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Zheng-Yuan Xue,1,* Jian Zhou,1,2 and Z. D. Wang3

1Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials and School of Physics
and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China

2National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
3Department of Physics and Center of Theoretical and Computational Physics, The University of Hong Kong,

Pokfulam Road, Hong Kong, China
(Received 1 April 2015; revised manuscript received 26 June 2015; published 10 August 2015)

To implement a set of universal quantum logic gates based on non-Abelian geometric phases, it is conventional
wisdom that quantum systems beyond two levels are required, which is extremely difficult to fulfill for
superconducting qubits and appears to be a main reason why only single-qubit gates were implemented in a
recent experiment [A. A. Abdumalikov, Jr. et al., Nature (London) 496, 482 (2013)]. Here we propose to realize
nonadiabatic holonomic quantum computation in decoherence-free subspace on circuit QED, where one can use
only the two levels in transmon qubits, a usual interaction, and a minimal resource for the decoherence-free
subspace encoding. In particular, our scheme not only overcomes the difficulties encountered in previous studies
but also can still achieve considerably large effective coupling strength, such that high-fidelity quantum gates
can be achieved. Therefore, the present scheme makes realizing robust holonomic quantum computation with
superconducting circuits very promising.
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I. INTRODUCTION

Under adiabatic cyclical evolution, a quantum system
acquires a phase factor, which consists of both dynamical and
geometric components. When the eigenstates of the system are
nondegenerate, the geometric component is the well-known
Berry phase [1]. For the degenerate case, it is a unitary operator
acting on the degenerate subspace, i.e., holonomy [2]. As
geometric phases are determined by the global property of the
evolution path, the geometric method of quantum computation
has been shown to possess some built-in noise-resilience
features [3–10]. In general, the holonomies do not commute
with each other and thus can be used to construct a universal
set of quantum gates [11–23], i.e., the holonomic quantum
computation (HQC).

On the other hand, the adiabatic method of quantum com-
putation intrinsically leads to long gate operation time, which
may be comparable with the lifetime of typical qubits [24,25].
This motivates research on quantum computation based on the
nonadiabatic geometric phases. Recently, nonadiabatic HQC
has been proposed using three-level � systems [26] with
the experimental implementation of some elementary gates
[27–30]. However, the excited state is resonantly coupled
when implementing the quantum gates [26], and thus, its
limited lifetime is a main challenge in practical experiments.
Note that this limitation may be avoided in experiments in
Refs. [29,30] because they use the three magnetic states
of a nitrogen-vacancy center in a diamond. However, for a
superconducting transmon qubit, this limitation does exist, and
recent experiment has verified only single-qubit gates [28]. The
energy levels of a transmon qubit [31] are in a ladder shape, and
the anharmonicity is small, which limits the coupling strength
between neighboring levels to the order of 10 MHz in order
to individually address the interactions [28,32]. Therefore,
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even with newly demonstrated good coherent times of mul-
tilevels in the transmon qubit [32], the implementation of a
nontrivial two-qubit holonomic gate, which needs much more
complicated cavity-induced interaction between two three-
level systems [26], is still very challenging. Alternatively,
there are schemes using circuits more complicated than
transmons to mimic a multilevel system [7,16,20]. However,
this will inevitably introduce additional noises from the
environment because more circuits and control elements are
needed.

Meanwhile, many efforts have also been made to combine
HQC with the decoherence-free subspace (DFS) encoding
[33–35]. HQC in DFS [36–41] can consolidate both the noise
resilience of the encoding and the operational robustness of
holonomies. As for transmon qubits, this protocol is much
more difficult to implement because it requires at least
two transmon qubits to encode a logical qubit, and thus,
more complex interactions among qubits are needed, even
in the single-qubit-gate case. Moreover, previously proposed
schemes based on HQC in DFS usually need at least three
physical qubits to encode a logical qubit; note that the use
of two physical qubits is a minimum resource needed, as in
Ref. [42] for geometric entangling gates.

In this paper, we propose to implement a nonadiabatic
HQC in DFS with a typical circuit QED setup. Our scheme
avoids the above-mentioned difficulties. First, only the two
energy levels of the transmon qubits are involved. Second,
for the single-qubit case, our implementation relies solely on
the effective resonate qubit-cavity interaction. Meanwhile, for
the two-qubit case, only a conventional detuned interaction is
required, where the detuning between a transmon qubit and the
cavity is fixed, and thus, we have plenty freedom to avoid the
limitation due to the small anharmonicity of transmons. Third,
we use two transmons to encode a logical qubit, which is the
minimal resource for the DFS encoding. Therefore, our scheme
presents a promising method for HQC on superconducting
circuits.
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FIG. 1. (Color online) Illustration of the setup of our scheme.
(a) The coupled two-transmission-line-resonator system for universal
holonomic quantum computation in a decoherence-free subspace, in
which each resonator has two transmon qubits to encode a logical
qubit. (b) The qubit and cavity coupling configuration.

II. THE SETUP AND INTERACTION

The setup we consider is illustrated in Fig. 1(a), which
consists of two coupled transmission line resonators (one-
dimensional cavities). In each cavity, there are two transmon
qubits [31] capacitively coupled to it. This coupled system is
the building block of our scheme, and the two transmon qubits
encode a logical qubit. For the case of single-logical-qubit
gates, we consider only the dynamics within a cavity, while
the coupling between the two cavities is switched on when
implementing the two-logical-qubit gate. Furthermore, one
may repeat this block to construct a one-dimensional chain
of logical qubits; that is, all the parameters of the odd and even
qubits are the same as those of the first and second qubits,
respectively.

We first detail our setup for the single-qubit case. A
transmon qubit is composed of two identical Josephson
junctions in a loop configuration and is shunted by a large
capacitance. The transmon qubit is quantized, and its lowest
two energy levels can be used to construct our physical qubit
states with the effective Hamiltonian Hq,j = ωq,jσ

z
j /2 (� = 1),

where ωq,j is the energy splitting of the transmon qubit and σ z
j is

the Pauli matrix of the j th transmon qubit in its eigenbasis. For
typical values of experimental parameters, ωq,j ∼ [4,10] GHz
[43]. The transmon qubits are located at the voltage antinodes
of the relevant cavity mode, Hc = ωca

†a, where ωc, a, and a†

are the frequency, annihilation, and creation operators of the
cavity, respectively. The coupled system is described by [43]

HJC = Hc +
n∑

j=1

[Hq,j + g(σja
† + σ

†
j a)], (1)

where g is the qubit-cavity coupling strength (assumed to be
real), σj is the transmon lower operator, and σ

†
j = (σj )†. Here

we consider the case of � = (ωc − ωq) � g; that is, the qubit-
photon interaction acts perturbatively.

To get a resonate interaction between a selected transmon
qubit and the cavity, the qubit is biased by an ac magnetic flux,
which will introduce periodical modulation [44] of the qubit
transition frequency in the form of

ωq,j(t) = ωq + εj sin(ωj t − ϕj ). (2)

This modulation may effectively turn the qubit’s sideband on
resonance with the cavity frequency. This can be clearly seen

by moving to the rotating frame defined by U = U1 × U2,

U1 = exp
[
−i

(ωq

2
σ z

j + ωca
†a

)
t
]
,

U2 = exp
[
iσ z

j

αj

2
cos(ωj t − ϕj )

]
, (3)

with αj = εj /ωj , and the transformed Hamiltonian is

Htrans = U †HJC, jU − iU † ∂U

∂t

= U †(gσja
† + H.c.)U

= U
†
2 (gσja

†ei�t + H.c.)U2

= gσja
†ei�t exp[iαj cos(ωj t − ϕj )] + H.c. (4)

Using the Jacobi-Anger identity of

exp[iαj cos(ωj t − ϕj )]

=
∞∑

m=−∞
imJm(αj ) exp[im(ωj t − ϕj )]

and J−m(αj ) = (−1)mJm(αj ), with Jm(αj ) being Bessel func-
tions of the first kind, the transformed Hamiltonian reduces
to

Hd,j = gJ0(αj )(σja
†ei�t + H.c.)

+ gσja
†

∞∑
m=1

imJm(αj )ei[(�−mωj )t+mϕj ] + H.c. (5)

When ωj = �, the effective resonate qubit-cavity interac-
tion will be in the form of

Hd,j = gjσja
† + H.c., (6)

where gj = gJ1(αj ) exp(iϕj + π/2), we have applied the
rotating-wave approximation by neglecting the oscillating
terms, and the smallest oscillating frequency is �, i.e.,

Hosc = gσja
†[J0(αj )ei�t + J2(αj )e−i(�t−2ϕj )] + H.c. (7)

In this way, we can have full control of the coupling strength
gj by varying the externally driven ac magnetic flux, i.e.,
by controlling the amplitude εj and phase ϕj . Meanwhile,
assuming that the anharmonicity of the transmon is the same
as �, as the transition frequency of |1〉 ↔ |2〉 is ωq − �, the
third level of the transmon can only couple dispersively with
the detuning 2�, as shown in Fig. 1(b). Finally, note that
the resonate interaction in Eq. (6), for the case with more
than two qubits, has the conserved quantity of total excitation
N = ∑n

j=1 σ
†
j σj + nc, with nc being the photon number in the

cavity.

III. SINGLE-QUBIT GATES

We now proceed to deal with the holonomies for single-
qubit gates in DFS. Hereafter, to avoid confusion, we refer to
our physical transmon qubits as transmons and logical qubits
as qubits for short. As the transmons are placed in the same
cavity, they can be treated as interacting with the same cavity-
induced dephasing environment. The DFS we consider here is
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the subspace of

S1 = {|100〉,|010〉,|001〉} ≡ {|0〉L,|1〉L,|E〉L}, (8)

where the subscript L denotes the states belonging to the
logical qubit and |100〉 ≡ |1〉1 ⊗ |0〉2 ⊗ |0〉c, i.e., they denote
the states of the first and second transmons and the cavity,
respectively. Also, we use the cavity as an ancillary, and thus,
only two transmons are needed to encode a logical qubit. Note
that the DFS is identical to the subspace of N = 1, which en-
sures that the quantum dynamics will not go out of subspace S1.

In this encoding, the Hamiltonian of the quantum system
consisting of two transmons, i.e., j ∈ {1,2}, resonantly cou-
pled to a cavity reduces to

H1 = g1|E〉L〈0| + g2|E〉L〈1| + H.c.

= ξ1

(
sin

θ

2
eiϕ |E〉L〈0| − cos

θ

2
|E〉L〈1| + H.c.

)
, (9)

where ξ1 = g
√

J1(α1)2 + J1(α2)2 is the effective Rabi fre-
quency, tan(θ/2) = J1(α1)/J1(α2), and ϕ = ϕ1 − ϕ2 − π . In
this case, we construct a �-type Hamiltonian in the DFS
with only resonate transmon-cavity interaction, from which
an arbitrary single-qubit holonomic gate can be obtained. It
is worth pointing out that the two transmons do not have to
possess the same frequency, as we may use two externally
driven fields with different frequencies to bring them in
resonance with the cavity.

In the dressed-state representation, the Hamiltonian in
Eq. (9) can be viewed as indicating that state |E〉L couples with
only the “bright” state |b〉 = sin θ

2 e−iϕ |0〉 − cos θ
2 |1〉, while it

decouples from the “dark” state |d〉 = cos θ
2 |0〉 + sin θ

2 eiϕ |1〉.
Under the action of H1, the dark and bright states evolve
according to

|ψ1(t)〉L = U1(t)|d〉 = |d〉,
|ψ2(t)〉L = U1(t)|b〉 = cos(ξ1t)|b〉 − i sin(ξ1t)|E〉L. (10)

When the condition ξ1τ1 = π is satisfied, the dressed states un-
dergo a cyclic evolution as |ψi(τ1)〉〈ψi(τ1)| = |ψi(0)〉〈ψi(0)|.
Under this condition, the time evolution operation on the
subspace {|d〉,|b〉,|E〉L} is given by

U1(τ1) =
2∑

i,j=1

[
T ei

∫ τ1
0 [A(t)−H1]dt

]
i,j|ψi(0)〉〈ψj(0)|, (11)

where T is the time-ordering operator and Ai,j(t) =
i〈ψi(t)|ψ̇j(t)〉. In particular, when the condition Hi,j(t) =
〈ψi(t)|H1|ψj(t)〉 = 0 is met, which means that there is no
transition between the two time-dependent states, the evolu-
tion satisfies the parallel-transport condition. Therefore, the
geometric nature of the operation is originated from the
structure of the Hamiltonian instead of the slow evolution in
the adiabatic case. Under these two conditions, in the logical
qubit subspace {|0〉L,|1〉L}, the nonadiabatic holonomic gates
can be realized as

U (θ,ϕ) =
(

cos θ sin θe−iϕ

sin θeiϕ − cos θ

)
, (12)

where θ and ϕ can be tuned by choosing approximate parame-
ters of the externally driven ac magnetic fluxes. Therefore, an
arbitrary single-qubit gate can be achieved.

The performance of the gates can be evaluated by consid-
ering the influence of dissipation using the quantum master
equation:

ρ̇ = i[ρ,H1 + H ′
1] + κ

2
L(a)

+ �1

2
L(σ1 + σ2) + �2

2
L

(
σ z

1 + σ z
2

)
, (13)

where ρ is the density matrix of the considered system;
L(A) = 2AρA† − A†Aρ − ρA†A is the Lindblad operator;
and κ , �1, and �2 are the decay rate of the cavity and the
decay and dephasing rates of the qubits, respectively. We have
assumed that the decay and the dephasing rates of the two
transmons are the same. We consider the Hadamard gate to be
a typical example, where θ = π/4 and ϕ = 0. To make the total
coupling strong, we may choose J1(α1) � 0.207 and J1(α2) =
0.5, which corresponds to J1(α1)/J1(α2) = 0.414 � tan(θ/2).
This can be achieved by modulating α1 = ε1/� � 0.4236 and
α2 = ε2/� � 1.2068; note that tuning the coupling strength
in such a way has been experimentally demonstrated [44].
We may choose � = 2π×500 MHz, g = 2π×50 MHz, and
thus ξ1 � 0.54g = 2π×27 MHz. To verify the approximation
when obtaining Eq. (6), we also include some oscillating terms
in the simulation. As J0(α1)/J2(α1) > 40, the J2(α1) term can
be safely neglected for transmon 1. Meanwhile, for transmon
2, this ratio is also larger than 4. Therefore, for demonstration
purposes, we include only the J0(αj ) terms in Eq. (7) for the
two transmons in our numerical simulation, i.e., in Eq. (13),

H ′
1 =

2∑
j=1

[gσja
†J0(αj )ei�t + H.c.]. (14)

Quality factors of about 106 have been reported for a cavity
with frequencies ranging from 4 to 8 GHz [45], and thus, the
cavity decay rate κ is on the order of kilohertz. Relaxation
and coherence times of 44 and 20 μs are reported for a planar
transmon [46], which corresponds to �1 � 2π×8 kHz and
�2 � 2π×3.5 kHz. As κ , �1, and �2 are all on the same
order of magnitude, for simplicity, we treat them as if they
were identical and set �1 = �2 = κ = 2π×10 kHz. Suppose
the qubit is initially in the state |0〉L; we evaluate this gate
by the qubit-state population and the fidelity defined by F1 =
〈ψf |ρ|ψf 〉, with |ψf 〉 = (|0〉 + |1〉)L/

√
2 being the ideally

final state under the Hadamard gate. We solve numerically
the master equation (13) with H ′

1 being given in Eq. (7); as
shown in Fig. 2(a), we obtain a very high fidelity F1 � 99.8%
at t = π/ξ1 � 18.5 ns. Meanwhile, the higher energy levels
will also be involved during the evolution; we next consider
the effect of the third level of the transmons, which is the one
closest to ωq. Note that more higher excited levels will not
directly influence the transmon qubit subspace. For this level,
we assume that the anharmonicity of the transmon is the same
as �, and thus, the cavity-induced coupling between the second
and third levels when obtaining the Hamiltonian in Eq. (6) is
dispersive, i.e., oscillating with frequency 2�. Therefore, its
contribution to the infidelity of the quantum gates is similar to
that of the Hamiltonian in Eq. (7). Assuming that the coupling
strength is

√
2g, the infidelity that results from this third level

is 0.06% from our numerical simulation. In addition, when the
transmons are incorporated into the cavity, its decay rate will
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FIG. 2. (Color online) The performance of the proposed
Hadamard gate. (a) Qubit-state population and fidelity dynamics of
the Hadamard gate as a function of dimensionless time ξ1t/π . (b)
Maximum fidelity for different cavity decay rates κ ′ (in units of κ)
and �/g = 10, with g/(2π ) being 50 and 100 MHz for the blue
circles and red triangles, respectively.

be enhanced. Therefore, we also investigate the influence of
the increase of the cavity decay on the gate fidelity; as shown
by the blue circles in Fig. 2(b), for κ ′ = 30κ , we can still
get F1 � 95%. Meanwhile, the larger detuning implies g can
be bigger, and thus, the fidelity can be higher. As shown by
the red triangles in Fig. 2(b), we verify this by choosing the
detuning and transmon-cavity coupling strength to be 2g and
2�, respectively.

IV. TWO-QUBIT GATE

At this stage, we turn to the implementation of a nontrivial
two-qubit gate. To avoid the cross talk between transmons, we
consider the scenario of two coupled cavities, with each one
having two transmons to encode the logical qubit. In this case,
a six-dimensional DFS exists,

S2 = {|00〉L = |100100〉, |01〉L = |100010〉,
|10〉L = |010100〉, |11〉L = |010010〉,
|a1〉 = |110000〉, |a2〉 = |000110〉}, (15)

where |10100〉 ≡ |1〉1|0〉2|0〉c1|1〉3|0〉4|0〉c2; |a1〉 and |a2〉 are
two ancillary states, both of which have two excitations within
a logical qubit and thus will not be affected in the single-qubit
cases (in the N = 1 subspace).

To obtain a nontrivial two-qubit gate, we need to induce the
interaction within two transmon pairs, i.e., transmons 2 and 3
and transmons 2 and 4, but to avoid the interaction between
other pairs. To achieve this, we consider that the interaction
is induced by exchanging virtual photons between the two
coupled cavities, the coupling of which is [47]

Hcc = λ(a†
1a2 + a1a

†
2), (16)

and the frequencies of the delocalized field modes P1 =
(a1 − a2)/

√
2 and P2 = (a1 + a2)/

√
2 are shifted [48] from

the bare cavity frequency as ω1 = ωc − λ and ω2 = ωc + λ,
respectively. In addition, to avoid cross talk between the two
interacting pairs, they have different detunings. The setup is

detailed as follows. For transmons 3 and 4, which are located
in the second cavity, we do not apply externally driven on
them and set δ = (ωq,3 − ωc) = (ωc − ωq,4) = 2π×150 MHz,
g3 = −g4 = g2 = g = 2π×30 MHz, and λ = 2δ. As for the
third energy level, the anharmonicity of the transmon is
approximately � = 2π×500 MHz, and thus, the higher levels
can be safely neglected. Then, in the bare cavity frequency, the
interaction Hamiltonian reads

Hint1 = ga
†
2(σ3e

−iδt − σ4e
iδt ) + H.c. (17)

Meanwhile, for transmon 2, we modulate the frequency of the
driven ac magnetic flux as ω′

2 = 2δ. In the rotating frame, the
interaction Hamiltonian reduces to

Hint2 = ga
†
1σ2[J0(β)eiδt + J1(β)e−i(δt−φ)] + H.c., (18)

where β = ε′
2/ω

′
2 and φ = ϕ′

2 − π/2.
However, in the presence of Hcc, the frequencies of

the delocalized cavity field modes P1 = (a1 − a2)/
√

2 and
P2 = (a1 + a2)/

√
2 will be renormalized from the bare cavity

frequency as ω1 = ωc − λ and ω2 = ωc + λ, respectively.
Then, in the interaction picture, the field mode operators will
be renormalized as

a
†
1 → 1√

2
(P †

2 eiλt + P
†
1 e−iλt ),

a
†
2 → 1√

2
(P †

2 eiλt − P
†
1 e−iλt ). (19)

Therefore, the total interaction Hamiltonian reads

Hint = Hint1 + Hint2

= g√
2

[h†
1e

i(λ+δ)t + h
†
2e

i(λ−δ)t ] + H.c., (20)

where h
†
1 = P

†
2 [J0(β)σ2 − σ4] + P1[J1(β)e−iφσ

†
2 − σ

†
3 ] and

h
†
2 = P

†
2 [J1(β)eiφσ2 + σ3]+P1[J0(β)σ †

2 +σ
†
4 ]. Assuming that

{λ − δ,2δ} � g/
√

2, the above interaction can be treated as if
it has two independent interaction channels that oscillate with
distinctly different frequencies, with the cross talk between
them being suppressed by a frequency difference of 2δ. When
2δ � g/

√
2, the cross talk can be safely neglected. The

effective Hamiltonian of the total interaction is

Heff = η[J1(β)eiφσ2σ
†
3 − J0(β)σ2σ

†
4 ] + H.c., (21)

where η = g2λ/(λ2 − δ2) and the Stark shift term has been
neglected. In order to turn off this coupling [49–52], we
may modulate the coupling strength to be time dependent
as λ(t) = 2λ cos ωt , as recently demonstrated experimentally
[53,54], and the two cavities have a frequency difference of
ω = |ωc1 − ωc2|, with ωc1 and ωc2 being the resonant frequen-
cies of the first and second cavities, respectively.

In subspace S2, the Hamiltonian in Eq. (21) becomes

H2 = ξ2

[
sin

ϑ

2
eiφ(|a1〉L〈00| + |11〉L〈a2|)

− cos
ϑ

2
(|a1〉L〈01| + |10〉L〈a2|) + H.c.

]
, (22)

where tan(ϑ/2) = J1(β)/J0(β) and the effective Rabi fre-
quency ξ2 = η

√
J0(β)2 + J1(β)2. The effective Hamiltonian
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in Eq. (22) can be divided into two commuting parts as
H2 = Ha + Hb, with

Ha = ξ2

[
sin

ϑ

2
eiφ|a1〉L〈00| − cos

ϑ

2
|a1〉L〈01|

]
+ H.c.,

Hb = ξ2

[
sin

ϑ

2
e−iφ |a2〉c〈11| − cos

ϑ

2
|a2〉c〈10|

]
+ H.c.

When ξ2τ2 = π , the evolution operator in our logical qubit
subspace reduces to

U (ϑ,φ) =

⎛
⎜⎜⎝

cos ϑ sin ϑe−iφ 0 0
sin ϑeiφ − cos ϑ 0 0

0 0 − cos ϑ sin ϑe−iφ

0 0 sin ϑeiφ cos ϑ

⎞
⎟⎟⎠.

(23)

We can see that the gate in subspace {|00〉,|01〉} is different
from the one in subspace {|10〉,|11〉}. Therefore, in general,
this is a nontrivial two-qubit gate.

For example, when ϑ = π/4 and φ = 0, it reduces to

U

(
π

4
,0

)
= 1√

2

⎛
⎜⎝

1 1 0 0
1 −1 0 0
0 0 −1 1
0 0 1 1

⎞
⎟⎠. (24)

In this case J1(β)/J0(β) = tan(π/8), which leads to β � 0.77,
J0(β) = 0.86, J1(β) = 0.36, and thus ξ2 � 2π×6.2 MHz. In
addition, J1(0.77)/J2(0.77) > 5 and J2(0.77) � Jn(0.77) for
n > 2. Moreover, the smallest oscillating frequency is 3δ when
n = 2, and thus, the coupling between two transmons induced
by the J2(0.77) term is much smaller in strength compared
with that induced by the J1(0.77) term. Therefore, the higher-
order terms are neglected in Eq. (18). For the initial state |01〉,
we simulated the performance of this gate using the master
equation with the total Hamiltonian Ht = Hcc + Hint1 + Hint2

in Eqs. (16), (17), and (18), as shown in Fig. 3, where a high
fidelity of F2 � 94.5% can be reached with the decay rates
being the same as in the single-qubit case. The infidelity mainly
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FIG. 3. (Color online) Qubit-state population and fidelity dy-
namics of the U (π/4,0) gate as a function of dimensionless time
ξ2t/π .

comes from both the decoherence of the system and the validity
of the effective Hamiltonian in Eq. (21), which are 3% and
2.5%, respectively. Meanwhile, considering the influence
of the third level will additionally introduce about 0.5%
infidelity. In addition, when the anharmonicity is smaller,
e.g., 2π×300 MHZ, the two-qubit fidelity will be 93.1%
with g = δ/5 = 2π×20 MHz. Finally, as transmon 3 has a
different frequency than the others, its coupling should not
be the same as the others. This problem can be solved by
redefining tan(ϑ/2) = g3J1(β)/[gJ0(β)].

V. CONCLUSION

In conclusion, we have proposed to implement HQC in DFS
with the typical circuit QED, in which only two levels from
conventional transmon qubits are required.
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