Thefirst-order electrothermal admittance αβG h is
defined similarly to the electric dynamic conductance [16]

∑Ω Ω Ω=α
β

αβ βI G v( ) ( ) ( )h h
1

From equation (37)wefind,

Ω Ω Ω= +αβ αβ αβG G G( ) ( ) ( ), (38)h h h,(1) ,(2)

wherewe have split electrothermal admittance into two parts: ΩαβG ( ),h,(1) which is related to the charge

conductance ΩαβG ( ),e and ΩαβG ( )h,(2) , defined as6

∫Ω
π Ω

Ω Ω= −
−

+ −αβ αβG q
E f f

E E g E( )
d

2

¯

2
Tr ( , ) , (39)h

F
,(1) ⎜ ⎟⎛

⎝
⎞
⎠

⎡⎣ ⎤⎦
and

∫Ω
π

Γ δ Ω= − + −αβ α αβ β( )G q
E

f f G G u( )
d

4
( ¯)Tr ( ¯ )i ( ) , (40)h a r,(2) ⎡⎣ ⎤⎦

respectively, wherewe have introduced an energy-dependent local dynamic conductancematrix

Ω Γ δ Γ Γ Ω Ω Γ= − − +αβ β αβ β α β αg E G G G G G u G( , ) ( ¯ )i ¯ ¯ ( ) i , (41)r a r a r a

6
Wenote that equation (39) is the same as the heat current obtained fromSMT [18]while equation (40) corresponds to the contribution of

− αḢT to the heat current.
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which is related to the dynamic charge conductance

∫Ω
π Ω

Ω= −
−

αβ αβG q
E f f

g E( )
d

2

¯
Tr ( , ) . (42)e 2 ⎡⎣ ⎤⎦

Here the characteristic potential Ωαu ( ) is used, which satisfies the Poisson-like equation [4]

 Ω π
Ω

π
Ω

Ω= − +α
α

αu x q
n x

E
q

n x

E
u x( , ) 4

d ( , )

d
4

d ( , )

d
( , ), (43)2 2 2

wherewe have introduced the frequency-dependent injectivitymatrix

∫Ω
π Ω

Γ=
−α

α
n

E

E f f
G G

d ( )

d

d

2

¯
[ ¯ ] (44)r a

and the frequency-dependent emissivitymatrix

∫Ω
π Ω

Γ=
−α

α
n

E

E f f
G G

d ¯ ( )

d

d

2

¯
[ ¯ ]. (45)a r

The boundary condition of the Poisson-like equation is that αu deep inside α lead is 1 and is zero deep inside of
other leads.

3.Gauge invariance and violation of theOnsager relation of dynamic heat current

In this section, we examine the gauge-invariant electrothermal admittance and the departure of theOnsager
relation for a linear dynamic heat current.

A gauge-invariant conditionmeans that if we shift all voltages by a constant amount v0, the heat current
should not alter. This amounts to the condition∑ =β αβG 0h . Since the dynamic charge current given in

equation (42) satisfies the current conserving and gauge-invariant conditions, we have

∑ ∑Ω Ω= =α αβ β αβG G( ) ( ) 0h h,(1) ,(1) . Using the sum rule for characteristic potential∑ =α αu 1, wefind from

equation (40)∑ Ω =β αβG ( ) 0h,(2) . This shows that the gauge-invariant condition is satisfied for electrothermal

admittancewhen the self-consistent Coulomb interaction is included.
Nowwe examine theOnsager relation for the electrothermal admittance.We note that in the AC regime,

equation (29) is still valid, fromwhich theOnsager relation has been shown to be valid for the dynamic
conductancematrix [4]

Ω Ω= −αβ βαg E B g E BTr ( , , ) Tr ( , , ) .⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
This shows that αβG h,(1) satisfies theOnsager relation7,

Ω Ω= −αβ βαG B G B( , ) ( , ). (46)h h,(1) ,(1)

However, for αβG h,(2)we have from equations (29) and (40)

∫Ω
π

δ Ω Γ− = − − − +αβ αβ β α( )G B q
E

f f i u B G G( , )
d

4
( ¯)Tr ( , ) ( ¯ ) . (47)h T a r,(2) ⎡⎣ ⎤⎦

For a two-probe system, theOnsager relation requires that Ω Ω− =G B G B( , ) ( , )h h
11

,(2)
11

,(2) . This in turn requires
Ωβu B( , ) to be an even function ofB. It has been shown in reference [4] that

Ω Ω−
=α αn B

E

n B

E

d ( , )

d

d ¯ ( , )

d
(48)

and

Ω Ω− =n B

E

n B

E

d ( , )

d

d ¯ ( , )

d
. (49)

From equation (43)we see that Ωβu B( , ) is not an even function of themagnetic field, which agrees with
reference [2] at the zero-frequency limit. For a quantumdotwith a single level with quasi-neutrality
approximation, we have Γ= − +G E E i1 ( )r

0 , fromwhichwefind Ω Γ Γ=α αu ( ) , which is an even function
ofB. As a result, for this special case, theOnsager relation holds for ΩαβG ( ),h,(2) and hence, for ΩαβG ( )h .

In the next subsection, we derive the general nonlinear expression of the heat current.

7
Hence theOnsager relationwould be valid if the definition of heat current fromSMTwere used.
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3.1. Nonlinear heat current
Nowwe calculate the general nonlinear heat current. Tomake the derivation simple, we only discuss the case
where theCoulomb interaction is absent. From equation (20), using the relation

∑κ κ=α αi x J inxexp( sin ) ( )exp( )
n n with κ ω=α αqv , and Jn being the Bessel function, the heat self-energy

can be found as

∑Σ ϵ Σ κ κ= − − ×α
γ

α α
γ

α α
ω ω−t t E t t J J˜ ( , ) ( ) ( ) ( ) ( ) e e . (50)

knm

k F k n m
n t m t

1 2
0

0 1 2
i i1 2

Taking the Fourier transform,we have

∑Σ ω Σ ω κ κ

πδ ω

′ = − − − ×

× − ′ + −

α
γ

α
γ

α αE E E n E E n J J

E E m n

˜ ( , ) ( ) · ( ) ( ) ( )

2 ( ( ) ). (51)
knm

F k n m0

In contrast, the electric self-energy in the Fourier space

∑Σ Σ ω κ κ πδ ω′ = − × − ′ + −α
γ

α
γ

α αE E E n J J E E m n( , ) ( ) ( ) ( ) 2 ( ( ) ). (52)
knm

k n m0

In thewideband limit, where the equilibrium self-energy is Σ Γ= ∓α αi 2r a
0

, with Γα independent of energy, it

is not difficult to see that Σ̃ r a, is of tri-diagonal form in energy space:

Σ πΣ δ δ ω δ ω′ = − − ′ − − ′ − + − ′ +α α αE E E E E E qv E E E E˜ ( , ) 7 2( ) · ( ) ( ( ) ( )) , (53)
r a r a

F
,

0
, ⎡⎣ ⎤⎦

wherewe have used the relation

∑ δ=+J x J x( ) ( ) , (54)
n

n n l l,0

and

∑ δ δ= ++ + −( )nJ x J x
x

( ) ( )
2

. (55)
n

n n l l l1,0 1,0

The retardedGreen’s function can be calculated from theDyson equation

π δ′ = − ′G E E G E E E( , ) 2 ( ) ( ), (56)r r
0

while the lesser Green’s function can be obtained by theKeldysh equation

Σ′ = ′ ′< <G E E G E E E G E( , ) ( ) ( , ) ( ). (57)r a
0 0

With the expressions of ′γG E E( , ) and Σ ′γ E E˜ ( , ), we find the general nonlinear frequency-dependent heat
current as follows

∫

∫

∫

∑

∑

Ω
π

Ω Σ Σ Γ

ω δ Ω ω κ κ

Ω ω Γ

δ Ω ω δ Ω ω κ κ

Ω ω Γ Ω ω Γ

= − + − − +

+ + + −

× + − −

− + − − + + − +

× + − − − −

α α α

α α

α

α
α α

α

< <I
E

E E G G G G

n m m n J J

E f E n G G

qv
m n m n J J

E f E n G G E m n

( )
d

2 2
Tr ( ¯ ) ¯ ¯ ¯ i

2
( ) ( ( ) ) ( ) ( )

d ( )Tr ( ¯ )i

2
[ ( ( 1) ) ( ( 1) )] ( ) ( )

d ( )Tr ¯ ( ( ) ) , (58)

h
F

r a r a

nm

n m

r a

nm

n m

r a

0 0 0 0

0 0

0 0

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠ ⎡⎣ ⎤⎦

⎛
⎝

⎞
⎠

⎡⎣ ⎤⎦
⎛
⎝

⎞
⎠

⎡⎣ ⎤⎦
where Σα

<¯ is an abbreviation for Σ Ω+α
< E E( , ), defined in equation (52).

It should be noted that thefirst termof this equation is similar to the general formulae of electric current,
except for an extra factor of + −ΩE E( )F2

. The second and third term arewritten as an expansion of Bessel

functions, which contribute to both linear and non-linear behaviors of the heat current in voltage and frequency.
To comparewith our result in the linear regime, we expand equation (58) in powers of αv . It is easy to show that
the result recovers equation (37).

3.2. First-principles calculation
Beforewe end this section, wewill discuss how to perform first-principles calculation of electrothermal
admittancewithin theNEGF-DFT framework.We start with ameanfieldHamiltonian for a particular nano-
device by performing an equilibrium first-principle calculation to obtain-equilibriumHamiltonian, including
equilibrium charge density andHartree potentialUeq [21]. After that, we construct the equilibriumGreen’s

9
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function, defined as

Σ= − − − −G E H U V1 (59)r
eq xc

r⎡⎣ ⎤⎦
whereU is the self-consistent Coulombpotential andVxc is the potential due to exchange and correlation, which
is the functional of charge density. If the non-orthogonal basis set is used, we have to replaceE byES in the above
equationwhere S is the overlapmatrix for the basis set.We then calculate the frequency-dependent local density
of state Ωαn x Ed ( , ) d defined in equation (44) and solve the Poisson-like equation (62) given below tofind the
frequency-dependent characteristic potential Ωαu x( , )due to the ACbias. The boundary condition of Poisson-
like condition is: uL is zero deep inside of the right lead and is one deep inside of the left lead for two probe
structures. Once the characteristic potential is found, the electrothermal admittance can be obtained from
equation (38) and (39), andmodified (40) described below.

For first principles, calculation, due to the presence of the exchange correlation potential, the Poisson-like
equation (43) and electrothermal admittance (39) and (40) have to bemodified. This is because theDyson
equation (9) has onemore term,

Σ= + + +G G G UG G V G G G (60)r r r r r
xc

r r r r
0 0 0 0

where

∑= +
α

α αV V v v (61)xc xc eq xc, ,

and αvxc, is the first-order correction to the equilibrium exchange correlation potential.We emphasize that since
Vxc is a functional of charge density, and linear charge density is given by the right-hand side of equation (43),
hence Ω Ω Ω Ω= −α α αv w x n x E n x E u x( , )[d ( , ) d d ( , ) d ( , )]xc, where Ωw x( , ) can be obtained, depending
on the choice of exchange and correlation potential. Then the Poisson like equation becomes,

 Ω π
Ω

π
Ω

Ω Ω= − + +α
α

α α( )u q
n

E
q

n

E
u v( ) 4

d ( )

d
4

d ( )

d
( ) ( ) . (62)xc

2 2 2
,

Finally we have tomodify equation (40) by replacing αu with +α αu vxc, .

4. Electrothermal admittance for a nano capacitor

In this section, we apply our theory to a nano capacitor and calculate the electrothermal admittance. Aswe
mentioned in the introduction, Lim et al [16] has investigated thedynamic thermoelectric andheat current for a
mesoscopic capacitor similar to the experimental setupof reference [33]. In this setup, a quantumdot system is
capacitively coupled to amacroscopicmetal, forming a capacitor. In this system, only density of states of the
quantumdot contributes to thequantumadmittance. The dynamic response of this quantumcapacitor can be
characterized by three parameters at low frequencies: a static electrochemical capacitance, a charge relaxation
resistance, and a quantum inductance [34]. For this system, thermoelectric capacitance is found tobeproportional
to the derivative of density of states of the quantumdot,which can be tuned by gate voltage, giving rise to a different
response (capacitive-like or inductive-like) to the external time-dependent temperature bias [16]. In addition,
thermoelectric relaxation resistance is found to benon-universal, depending on sample details.

We consider a parallel plate nano capacitor, which consists of an insulator sandwiched by two nanoscale
metallic plates called regions I and II (see figure 1). Due to thefinite density of states ofmetallic plates; the
potential is not fully screened. As a result, the electrochemical potential of the reservoir αV (α = L R, ) is not
equal to the electrostatic potentialUk ( =k I II, ) of themetallic plate, giving rise to a quantum correction to the
capacitance, which has been confirmed experimentally [35].Wewillfirst discuss how to obtain the
electrochemical capacitance using the discrete potentialmodel [36] and then use the samemethod to calculate
the linear ACheat current.

For an applied bias <v vL R, we have an electron injected into region Iwith total chargeQI. Due to the
Coulomb interaction, a chargeQIIwill be induced in both regions I and II. In general, the charge consists of an
injected and induced charge, = +Q Q QI inj I ind I, , . Here the injected charge is given by =Q D ve ,inj I I L,

2 whereDI

is the density of states in region I. The induced charge is related to Lindhard function [3]. If we use the Thomas–
Fermi approximation, the result ismuch simpler: = −Q D Ueind I I I,

2 [36]. Therefore, we have

= −Q D v Ue ( ). (63)I I L I
2

Similar expressions hold for the charge in region II. From the definition of classical capacitance denoted asC0

and electrochemical capacitance denoted as μC , we have [36]

= −Q C U U( ) (64)I I II0
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and

= −μQ C v v( ). (65)I L R

From equations (63), (64), and (65), we find

= −
−μ

U v
C v v

D

( )

e
(66)I L

L R

I
2

and

= +
−μ

U v
C v v

D

( )

e
. (67)II R

L R

II
2

Taking the difference between equations (66) and (67), we have

− = − − − +μU U v v C v v
D D

( )
1

e

1

e
. (68)I II L R L R

I II
2 2

⎛
⎝⎜

⎞
⎠⎟

Noting that − = −μU U C C v v( )( )I II L R0 , wefinally arrive at

= + +
μC C D D

1 1 1

e

1

e
(69)

I II0
2 2

whichwasfirst obtained by Buttiker 20 years ago [3]. Clearly for amacroscopic sample with a large density of
states, the quantum correction vanishes, and electrochemical capacitance reduces to classical capacitance. For
the nanocapacitor, the low frequency dynamic charge conductance is given by Ω Ω= −αβ αβG C( ) ie2 with

= μC CLR ,∑ =α αβC 0, and∑ =β αβC 0 [3, 37].

Nowwe examine the electrothermal admittance at low frequencies.We expand equations (39) and (40) to
thefirst order in frequency at zero temperature andfind ( = −q e)8

∑Ω
π

Γ δ= − + −α
β

α αβ β β( )I G G u v
ie

4
Tr( ) . (70)h a r

Since our theory is gauge invariant, we can choose =v vL and vR=0. In the discrete potentialmodel, only two
regions are considered; hence, the above equation becomes

Ω
π

Ω
π

= −

=

I S U

I S U

ie

2
Im( )

ie

2
Im( ) (71)

L
h

LL II

R
h

RR I

Figure 1. Schematic diagramof the nano capacitor.

8
At zero temperature and thefirst order in frequency, equation (39) is zero, and the electrothermal admittance is dominated by equation (4).

We note that if the definition of SMT is used, then the electrothermal admittance is solely due to equation (39). In reference [16], low-
frequency electrothermal admittancewas examined at low temperature instead of zero temperature. Hence, the difference between the
results of reference [16] and ours is due to the different definitions.
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where αβS is the scatteringmatrix, andwe have used the Fisher–Lee relation

Γ= − +αα αS G1 iTr( ). (72)r

Using equations (66) and (67), wefinally have

Ω
π

Ω
π

= − −

= − −

μ

μ

I S
C

D
v v

I S
C

D
v v

ie

2
Im( )

e
( )

ie

2
Im( ) 1

e
( ) (73)

L
h

LL
II

L R

R
h

RR
I

L R

2

2

⎛
⎝⎜

⎞
⎠⎟

wherewe have used the fact that the heat current is gauge invariant. The first-order term in frequency given in
the above equation reflects the phase difference between bias voltage and heat current.We see that the heat
current for the left or right leadmay have a different phase, depending on the density of states of the lead aswell
as the phase of the scatteringmatrix. For a symmetric two-probe nano capacitor, we have

ϕ= = −S S i iexp( )LL RR whereϕ is the phase accumulated in the scattering event [38]. Hence for a simple
parallel-plate symmetric nano capacitor, we have ϕ = 0 and

Ω
π

= − −μ
I

C

D
v v

ie

2 e
( ). (74)L

h

II
L R2

This is a typical capacitance-like behavior where the voltage lags behind the heat current. According to the
convention of heat current, currentflowing into the system is positive. Because of this and the fact that

− = +μ μ μC D C C C D1 e eI II
2

0
2 is positive definite, wefind that I hR show similar capacitance-like behavior.

For amacroscopic capacitor, DOS can be treated as infinity. In this case, μC reduces to the classical capacitance

C0, and =I 0L
h (up to thefirst order in frequency). Thismeans that the heat current of the left lead follows the

voltage instantly, while the voltage still lags behind the heat current of the right lead.
Finally, adding up the total heat current, we have

Ω
π

+ = −μ
I I

C

C
v v

ie

2
( ). (75)L

h
R
h

L R
0

5. Summary

In summary, we have developed the general expression for linear heat current in AC regime. By including the
self-consistent Coulomb interaction, this theory is shown to be gauge invariant. The departure of theOnsager
relation is observed for electrothermal admittance.We have also discussed possible extension of this formalism
to the case offirst-principles calculation.We have applied our theory to a nanocapacitor, where the self-
consistent Coulomb interaction is essential for the electrochemical capacitance. A general expression has been
obtained for heat current in terms of electrochemical capacitance and the scatteringmatrix element, up to the
first order in frequency.
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