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Abstract

In this paper, we consider a dual risk process which can be used to model the surplus of a business
that invests money constantly and earns gains randomly in both time and amount. The occurrences
of the gains and their amounts are assumed follow a semi-Markovian structure (e.g. Reinhard (1984)).
We analyze a quantity resembling the Gerber-Shiu expected discounted penalty function (Gerber and
Shiu (1998)) that incorporates random variables defined before and after the time of ruin, such as the
minimum surplus level before ruin and the time of the first gain after ruin. General properties of the
function are studied, and some exact results are derived upon exponential distributional assumptions
on either the inter-arrival times or the gain amounts. Applications in a perpetual insurance and the
last inter-arrival time containing the time of ruin are given along with some numerical examples.

Keywords: Dual risk model; Semi-Markovian risk process; Gerber-Shiu function; Generalized penalty
function; Perpetual insurance; Last inter-arrival time.

1 Introduction

In a dual risk model, the surplus process {U(t)}t≥0 of a business enterprise is described by

U(t) = u− ct +
N(t)∑

n=1

Yn, t ≥ 0, (1.1)

where u = U(0) ≥ 0 is the initial surplus, c > 0 is the constant rate of expenses per unit time, {Yn}∞n=1 is
a sequence of positive random variables with Yn being the size of the n-th gain (also known as innovation),
and {N(t)}t≥0 is a counting process that counts the number of gains. The time of ruin is defined by
τU = inf{t ≥ 0 : U(t) = 0}, with the usual convention that τU = ∞ if U(t) > 0 for all t ≥ 0. Note
that if the process starts with zero initial surplus, then ruin occurs immediately at time 0. The dual
model is appropriate for companies which incur expenses at a fixed rate and earn gains that are random
in both time and amount. According to e.g. Avanzi et al. (2007), these include pharmaceutical and
petroleum companies where one can view each upward jump Yn as the net present value of future income
arising from an invention or discovery. If {N(t)}t≥0 is assumed to be a Poisson process and {Yn}∞n=1 is an
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independent and identically distributed sequence independent of {N(t)}t≥0, then the model (1.1) reduces
to the dual compound Poisson model, for which classical results about ruin probability are available in
e.g. Cramér (1955, Section 5.13), Takács (1967, pp. 152-154), Seal (1969, pp. 116-119), and Grandell
(1991, p.8). Under such a case, Avanzi et al. (2007, 2013), Cheung and Drekic (2008), Gerber and Smith
(2008), and Ng (2009) have recently studied dividend problems under a barrier or threshold dividend
strategy; whereas Landriault and Sendova (2011) considered the case in which the expense rate can be
reduced if no gain occurs within an Erlang(n) period of time. Further results concerning the time of ruin
when {N(t)}t≥0 is more generally a renewal process instead of a Poisson process have also been derived
by e.g. Mazza and Rullière (2004) and Albrecher et al. (2008, Appendix). Related risk processes in
which the deterministic expense in (1.1) is replaced by a stochastic component have been studied by e.g.
Boikov (2002), Temnov (2004), Labbé and Sendova (2009), Albrecher et al. (2010), Labbé et al. (2011).

The afore-mentioned analyses of the dual risk model are performed under the assumption that the
inter-arrival times and the resulting gain sizes are all independent. However, in reality this is too good to
be true. Motivated by the inadequacy of the independence assumption, a few researchers have considered
dual models with dependence. For example, Yang and Zhu (2008) obtained some inequalities for the
infinite-time and finite-time ruin probabilities in a dual Markov-modulated risk process; whereas Cheung
(2008) looked at a threshold dividend strategy when gains occur according to a Markovian arrival process
using a connection to a fluid flow process. In these two contributions, the dependency is modelled via
a continuous-time Markov chain (see Remark 1). Cheung (2012) studied another dependency structure
where a given gain size has an impact on the next inter-arrival time, which is commonly referred to as
a dependent Sparre Andersen model in the terminology of insurance ruin theory (see e.g. Albrecher and
Teugels (2006) and Cheung et al. (2010b)).

In this paper, we shall study a different risk model that belongs to the class of semi-Markovian
risk processes. In the context of an insurance risk process (which is a reflection of the model (1.1)),
semi-Markovian models were defined under fairly general terms and studied in some early papers by
e.g. Reinhard (1984, Equation (1.1)) and Janssen and Reinhard (1985, Equation (1.1)). The dual semi-
Markovian risk model to be considered here is described as follows. First, we define {Gn}∞n=0 to be
a time-homogeneous and irreducible discrete-time Markov chain on the state space E = {1, 2, . . . , m},
where G0 is the environmental state at time 0 and Gn is the environmental state immediately after the
n-th gain for n = 1, 2, . . .. The above Markov chain is assumed to have one-period transition probability
matrix P = [pij ]mi,j=1. Defining T0 = 0 and denoting the time of the n-th gain by Tn for n = 1, 2, . . .,
the gain counting process {N(t)}t≥0 is given by N(t) = sup{n ∈ N : Tn ≤ t}. Moreover, for n = 1, 2, . . .
we define Vn = Tn − Tn−1 to be the time between the (n − 1)-th and the n-th gain arrivals. Then, the
dependency structure in our model is summarized by, for n = 1, 2, . . .; i, j ∈ E and t, y ≥ 0,

Pr{Vn ≤ t, Yn ≤ y, Gn = j|Gn−1 = i, (Vk, Yk, Gk) for k = 0, 1, . . . , n− 1}
= Pr{V1 ≤ t, Y1 ≤ y,G1 = j|G0 = i}
= Ki(t)Bi(y) pij . (1.2)

(For notational convenience we define V0 = Y0 = 0.) The above dynamics imply that, for n = 1, 2, . . .,
the inter-arrival time Vn and the resulting gain size Yn are conditionally independent given the state
Gn−1. In particular, Vn|Gn−1 = i has cumulative distribution function (c.d.f.) Ki(·) with corresponding
density ki(·) and mean κi; whereas Yn|Gn−1 = i has c.d.f. Bi(·) with corresponding density bi(·) and
mean βi. In other words, if the environmental state immediately after the previous gain is i, then the
time until the next gain and the size of the resulting gain have densities ki(·) and bi(·) respectively, and
the environmental state will become j with probability pij immediately after the next gain.
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Remark 1 Markovian arrival process (MAP) is very well documented in the literature of applied prob-
ability (e.g. Neuts (1989), Latouche and Ramaswami (1999), and Asmussen (2003, Chapter XI)), and
insurance risk processes where claims occur according to a MAP have also gained popularity in recent
years (e.g. Badescu et al. (2005), Ahn and Badescu (2007), and Cheung and Landriault (2010)). In
a dual MAP model, {N(t)}t≥0 in (1.1) is replaced by a MAP, and the background process {J(t)}t≥0

is a time-homogeneous irreducible continuous-time Markov chain with finite state space {1, 2, . . . , m}
governed by the generators D0 = [D0,ij ]mi,j=1 and D1 = [D1,ij ]mi,j=1. While D0,ij ≥ 0 is the transition rate
of {J(t)}t≥0 from state i to state j 6= i without a gain; D1,ij ≥ 0 represents the transition rate from state
i to state j with an accompanying gain. The diagonal elements of D0 are such that D0 + D1 is zero. If
the n-th gain Yn is a result of a transition of {J(t)}t≥0 from state i to state j, then it is assumed to have
density fij(·). Note that the dual Markov-modulated model in Yang and Zhu (2008) can be retrieved
from the above MAP model by letting D1 be a diagonal matrix and assuming that fij(·) does not depend
on j.

It is instructive to note that the present semi-Markovian risk process defined via (1.2) inherits cer-
tain characteristics of the MAP model and the Sparre Andersen (or renewal) model. For example, the
dependency structures in the semi-Markovian and the MAP models are similar in the sense that they
are both introduced via a Markov chain (though it is a discrete-time Markov chain in the former and a
continuous-time one in the latter). However, the inter-arrival times in a MAP model must be phase-type
distributed; whereas the semi-Markovian model allows for general inter-arrival time distribution. In this
aspect, the semi-Markovian model resembles the Sparre Andersen model. Nonetheless, we also note that
if one lets Ki(t) = 1− eD0,iit (see Section 3) and pij = −D1,ij/D0,ii in the semi-Markovian model (1.2),
then it corresponds to a MAP model in which D0 is diagonal and fij(·) = bi(·). ¤

In this paper, we aim at studying (a generalization of) the Gerber-Shiu type function under the
afore-mentioned dual semi-Markovian model. Recall that Gerber and Shiu (1998) defined the expected
discounted penalty function (now commonly known as the Gerber-Shiu function) in an insurance risk
model to be the expectation of the present value of a ‘penalty’ applied at the time of ruin, with the
‘penalty’ being a function of the surplus prior to ruin and the deficit at ruin. However, in a dual risk
model, both the surplus U(τ−U ) prior to ruin and the deficit |U(τU )| at ruin are zero and therefore the
Gerber-Shiu function is simply (a constant multiple of) the Laplace transform of the time of ruin. In
most situations, even when the surplus of a business line drops below zero, it can usually survive negative
surplus for a while by obtaining funds from another line of the same business or by borrowing. Due to
the positive security loading condition (see (2.10)), the ruined surplus process will be able to recover
eventually, and a quick recovery is always desirable. Therefore, quantities in relation to the survival of
the business line after ruin are also of critical importance. See also comments in e.g. Egidio dos Reis
(1993) and Gerber (1990). These motivated Cheung (2012) to consider the random variables

τ∗U =
N(τU )+1∑

n=1

Vn (1.3)

and

|U(τ∗−U )| =
∣∣∣∣∣∣
u +

N(τU )∑

n=1

(Yn − cVn)− cVN(τU )+1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
u +

N(τU )∑

n=1

Yn − cτ∗U

∣∣∣∣∣∣
, (1.4)

given an initial surplus of U(0) = u ≥ 0. Clearly, τ∗U represents the time of the first gain after the
ruin time τU ; whereas |U(τ∗−U )| is the amount of shortfall just before the first gain after ruin. On the
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other hand, from a risk management perspective, it can be important to keep track the behaviour of
the sample paths leading to ruin. In this regard, various researchers (see e.g. Biffis and Morales (2010),
Cheung and Landriault (2010), and Cheung et al. (2010a,b)) have attempted to incorporate various
random variables defined before ruin into the Gerber-Shiu function to gain additional insights, albeit in
the insurance context. In the present dual model, we also consider the surplus level immediately after
the last gain before ruin, namely U(TN(τU )) which is given by

U(TN(τU )) = u +
N(τU )∑

n=1

(Yn − cVn) = u +
N(τU )∑

n=1

Yn − cTN(τU ). (1.5)

In addition, for n = 1, 2, . . . we define RU,n = u− c
∑n

k=1 Vk +
∑n−1

k=1 Yk to be the surplus level just before
the n-th gain. Although the surplus level just before the 0-th gain is not well-defined, for n = 0 we
simply set RU,0 = U(0) = u (see Remark 2). In the case where there is at least one gain before ruin (i.e.
N(τU ) ≥ 1), the surplus level just before the last gain before ruin is RU,N(τU ). Moreover, the minimum
value of the sequence {RU,n}∞n=0 before ruin is given by RU = minn∈{0,1,...,N(τU )}RU,n. With the above
definitions, we propose to study the Gerber-Shiu type function, for i, j ∈ E and u ≥ 0,

φδ,ij,U (u) = E
[
e−δτ∗U w(U(TN(τU )), |U(τ∗−U )|, RU , RU,N(τU ))1{τU < ∞}1{GN(τU ) = j}|G0 = i, U(0) = u

]
,

(1.6)
where w(·, ·, ·, ·) is the penalty function that satisfies some mild integrability conditions, 1{A} is the
indicator function of the event A, and δ ≥ 0 is the force of interest or the Laplace transform argument
with respect to τ∗U . A sample path of the surplus process {U(t)}t≥0 and the associated random variables
defined above are shown in Figure 1. Because the ruin time τU is related to τ∗U and |U(τ∗−U )| via
the identity τU = τ∗U − |U(τ∗−U )|/c, its Laplace transform (with argument δ) is a special case of (1.6)
by setting w(x, y, v, r) = e(δ/c)y. Similarly, information about the last inter-arrival time VN(τU )+1 =
(U(TN(τU )) + |U(τ∗−U )|)/c containing the time of ruin (see Section 5.2) as well as the last gain before
ruin YN(τU ) = U(TN(τU )) − RU,N(τU ) (in the case where N(τU ) ≥ 1) can be retrieved from (1.6) via
appropriate choices of the penalty function. We remark that the Gerber-Shiu function, being defined as
an expectation, represents an average value. Therefore, it is applicable in e.g. pricing insurance contract
and stochastic ordering where expected values are concerned (see Section 5). Moreover, in principle
the discounted densities associated with the variables (U(TN(τU )), |U(τ∗−U )|, RU , RU,N(τU )) in the penalty
function are also obtainable from the Gerber-Shiu function (see Remark 3 in Section 2). However, one of
the limitations of the above Gerber-Shiu function is that it only involves a few selected random variables
along sample paths that lead to ruin. We refer interested readers to Cai et al. (2009) and Cheung and
Feng (2013) for the study of an alternative function that depends on the entire sample path until ruin as
well as its connection with the usual Gerber-Shiu function.

INSERT FIGURE 1

Figure 1: Sample path of {U(t)}t≥0 and related random variables

In order to study the Gerber-Shiu function φδ,ij,U (u) defined by (1.6) that contains information both
before and after the time of ruin, in Section 2 we define a useful auxiliary process {Z(t)}t≥0 to aid our
analysis. In particular, φδ,ij,U (u) can be expressed in terms of another Gerber-Shiu function pertaining
to {Z(t)}t≥0. In general, this latter Gerber-Shiu function is shown to satisfy a Markov renewal equation
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without any specific distributional assumptions. Sections 3 and 4 are respectively concerned with the
derivations of some exact results when either the inter-arrival times or the gain sizes are exponential.
Section 5 provides applications of our results in (i) the fair price of a perpetual insurance that keeps the
business alive whenever the surplus reaches zero, and (ii) the distribution of the last inter-arrival time
containing the time of ruin. These are accompanied by some numerical illustrations as well.

2 General structures

Following Cheung (2012) (who studied a dual dependent Sparre Andersen model), we first start by
defining an auxiliary process {Z(t)}t≥0 as follows. For convenience we let Wn = Vn+1 be the shifted
inter-arrival time and Xn = Yn+1 be the shifted gain amount for n = 1, 2, . . .. The counting process
{M(t)}t≥0 corresponding to the sequence {Wn}∞n=1 is then M(t) = sup{n ∈ N :

∑n
k=1 Wk ≤ t}. Under

an initial level of Z(0−) = z ≥ 0, the process {Z(t)}t≥0 is defined by

Z(t) = z + Y1 − ct +
M(t)∑

n=1

Xn, t ≥ 0. (2.1)

Note that the initial level here is defined as the level just before time 0, and {Z(t)}t≥0 indeed starts
with an upward jump of size Y1 at time 0 and therefore Z(0) = z + Y1. The ruin time of {Z(t)}t≥0 is
τZ = inf{t ≥ 0 : Z(t) = 0}. In addition, the analogs of (1.3) and (1.4) in the process {Z(t)}t≥0, both
defined after the time of ruin, are given by

τ∗Z =
M(τZ)+1∑

n=1

Wn

and

|Z(τ∗−Z )| =
∣∣∣∣∣∣
z + Y1 +

M(τZ)∑

n=1

(Xn − cWn)− cWM(τZ)+1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
z + Y1 +

M(τZ)∑

n=1

Xn − cτ∗Z

∣∣∣∣∣∣
.

Letting RZ,n = z +
∑n

i=1(Yi − cWi) for n = 1, 2, . . . with starting value RZ,0 = z, we are interested in
three random variables defined before ruin, namely

Z(τ∗Z −WM(τZ)+1) = z + Y1 +
M(τZ)∑

n=1

(Xn − cWn)

(which corresponds to (1.5)), RZ,M(τZ) and RZ = minn∈{0,1,...,M(τZ)}RZ,n. See Figure 2. Clearly, the
relationships τZ = τ∗Z −|Z(τ∗−Z )|/c; WM(τZ)+1 = (Z(τ∗Z −WM(τZ)+1)+ |Z(τ∗−Z )|)/c and XM(τU ) = Z(τ∗Z −
WM(τZ)+1) − RZ,M(τZ) hold. Now, the Gerber-Shiu function pertaining to {Z(t)}t≥0 is defined by, for
i, j ∈ E and z ≥ 0,

φδ,ij,Z(z)

= E
[
e−δτ∗Zw(Z(τ∗Z −WM(τZ)+1), |Z(τ∗−Z )|, RZ , RZ,M(τZ))1{τZ < ∞}1{GM(τZ)+1 = j}|G0 = i, Z(0−) = z

]
.

Here, Gn is still the environmental state immediately after the n-th jump for n = 1, 2, . . .. Since a jump
occurs at time 0, G0 is the environmental state at time 0−.
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INSERT FIGURE 2

Figure 2: Sample path of {Z(t)}t≥0 and related random variables

Comparing the definitions of the processes {U(t)}t≥0 and {Z(t)}t≥0, it can be seen that (apart from a
shift of the initial level) {Z(t)}t≥0 behaves like a copy of {U(t)}t≥0 with the first V1 time units removed.
Hence, to study the Gerber-Shiu function φδ,ij,U (u) pertaining to {U(t)}t≥0 with initial surplus U(0) =
u ≥ 0, we distinguish between two cases when conditioning on the time V1 of the first gain.

1. If the first gain occurs at time t < u/c, then {U(t)}t≥0 simply reverts to {Z(t)}t≥0 at time t with
the newly established initial level Z(0−) = u− ct.

2. If the first gain occurs at time t ≥ u/c, then ruin of {U(t)}t≥0 occurs at time τU = u/c with τ∗U = t;
U(TN(τU )) = RU = RU,N(τU ) = u and |U(τ∗−U )| = ct− u (see Remark 2).

Further taking into account the states of the underlying Markov chain {Gn}∞n=0, we arrive at, for i, j ∈ E
and u ≥ 0,

φδ,ij,U (u) =
∫ u

c

0
e−δtki(t) φδ,ij,Z(u− ct) dt + 1{i = j}

∫ ∞

u
c

e−δtki(t) w(u, ct− u, u, u) dt. (2.2)

Since the second term in the above equation is known explicitly, it is clear that the Gerber-Shiu function
φδ,ij,U (·) can be characterized by φδ,ij,Z(·). It remains to analyze φδ,ij,Z(·) in general terms.

Remark 2 Because the surplus level just before the 0-th gain is not well-defined, the definition of
RU,N(τU ) (and hence RU ) is of slightly different nature depending on whether V1 < u/c (i.e. N(τU ) ≥ 1)
or V1 ≥ u/c (i.e. N(τU ) = 0). When N(τU ) = 0, although the definition RU,N(τU ) = RU,0 = u is artificial,
its contribution only appears via the second term in (2.2) which can be readily modified. Since our focus
will be to identify φδ,ij,Z(·), this definition would not affect our upcoming analysis. In addition, one can
also allow the time V1 of the first gain to follow a different density by simply replacing ki(·) in (2.2) with
the appropriate density, so that {U(t)}t≥0 resembles a delayed risk process (see e.g. Willmot (2004), and
Woo (2010)). ¤

In order to analyze φδ,ij,Z(z), it is sufficient to focus on the process {Z(t)}t≥0. Because of (1.2), the
dynamics of {Z(t)}t≥0 can be described by, for n = 1, 2, . . .; i, j ∈ E and t, y ≥ 0,

Pr{Yn ≤ y, Wn ≤ t, Gn = j|Gn−1 = i, (Yk, Wk, Gk) for k = 0, 1, . . . , n− 1}
= Pr{Y1 ≤ y,W1 ≤ t, G1 = j|G0 = i}
= Bi(y) pij Kj(t), (2.3)

with the definition W0 = 0. This resembles Albrecher and Boxma (2005, Equation (2)) and Cheung and
Landriault (2009, Equation (1.1)). Suppose that we observe {Z(t)}t≥0 at times {(∑n

k=1 Wk)−}∞n=0 so that
the sequence of increments is {Yn−cWn}∞n=1. Then (2.3) indicates a semi-Markovian version of a ‘random
walk’ structure, and therefore one can proceed by conditioning on the first ‘drop’ of {Z(t)}t≥0 below its
initial level Z(0−) (see Figure 2) and the state of {Gn}∞n=0 at the time of the ‘drop’. To do so, we need
to introduce various (discounted) joint densities in relation to (Z(τ∗Z − WM(τZ)+1), |Z(τ∗−Z )|, RZ,M(τZ))
as follows. First, given G0 = i and Z(0−) = z, we note that the joint density of the quadruple
(τ∗Z , Z(τ∗Z − WM(τZ)+1), |Z(τ∗−Z )|, RZ,M(τZ)) is of different forms depending on whether there is a sec-
ond jump (including the one at time 0) before ruin of {Z(t)}t≥0 occurs. More specifically, for M(τZ) = 0,
the joint density of (Z(τ∗Z −WM(τZ)+1), |Z(τ∗−Z )|) at (x, y) together with G1 = j is simply
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h∗1,ij,Z(x, y|z) =
1
c

bi(x− z) pij kj

(
x + y

c

)
, x > z; y > 0. (2.4)

The above density of sufficient to characterize the distribution of (τ∗Z , Z(τ∗Z−WM(τZ)+1), |Z(τ∗−Z )|, RZ,M(τZ)),
since one has the relationships τ∗Z = (x + y)/c and RZ,M(τZ) = RZ,0 = z. On the other hand, for
M(τZ) ≥ 1 there are no simple relationships among the random variables, and we denote the joint density
of (τ∗Z , Z(τ∗Z−WM(τZ)+1), |Z(τ∗−Z )|, RZ,M(τZ)) at (t, x, y, v) together with GM(τZ) = j by h∗2,ij,Z(t, x, y, v|z)
for x > v > 0; y > 0 and t > (max(x, z)+y)/c. (Note that h∗2,ij,Z(t, x, y, v|z) = 0 for t ≤ (max(x, z)+y)/c
because it takes at least (max(x, z)+y)/c time units for {Z(t)}t≥0 to reach −y from max(x, z).) By defin-
ing the diagonal matrices k(t) = diag{k1(t), . . . , km(t)} and b(y) = diag{b1(y), . . . , bm(y)}, the discounted
(with respect to τ∗Z) densities associated to h∗1,Z(x, y|z) = [h∗1,ij,Z(x, y|z)]mi,j=1 and h∗2,Z(t, x, y, v|z) =
[h∗2,ij,Z(t, x, y, v|z)]mi,j=1 are respectively given by

h∗1,δ,Z(x, y|z) = e−δ(x+y
c )h∗1,Z(x, y|z) =

1
c

e−δ(x+y
c )b(x− z)Pk

(
x + y

c

)
, x > z; y > 0, (2.5)

and
h∗2,δ,Z(x, y, v|z) =

∫ ∞

max{x,z}+y
c

e−δth∗2,Z(t, x, y, v|z) dt, x > v > 0; y > 0. (2.6)

Similar to Cheung and Landriault (2009, Equation (2.9)), one may shift the process {Z(t)}t≥0 by
an amount z and apply the discounted densities h∗1,δ,Z(x, y|0) and h∗2,δ,Z(x, y, v|0) to derive a Markov
renewal equation satisfied by Φδ,Z(z) = [φδ,ij,Z(z)]mi,j=1. This leads to

Φδ,Z(z) =
∫ z

0
fδ,Z(y)Φδ,Z(z − y) dy + αδ,Z(z), z ≥ 0, (2.7)

where
fδ,Z(y) =

∫ ∞

0
h∗1,δ,Z(x, y|0) dx +

∫ ∞

0

∫ x

0
h∗2,δ,Z(x, y, v|0) dv dx, y > 0, (2.8)

is the matrix ladder height density, and

αδ,Z(z) =
∫ ∞

z

∫ ∞

0
w(x + z, y − z, z, z)h∗1,δ,Z(x, y|0) dx dy

+
∫ ∞

z

∫ ∞

0

∫ x

0
w(x + z, y − z, z, v + z)h∗2,δ,Z(x, y, v|0) dv dx dy, z ≥ 0, (2.9)

is the outside term of the Markov renewal equation. Note that the (i, j)-th element of fδ,Z(y) represents
the discounted (with respect to the time of the first drop) density of the first drop amount y together
with the event that {Gn}∞n=0 is in state j at the time of the drop, given that G0 = i. Moreover, the
matrix

∫∞
0 fδ,Z(y) dy is strictly substochastic if either δ > 0 or the positive security loading condition

m∑

j=1

πj(βj − cκj) > 0 (2.10)

holds, where (π1, π2, . . . , πm) is the stationary distribution of the Markov chain {Gn}∞n=0. For the rest
of the paper, either assumption is made so that solution of the defective Markov renewal equation (2.7)
is unique (e.g. Miyazawa (2002)). Such a solution is given by (see also Çinlar (1969, Section 3a) or
Asmussen (2003, Chapter VII.4))

Φδ,Z(z) = αδ,Z(z) +
∞∑

n=1

∫ z

0
f∗nδ,Z(z − y) αδ,Z(y) dy, z ≥ 0. (2.11)
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Here the n-fold convolution f∗nδ,Z(·) is defined recursively via f∗nδ,Z(·) = (f∗(n−1)
δ,Z ∗ fδ,Z)(·) = (fδ,Z ∗ f∗(n−1)

δ,Z )(·)
for n = 2, 3, . . . with f∗1δ,Z(·) ≡ fδ,Z(·), and the convolution operator ∗ for two conformable matrix functions
a1(·) and a2(·) is defined by (a1 ∗ a2)(x) =

∫ x
0 a1(x − y)a2(y) dy for x ≥ 0. We also refer interested

readers to e.g. Wu (1999), Miyazawa (2002) and Li and Luo (2005) for two-sided bounds and asymptotic
behaviour of the solution of a defective Markov renewal equation. Once Φδ,Z(·) is known, Φδ,U (u) =
[φδ,ij,U (u)]mi,j=1 can be conveniently obtained from (2.2) as

Φδ,U (u) =
∫ u

c

0
e−δtk(t)Φδ,Z(u− ct) dt +

∫ ∞

u
c

e−δtw(u, ct− u, u, u)k(t) dt, u ≥ 0. (2.12)

It is instructive to note that the Markov renewal equation (2.7) and its solution (2.11) are characterized
by fδ,Z(·) and αδ,Z(·), which are in turn characterized by the discounted densities h∗1,δ,Z(x, y|0) and
h∗2,δ,Z(x, y, v|0). While h∗1,δ,Z(x, y|0) is explicitly known in (2.5), h∗2,δ,Z(x, y, v|0) is yet to be determined.
Defining Φ124,δ,Z(z) = [φ124,δ,ij,Z(z)]mi,j=1 to be a special case of Φδ,Z(z) under the penalty function
w(x, y, r, v) = w124(x, y, v) that does not depend on the third argument r, in principle (see Remark 3)
this comes down to finding Φ124,δ,Z(0) due to the relationship

Φ124,δ,Z(z) =
∫ ∞

0

∫ ∞

z
w124(x, y, z)h∗1,δ,Z(x, y|z) dx dy

+
∫ ∞

0

∫ ∞

0

∫ x

0
w124(x, y, v)h∗2,δ,Z(x, y, v|z) dv dx dy, z ≥ 0. (2.13)

Further information about Φ124,δ,Z(0) can usually be obtained by conditioning on the pair (Y1,W1) to
arrive at, for i, j ∈ E and z ≥ 0,

φ124,δ,ij,Z(z) =
∫ ∞

0
bi(y)

m∑

l=1

pil

∫ z+y
c

0
e−δtkl(t) φ124,δ,lj,Z(z + y − ct) dt dy

+
∫ ∞

0
bi(y) pij

∫ ∞

z+y
c

e−δtkj(t) w124(z + y, ct− z − y, z) dt dy. (2.14)

In general, the exact evaluation of Φ124,δ,Z(0) or h∗2,δ,Z(x, y, v|0) relies on both the Markov renewal
equation (2.7) and the integral equation (2.14). This typically requires specific distributional assumptions
on either the inter-arrival times or the gain sizes. These will be illustrated in the next two sections.

Remark 3 From (2.13), it is clear that h∗2,δ,Z(x, y, v|z) characterizes Φ124,δ,Z(z) (as h∗1,δ,Z(x, y|z) is
known). Indeed, it is also true that h∗2,δ,Z(x, y, v|z) is characterized by Φ124,δ,Z(z). To see this, it is
sufficient to assume a penalty in the form w124(x, y, v) = e−s1x−s2y−s4v, so that
∫ ∞

0

∫ ∞

0

∫ x

0
e−s1x−s2y−s4vh∗2,δ,Z(x, y, v|z) dv dx dy = Φ124,δ,Z(z)−

∫ ∞

0

∫ ∞

z
e−s1x−s2y−s4zh∗1,δ,Z(x, y|z) dx dy.

Once Φ124,δ,Z(z) has been determined, the right-hand side of the above equation is known. According
to the left-hand side, this represents the trivariate Laplace transform of h∗2,δ,Z(x, y, v|z) with respect to
(x, y, v) under the transform arguments (s1, s2, s4). Hence, one can get h∗2,δ,Z(x, y, v|z) by performing
Laplace transform inversion (which can be analytic or numerical) due to the one-to-one correspondence
between probability distribution and Laplace transform. See Section 4. ¤
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3 Exponential inter-arrival times

When specific distributional assumptions on the inter-arrival time densities ki(·)’s are made while the gain
size densities bi(·)’s are left arbitrary, one may proceed by identifying the solution form of φ124,δ,ij,Z(z)
as a function of z (apart from some unknown constants) via the Markov renewal equation (2.7) with
the help of some probabilistic arguments. The unknown constants can be determined using the integral
equation (2.14). These ideas have been exploited by e.g. Willmot (2007) and Cheung et al. (2011a) in the
context of insurance risk processes, where the roles of inter-arrival times and jumps sizes are essentially
interchanged in the analysis.

To begin, we first define kc
i (y) = (1/c)ki(y/c) and K

c
i (y) = Ki(y/c) to be the density and survival

function of a scaled random variable corresponding to the density ki(·). The density of the residual life-
time random variable associated to the density kc

i (·) is then denoted by kc
i,x(y) = kc

i (x + y)/K
c
i (x). Fur-

ther define the diagonal matrices Kc(y) = diag{Kc
1(y), . . . , Kc

m(y)}, kc(y) = diag{kc
1(y), . . . , kc

m(y)} and
kc

x(y) = diag{kc
1,x(y), . . . , kc

m,x(y)}. We argue probabilistically that the discounted density h∗2,δ,Z(x, y, v|z)
defined by (2.6) admits the representation

h∗2,δ,Z(x, y, v|z) = e−δ(x+y
c )h(2)

δ,Z(x, v|z)kc
x(y), x > v > 0; y > 0. (3.1)

This can be interpreted as follows. Indeed, the (i, j)-th element of h(2)
δ,Z(x, v|z) is the discounted (with

respect to τ∗Z−WM(τZ)+1) joint density of (Z(τ∗Z−WM(τZ)+1), RZ,M(τZ)) at (x, v) together with the event
that GM(τZ)+1 = j, given that G0 = i and Z(0−) = z. Being at level x in state j at time τ∗Z −WM(τZ+1),
the next inter-arrival time (having density kj(·)) should be of length (x+y)/c in order to bring the surplus
level to −y at time τ∗−Z so that |Z(τ∗−Z )| = y. Since the latter event is conditional on that the surplus has
to drop below 0 from x before the next gain, this gives the density kc

j,x(y). Finally, the discount factor
e−δ(x+y)/c takes care of the discounting when the process travels from level x to −y at the end. In matrix
form, the above descriptions precisely yield (3.1). It is interesting to note that the mathematical role
played by the quantity Z(τ∗Z −WM(τZ)+1) is like that of the surplus prior to ruin in the usual insurance
risk model. Because kc(x + y) = Kc(x)kc

x(y), (2.5) can be rewritten as

h∗1,δ,Z(x, y|z) = e−δ(x+y
c )b(x− z)PKc(x)kc

x(y), x > z; y > 0. (3.2)

With the use of (3.1) and (3.2), the matrix ladder height density (2.8) becomes

fδ,Z(y) =
∫ ∞

0
e−δ(x+y

c )
(
b(x)PKc(x) +

∫ x

0
h(2)

δ,Z(x, v|0) dv

)
kc

x(y) dx, y > 0. (3.3)

For the remainder of this section, we assume exponential inter-arrival time densities ki(t) = λie
−λit

for i ∈ E . With Remark 3 made at the end of the previous section, we shall study the Gerber-Shiu
function Φ124,δ,Z(z) under the penalty w124(x, y, v) = e−s1x−s4vw2(y). (The mathematical analysis is
not more difficult even we keep w2(·) general instead of using the choice of w2(y) = e−s2y.) Defining
Λ = diag{λ1 . . . , λm}, one has kc

x(y) = kc(y) = (Λ/c)e−(Λ/c)y and Kc(x) = e−(Λ/c)x. Let α124,δ,Z(z) be
the special case of αδ,Z(z) defined by (2.9) under the afore-mentioned choice of penalty function. Hence,
application of (3.1) and (3.2) leads (2.9) to

α124,δ,Z(z) =
∫ ∞

z

∫ ∞

0
e−δ(x+y

c )b(x)P
(

Λ
c

e−
Λ
c

(x+y)

)
e−s1(x+z)−s4zw2(y − z) dx dy

+
∫ ∞

z

∫ ∞

0

∫ x

0
e−δ(x+y

c )h(2)
δ,Z(x, v|0)

(
Λ
c

e−
Λ
c

y

)
e−s1(x+z)−s4(v+z)w2(y − z) dv dx dy
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=
∫ ∞

0

∫ ∞

0
e−δ(x+y+z

c )b(x)P
(

Λ
c

e−
Λ
c

(x+y+z)

)
e−s1(x+z)−s4zw2(y) dx dy

+
∫ ∞

0

∫ ∞

0

∫ x

0
e−δ(x+y+z

c )h(2)
δ,Z(x, v|0)

(
Λ
c

e−
Λ
c

(y+z)

)
e−s1(x+z)−s4(z+v)w2(y) dv dx dy.

Because we will focus on α124,δ,Z(z) as a function of z, it is convenient to write

α124,δ,Z(z) = Σδ(s1, s4) e−
Λ
c

ze−(s1+s4+ δ
c )z, z ≥ 0, (3.4)

where

Σδ(s1, s4) =
(

1
c

∫ ∞

0
b(x)P e−

Λ
c

xe−(s1+ δ
c )x dx +

∫ ∞

0

∫ x

0
h(2)

δ,Z(x, v|0)e−(s1+ δ
c )x−s4v dv dx

)
Λ

×
(∫ ∞

0
e−

Λ
c

ye−
δ
c
yw2(y) dy

)

is independent of z. In what follows, for a function g(·) defined on (0,∞) (which is not necessarily a
probability density), its Laplace transform is denoted by g̃(s) =

∫∞
0 e−sxg(x) dx for Re(s) ≥ 0. The

Laplace transform of a matrix-valued function is taken element-wise. Taking Laplace transforms on both
sides of (3.4) with respect to z yields

α̃124,δ,Z(s) = Σδ(s1, s4) diag

{
1

s + s1 + s4 + λ1+δ
c

, . . . ,
1

s + s1 + s4 + λm+δ
c

}
. (3.5)

On the other hand, taking Laplace transforms on both sides of (2.7) followed by rearrangements leads to

Φ̃124,δ,Z(s) = [I− f̃δ,Z(s)]−1α̃124,δ,Z(s) =
adj(I− f̃δ,Z(s))

det(I− f̃δ,Z(s))
α̃124,δ,Z(s), (3.6)

where I is the identity matrix of dimension m. Under the present assumption of exponential inter-arrival
times, (3.3) becomes

fδ,Z(y) = Υδ e−
Λ
c

ye−
δ
c
y, y > 0,

where

Υδ =
{

1
c

∫ ∞

0
e−

δ
c
x

(
b(x)P e−

Λ
c

x +
∫ x

0
h(2)

δ,Z(x, v|0) dv

)
dx

}
Λ.

Hence, it is clear that

f̃δ,Z(s) = Υδ diag

{
1

s + λ1+δ
c

, . . . ,
1

s + λm+δ
c

}
. (3.7)

Since we aim at identifying the solution form of φ124,δ,ij,Z(·) via (3.6), we turn to the denominator of
(3.6). As in Cheung et al. (2011a, Theorem 1), it can be proved using de Smit (1995, Theorem 11.3)
that all the m roots of the equation (in ξ)

det(I− f̃δ,Z(ξ)) = 0 (3.8)

have negative real parts. These roots are denoted by {−εk}m
k=1. By applying (3.5) and (3.7) to (3.6)

and assuming that {εk}m
k=1 and {s1 + s4 + (λk + δ)/c}m

k=1 are all distinct, it is observed that φ̃124,δ,ij,Z(s)
generally admits the partial fractions expansion, for i, j ∈ E ,

φ̃124,δ,ij,Z(s) =
m∑

k=1

ϑij,k

s + εk
+

ηij

s + s1 + s4 + λj+δ
c

,

where ϑij,k’s and ηij ’s are some unknown constants. Inversion of Laplace transforms gives, for i, j ∈ E
and z ≥ 0,
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φ124,δ,ij,Z(z) =
m∑

k=1

ϑij,ke
−εkz + ηije

−
(
s1+s4+

λj+δ

c

)
z
. (3.9)

Having identified the solution form (3.9), the next step is to determine the constants involved by back
substitution into the integral equation (2.14). We consider the case s1 +s4 6= 0 (see Remark 4). Omitting
the straightforward algebra, we arrive at

m∑

k=1

ϑij,ke
−εkz + ηije

−
(
s1+s4+

λj+δ

c

)
z

=
m∑

k=1

{
b̃i(εk)

m∑

l=1

pilλl

λl + δ − cεk
ϑlj,k

}
e−εkz

+

{
b̃i

(
s1 + s4 +

λj + δ

c

) m∑

l=1

pilλl

λl − (cs1 + cs4 + λj)
ηlj

}
e
−

(
s1+s4+

λj+δ

c

)
z

−
m∑

l=1

b̃i

(
λl + δ

c

)
pilλl

{
m∑

k=1

ϑlj,k

λl + δ − cεk
+

ηlj

λl − (cs1 + cs4 + λj)

}
e
−

(
λl+δ

c

)
z

+
1
c

pijλjw̃2

(
λj + δ

c

)
b̃i

(
s1 +

λj + δ

c

)
e
−

(
s1+s4+

λj+δ

c

)
z
. (3.10)

Equating the coefficients of e−εkz on both sides yields

ϑij,k = b̃i(εk)
m∑

l=1

pilλl

λl + δ − cεk
ϑlj,k, i, j, k = 1, 2, . . . , m. (3.11)

For each fixed j, k = 1, 2, . . . , m, it is assumed that {ϑij,k}m
i=1 are not all 0. With the system (3.11)

of m linear equations in the unknowns {ϑij,k}m
i=1 having a non-trivial solution, it is immediate that

det(I−Πδ(−εk)) = 0 for k = 1, 2, . . . , m, where Πδ(s) is the square matrix defined by

Πδ(s) =
[
b̃i(−s)

pijλj

λj + δ + cs

]m

i,j=1

= b̃(−s)P k̃(δ + cs).

In other words, {−εk}m
k=1 satisfy the Lundberg’s equation (in ξ)

det(I−Πδ(ξ)) = 0. (3.12)

Again, application of de Smit (1995, Theorem 11.3) reveals that the above equation has exactly m roots
with negative real parts. Hence, one asserts that these roots are {−εk}m

k=1.

In equating the remaining coefficients in (3.10), the terms involving e−(s1+s4+(λj+δ)/c)z imply that

ηij = b̃i

(
s1 + s4 +

λj + δ

c

) m∑

l=1

pilλl

λl − (cs1 + cs4 + λj)
ηlj +

1
c

pijλjw̃2

(
λj + δ

c

)
b̃i

(
s1 +

λj + δ

c

)

i, j = 1, 2, . . . ,m; (3.13)

whereas the coefficients of e−((λl+δ)/c)z lead to
m∑

k=1

ϑlj,k

λl + δ − cεk
+

ηlj

λl − (cs1 + cs4 + λj)
= 0, l, j = 1, 2, . . . , m. (3.14)
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For each fixed j = 1, 2, . . . ,m, the values of {ηij}m
i=1 can be solved directly from the system (3.13) of m

linear equations. It is instructive to note that the assumption that {εk}m
k=1 and {s1 + s4 +(λk + δ)/c}m

k=1

are all distinct guarantees the uniqueness of the solution {ηij}m
i=1, since the coefficient matrix I−Πδ(s1 +

s4 + (λj + δ)/c) has non-zero determinant. With {−εk}m
k=1 and {ηij}m

i,j=1 obtained, the calculation of
{ϑij,k}m

i,j,k=1 indeed comes down to determining {ϑij,k}m
i,k=1 for each fixed j = 1, 2, . . . , m. Then for each

fixed k = 1, 2, . . . , m, the m equations (by varying i) in the system (3.11) are linearly dependent because
of det(I−Πδ(−εk)) = 0, and one of these equations is removed to get m− 1 equations. This gives rise
to m(m− 1) equations by varying k. Together with the m equations in (3.14) (by varying l), one arrives
at a total of m2 linear equations from which {ϑij,k}m

i,k=1 can be solved for.

Remark 4 In some special cases, the solution form (3.9) can be further simplified. For example, if
s1 + s4 = 0, by inspecting (3.6) we note that (3.9) still holds under the simplification ηii = 0 for
i = 1, 2, . . . , m. Linear equations can be obtained by replacing s1 + s4 and {ηii}m

i=1 by 0 in (3.10).
Equating the coefficients of e−εkz still leads to (3.11), i.e. {−εk}m

k=1 are the roots of (3.12) with negative
real parts. The coefficients of e−((λl+δ)/c)z result in

m∑

k=1

ϑlj,k

λl + δ − cεk
+

ηlj

λl − λj
= 0, l 6= j, (3.15)

and

ηij = b̃i

(
λj + δ

c

) m∑

k=1,k 6=j

pikλk

λk − λj
ηkj − b̃i

(
λj + δ

c

)
pijλj

m∑

k=1

ϑjj,k

λj + δ − cεk

+
1
c

pijλjw̃2

(
λj + δ

c

)
b̃i

(
s1 +

λj + δ

c

)
, i, j = 1, 2, . . . , m. (3.16)

Similar to the case s1 + s4 6= 0, it is sufficient to fix j = 1, 2, . . . , m throughout. Then there are m − 1
equations in (3.15) (by varying l) and m equations in (3.16) (by varying i). For each fixed k = 1, 2, . . . , m,
one of the m equations (in i) in the system (3.11) is removed to get m−1 equations, resulting in m(m−1)
by varying k. These form a total of m2+m−1 linear equations in {ϑij,k}m

i,k=1 and {ηij}i6=j . It is instructive
to note that this case of s1 + s4 = 0 can be useful in obtaining the Laplace transform (with argument s)
of the last jump before ruin XM(τU ) = Z(τ∗Z −WM(τZ)+1)−RZ,M(τZ) for the process {Z(t)}t≥0 by letting
s1 = −s4 = s.

As another example, the very special case where s1 = s4 = 0 would lead to ηij = 0 for all i, j =
1, 2, . . . , m (see Cheung et al. (2011a, Appendix)). Replacing s1, s4 and {ηij}m

i,j=1 by 0 in (3.10), one
observes that {−εk}m

k=1 are again the roots of (3.12) with negative real parts. In addition, we arrive at,
for j = 1, 2, . . . , m, 




m∑
k=1

ϑlj,k

λl+δ−cεk
= 0, l 6= j.

m∑
k=1

ϑjj,k

λj+δ−cεk
= 1

c w̃2

(
λj+δ

c

)
.

(3.17)

The procedure to solve for the {ϑij,k}m
i,j,k=1 from (3.11) and (3.17) is similar to the general case of

s1 + s4 6= 0 and is omitted here. ¤

4 Exponential gain sizes

In this section, we make reverse distributional assumptions in comparison to Section 3, i.e. the gain
size densities are assumed to be exponential with bi(y) = µie

−µiy for i ∈ E whereas the inter-arrival
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times are kept general. From Remark 3 at the end of Section 2, we consider the Gerber-Shiu function
Φ124,δ,Z(z) under the choice of penalty function w124(x, y, v) = e−s1x−s2y−s4v. As we shall see, we are
able to determine h∗2,δ,Z(x, y, v|0) by performing Laplace transform inversion of Φ124,δ,Z(0) with respect
to (s1, s2, s4). This is sufficient to characterize Φδ,Z(·) via (2.7) or (2.11), and hence Φδ,U (·) via (2.12).

First, we define the Dickson-Hipp operator Ts introduced by Dickson and Hipp (2001) which will be
extensively used in our analysis. For Re(s) ≥ 0, it is defined as

Tsf(y) =
∫ ∞

y
e−s(x−y)f(x) dx, y ≥ 0.

Readers are also referred to Li and Garrido (2004, Section 3) for various properties of Dickson-Hipp
operators. With exponential gains and the penalty function w124(x, y, v) = e−s1x−s2y−s4v, by a change of
variable x = (z + y)/c we can rewrite (2.14) as

φ124,δ,ij,Z(z) = cµi

m∑

l=1

pil

∫ ∞

z
c

e−µi(cx−z)

∫ x

0
e−δtkl(t) φ124,δ,lj,Z(c(x− t)) dt dx

+ cµipije
−(s1+s4+ δ

c )z

∫ ∞

z
c

e−(µi+s1+ δ
c )(cx−z)Tcs2+δkj(x) dx.

Upon differentiation of the above integral equation with respect to z, one obtains the integro-differential
equation

φ′124,δ,ij,Z(z) = µiφ124,δ,ij,Z(z)− µi

m∑

l=1

pil

∫ z
c

0
e−δtkl(t) φ124,δ,lj,Z(z − ct) dt

− µipije
−(s1+s4+ δ

c )zTcs2+δkj

(z

c

)
− cµipijs4e

−(s1+s4+ δ
c )zTcµi+cs1+δTcs2+δkj

(z

c

)
.

Taking Laplace transforms yields

(s− µi)φ̃124,δ,ij,Z(s) + µi

m∑

l=1

pil k̃l(cs + δ) φ̃124,δ,lj,Z(s)

= φ124,δ,ij,Z(0)− cµipijTcs+cs1+cs4+δTcs2+δkj(0)− c2µipijs4Tcs+cs1+cs4+δTcµi+cs1+δTcs2+δkj(0).

This can be conveniently rewritten in matrix form as

Aδ(s) Φ̃124,δ,Z(s) = Φ124,δ,Z(0)−∆δ(s), (4.1)

where
Aδ(s) = sI− µ + µP k̃(cs + δ)

with µ = diag{µ1, . . . , µm}, and the (i, j)-th element of ∆δ(s) is given by

[∆δ(s)]ij = cµipijTcs+cs1+cs4+δTcs2+δkj(0) + c2µipijs4Tcs+cs1+cs4+δTcµi+cs1+δTcs2+δkj(0). (4.2)

Using the result in Li and Garrido (2004, Section 3, Property 2) regarding double Dickson-Hipp operators,
we note that

cs4Tcs+cs1+cs4+δTcµi+cs1+δTcs2+δkj(0)
= [(cs + cs1 + cs4 + δ)− (cµi + cs1 + δ)]Tcs+cs1+cs4+δTcµi+cs1+δTcs2+δkj(0)

+ c(µi − s)Tcs+cs1+cs4+δTcµi+cs1+δTcs2+δkj(0)
= Tcµi+cs1+δTcs2+δkj(0)− Tcs+cs1+cs4+δTcs2+δkj(0) + c(µi − s)Tcs+cs1+cs4+δTcµi+cs1+δTcs2+δkj(0).
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Thus, (4.2) becomes

[∆δ(s)]ij = cµipijTcµi+cs1+δTcs2+δkj(0) + c2µipij(µi − s)Tcs+cs1+cs4+δTcµi+cs1+δTcs2+δkj(0).

Since later on we will invert Laplace transforms with respect to (s1, s2, s4), by explicitly writing the
Dickson-Hipp operators as multiple integrals we can rewrite the above expression as

[∆δ(s)]ij =
1
c

∫ ∞

0

∫ ∞

0
e−s1x−s2y

{
µie

−µix−δ(x+y
c )pij kj

(
x + y

c

)}
dx dy

+
1
c

∫ ∞

0

∫ ∞

0

∫ x

0
e−s1x−s2y−s4v

{
µi(µi − s)e−sv−µi(x−v)−δ(x+y

c )pij kj

(
x + y

c

)}
dv dx dy.

(4.3)

To obtain Φ124,δ,Z(0) from (4.1), we apply the eigenvector method (see e.g. Albrecher and Boxma
(2005, Section 2), Ren (2007, Section 3), and Zhang et al. (2011, Theorem 2)). Following Adan and
Kulkarni (2003, Theorem 2.3) and Albrecher and Boxma (2005, Proposition 2.1), it is known that the
Lundberg’s equation (in ξ)

detAδ(ξ) = 0

has exactly m roots with non-negative real parts. We denote these roots by {ρk}m
k=1, which are assumed

to be distinct. For k = 1, 2, . . . , m, define γk to be the left eigenvector of Aδ(ρk) corresponding to the
eigenvalue 0. Further assuming that every element of Φ̃124,δ,Z(ρk) is finite, pre-multiplying (4.1) by γk

under s = ρk yields, for k = 1, 2, . . . , m,

0 = γkAδ(ρk) Φ̃124,δ,Z(ρk) = γkΦ124,δ,Z(0)− γk∆δ(ρk),

where 0 is a zero column vector of dimension m. Using (4.3), the above equation can be rearranged as

γkΦ124,δ,Z(0) = γk

∫ ∞

0

∫ ∞

0
e−s1x−s2y

[
1
c

µie
−µix−δ(x+y

c )pij kj

(
x + y

c

)]m

i,j=1

dx dy

+
∫ ∞

0

∫ ∞

0

∫ x

0
e−s1x−s2y−s4ve−ρkvγk

[
1
c

µ2
i e
−µi(x−v)−δ(x+y

c )pij kj

(
x + y

c

)]m

i,j=1

dv dx dy

−
∫ ∞

0

∫ ∞

0

∫ x

0
e−s1x−s2y−s4vρke

−ρkvγk

[
1
c

µie
−µi(x−v)−δ(x+y

c )pij kj

(
x + y

c

)]m

i,j=1

dv dx dy.

Since this is true for k = 1, 2, . . . , m, putting all the pieces together yields

ΓΦ124,δ,Z(0) = Γ
∫ ∞

0

∫ ∞

0
e−s1x−s2y

{
1
c

µe−µx−δI(x+y
c )Pk

(
x + y

c

)}
dx dy

+
∫ ∞

0

∫ ∞

0

∫ x

0
e−s1x−s2y−s4ve−ρvΓ

{
1
c

µ2e−µ(x−v)−δI(x+y
c )Pk

(
x + y

c

)}
dv dx dy

−
∫ ∞

0

∫ ∞

0

∫ x

0
e−s1x−s2y−s4vρe−ρvΓ

{
1
c

µe−µ(x−v)−δI(x+y
c )Pk

(
x + y

c

)}
dv dx dy,

(4.4)

where ρ = diag{ρ1, . . . , ρm} and Γ is the square matrix containing the left eigenvectors γk’s such that
Γ = [γ>1 , . . . ,γ>m]>. Further define the matrix Θ = Γ−1ρΓ. Then it is known that Γ−1e−ρvΓ = e−Θv

and Γ−1ρe−ρvΓ = ΘΓ−1e−ρvΓ = Θe−Θv = e−ΘvΘ. Hence, pre-multiplying (4.4) by Γ−1 along with the
use of (2.5) (under b(x) = µe−µx) yields
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Φ124,δ,Z(0) =
∫ ∞

0

∫ ∞

0
e−s1x−s2yh∗1,δ,Z(x, y|0) dx dy

+
∫ ∞

0

∫ ∞

0

∫ x

0
e−s1x−s2y−s4ve−Θv(µ−Θ)h∗1,δ,Z(x, y|v) dv dx dy.

Comparing with (2.13) under z = 0 and w124(x, y, v) = e−s1x−s2y−s4v leads us to

h∗2,δ,Z(x, y, v|0) = e−Θv(µ−Θ)h∗1,δ,Z(x, y|v), x > v > 0; y > 0,

via uniqueness of Laplace transforms.

5 Applications

5.1 Fair price of a perpetual insurance

In the context of the usual insurance risk process, ruin-related problems involving perpetual (re)insurance
have been studied by e.g. Pafumi (1998) and Dickson and Waters (2004, Section 6.3). Generally speaking,
the idea of perpetual (re)insurance is that a company (which may be an insurance company) pays a single
premium up-front to another (re)insurer who guarantees to make any necessary capital injections to keep
the company’s surplus non-negative, so that the company will be able to continue its business forever.
In the case of the dual risk model (1.1), this means that the company will have its expenses paid by the
insurer whenever its surplus reaches zero. Mathematically, the dual risk process modified by the above
perpetual insurance, denoted by {U I(t)}t≥0, follows the dynamics

U I(t) = U(t)−min
(

0, inf
0≤s≤t

U(s)
)

, t ≥ 0.

See Figures 3a&b.

INSERT FIGURE 3

Figures 3a&b: Original and modified sample paths for {U(t)}t≥0 and {U I(t)}t≥0

Before finding the fair price at time 0 of the perpetual insurance contract, we need to introduce
a few intermediate functions. We define L∗δ,U (u) = [L∗δ,ij,U (u)]mi,j=1 to be the special case of Φδ,U (u)
with w(·, ·, ·, ·) ≡ 1, i.e. L∗δ,U (u) represents the matrix Laplace transform of τ∗U . Also define Lδ,U (u) =
[Lδ,ij,U (u)]mi,j=1 to be matrix Laplace transform of the ruin time τU . Recalling the relationship τU = τ∗U −
|U(τ∗−U )|/c from Section 1, one asserts that Lδ,U (u) can be retrieved from Φδ,U (u) by letting w(x, y, v, r) =
e(δ/c)y. Similarly, the special cases of Φδ,Z(z) under w(·, ·, ·, ·) ≡ 1 and w(x, y, v, r) = e(δ/c)y are denoted
by L∗δ,Z(z) = [L∗δ,ij,Z(z)]mi,j=1 and Lδ,Z(z) = [Lδ,ij,Z(z)]mi,j=1 respectively. Note that L∗δ,Z(z) and Lδ,Z(z)
can both be computed using Remark 4 if the inter-arrival times are exponential, and hence L∗δ,U (u) and
Lδ,U (u) follow from (2.12) as well.

The upcoming analysis is similar to that in Cheung (2012, Section 3.2) who considered the dual
dependent Sparre Andersen model. The difference is that we need to additionally take into account the
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states of the Markov chain at both time 0 and the first time {U(t)}t≥0 reaches zero. Throughout we
assume a force of interest δ > 0. Given the initial state G0 = i and the initial capital U I(0) = u, we
denote the ‘price’ of the perpetual insurance in {U I(t)}t≥0 by PIi,U (u). Analogous to Cheung (2012,
Equation (3.3)), we arrive at, for i ∈ E and u ≥ 0,

PIi,U (u) = c
m∑

j=1

E
[
e−δτU aτ∗U−τU |δ1{τU < ∞}1{GN(τU ) = j}∣∣G0 = i, U(0) = u

]

+
m∑

j=1

E
[
e−δτ∗U 1{τU < ∞}1{GN(τU ) = j}∣∣G0 = i, U(0) = u

]
PIj,Z . (5.1)

Here the actuarial symbol at|δ = (1 − e−δt)/δ denotes the present value (discounted at δ > 0) of a
continuous stream of payment at rate 1 between time 0 and time t; whereas PIj,Z is the ‘price’ of the
perpetual insurance corresponding to a similarly modified version of {Z(t)}t≥0 given initial state G0 = j
and zero initial level. The expression (5.1) can be interpreted as follows.

1. In the first term, cE[e−δτU aτ∗U−τU |δ1{τU < ∞}1{GN(τU ) = j}|G0 = i, U(0) = u] represents the
present value of the first payment stream at rate c from time τU to τ∗U , if the first ruin of {U(t)}t≥0

occurs in state GN(τU ) = j.

2. For the second term, E[e−δτ∗U 1{τU < ∞}1{GN(τU ) = j}|G0 = i, U(0) = u] can be regarded as the
discount factor from time τ∗U to time 0, if the first ruin occurs with GN(τU ) = j. Under such a case,
PIj,Z is simply the present value (at time τ∗U ) of potential future payments if the process {U I(t)}t≥0

ever reaches zero again.

In the above two contributions, summing over j ∈ E yields the desired result (5.1) as the state j is
arbitrary. The same arguments also lead to a similar expression for PIj,Z , namely, for j ∈ E ,

PIj,Z = c
m∑

k=1

E
[
e−δτZaτ∗Z−τZ |δ1{τZ < ∞}1{GM(τZ)+1 = k}∣∣G0 = j, Z(0−) = 0

]

+
m∑

k=1

E
[
e−δτ∗Z 1{τZ < ∞}1{GM(τZ)+1 = k}∣∣G0 = j, Z(0−) = 0

]
PIk,Z . (5.2)

Using matrix notations defined previously, we can rewrite (5.1) and (5.2) respectively as

PIU (u) =
c

δ

{
Lδ,U (u)− L∗δ,U (u)

}
1 + L∗δ,U (u)PIZ , u ≥ 0, (5.3)

and
PIZ =

c

δ

{
Lδ,Z(0)− L∗δ,Z(0)

}
1 + L∗δ,Z(0)PIZ . (5.4)

where PIU (u) = {PI1,U (u), . . . , PIm,U (u)}>, PIZ = {PI1,Z , . . . , PIm,Z}>, and 1 is an m-dimensional
column vector of ones. Rearrangements of (5.4) yield

PIZ =
c

δ

[
I− L∗δ,Z(0)

]−1 {
Lδ,Z(0)− L∗δ,Z(0)

}
1,

which is an explicit expression for PIZ . Then PIU (u) can be computed from (5.3). However, it is
instructive to note that PIU (u) is still not the actual price of the perpetual insurance contract. This is
because the company needs to use part of its surplus to buy the contract, and the decrease in surplus
will in turn drive up the price of the contract. Given G0 = i and initial surplus u before purchase of
insurance, we denote the actual fair price of the perpetual insurance by APIi(u). If the fair price APIi(u)
exists, then it satisfies
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APIi(u) = PIi,U (u−APIi(u)). (5.5)

With expression for PIi,U (·) available, one can solve the above equation for APIi(u) numerically using
common software packages such as Mathematica. It is also clear that APIi(u) does not exist if u ≤
PIi,U (u), as the whole surplus is not enough to buy the perpetual insurance in this case. Moreover, if the
solution APIi(u) to (5.5) exists, it must be no less than PIi,U (u).

Example 1 This example aims at illustrating how certain model parameters of the dual semi-Markovian
risk model affect the fair price of the perpetual insurance. For simplicity, we study a two-state model
(i.e. m = 2). Two different transition probability matrices will be considered, namely

P1 =




1
2

1
2

1
2

1
2


 and P2 =




2
5

3
5

3
10

7
10


 .

Under P1, the stationary probabilities of the Markov chain {Gn}∞n=0 are given by π1 = π2 = 1/2. On the
other hand, the transition matrix P2 would result in the stationary probabilities π1 = 1/3 and π2 = 2/3.
It is assumed that the process has exponential gain sizes and exponential inter-arrival times in both
environmental states, i.e. bi(y) = µie

−µiy and ki(t) = λie
−λit for i = 1, 2, so that one has βi = 1/µi and

κi = 1/λi. Two sets of parameters for λ = diag{λ1, λ2} will be used, namely λ1 = diag{4/5, 4/3} and
λ2 = diag{4/5,

√
16/61}. Throughout we assume µ = diag{µ1, µ2} = diag{1, 5/4}, expense rate c = 0.4

and force of interest δ = 0.05. By varying P and λ, we study four cases that are summarized in Table 1
below.

Case λ P π1 π2 E1[Y1 − cV1] E2[Y1 − cV1] Var1(Y1 − cV1) Var2(Y1 − cV1)
∑2

j=1 πj(βj − cκj)
= β1 − cκ1 = β2 − cκ2 = β2

1 + c2κ2
1 = β2

2 + c2κ2
2

A λ1 P1 1/2 1/2 0.500 0.500 1.250 0.730 0.500
B λ1 P2 1/3 2/3 0.500 0.500 1.250 0.730 0.500
C λ2 P1 1/2 1/2 0.500 0.019 1.250 1.250 0.259
D λ2 P2 1/3 2/3 0.500 0.019 1.250 1.250 0.179

Table 1: Parameter values and related attributes in the four cases

In the above table, for i = 1, 2 the quantity Ei[Y1 − cV1] = E[Y1 − cV1|G0 = i] (resp. Vari(Y1 − cV1) =
Var(Y1− cV1|G0 = i)) represents the expected increment (resp. variance of the increment) of the process
{U(t)}t≥0 when it is in state i. In all four cases, the positive security loading condition (2.10) is satisfied
as Ei[Y1− cV1] is always positive. In particular, the value on the left-hand side of (2.10) is also presented
in the last column of Table 1. With the use of Mathematica, the API values are obtained via (5.5) and
the results are summarized in Table 2 for different initial states and various values of initial surplus. The
entries showing ‘NA’ correspond to the cases where API value does not exist because of insufficient initial
surplus.

In each row of Table 2, it is noted that the value of API decreases as the initial surplus u increases.
This is because the process stays further away from level zero when u is larger, and therefore both the
chance of ever having an insurance payment and the amount of required payment will be less. In Case A,
we observe that the API values under G0 = 1 are higher than the corresponding ones under G0 = 2. An
intuitive explanation is that the variance of increment in state 1 is larger than that in state 2 (with the
expected increment being same), implying state 1 has a higher risk. Hence, starting in the riskier state 1
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results in higher price for the perpetual insurance. Moving from Case A to Case B, the same phenomenon
is observed. However, the values in Case B are slightly smaller than those in Case A. Although Cases A
and B have identical parameters concerning the gain sizes and the inter-arrival times in each state, under
Case B the process only has 1/3 chance of being in the risker state 1 in the long run compared to the
probability of 1/2 for Case A. This explains the smaller API values in Case B.

Case G0 u = 1 u = 2 u = 3 u = 4 u = 5 u = 6 u = 7 u = 8
A 1 NA NA 0.122 0.020 0.004 6.65× 10−4 1.21× 10−4 2.18× 10−5

A 2 NA NA 0.083 0.013 0.002 4.24× 10−4 7.54× 10−5 1.34× 10−5

B 1 NA NA 0.119 0.019 0.003 6.10× 10−4 1.09× 10−4 1.93× 10−5

B 2 NA NA 0.055 0.009 0.001 2.52× 10−4 4.32× 10−5 7.41× 10−6

C 1 NA NA NA 0.501 0.143 0.052 0.020 0.008
C 2 NA NA NA NA 0.564 0.155 0.056 0.021
D 1 NA NA NA NA 0.292 0.103 0.041 0.017
D 2 NA NA NA NA 0.779 0.210 0.081 0.033

Table 2: Values of API under four cases

Now we turn to Cases C and D. In these two cases, the parameter λ = λ2 is indeed chosen such
that the process {U(t)}t≥0 has the same variance of increment in both states. However, the expected
increment in state 1 is larger than that in state 2, meaning that state 1 has higher expected profit and is
the less risky state. Hence, within each case, the API values when G0 = 1 are smaller than those when
G0 = 2. Note that the API values in Case D under P2 are larger than those in Case C because the
process in Case D has higher chance to be in the riskier state 2 in the long run.

Next, one can also compare Cases A and C in which the transition probability matrix P1 is the same
but the parameter λ is different. From Table 1, it is clear that state 2 of Case C is riskier than that
of Case A as its increment has lower expectation and higher variance. Consequently, the API values in
Case C are higher. The fact that Case D has higher API values than Case B can be interpreted in the
same manner.

Case G0 u = 1 u = 2 u = 3 u = 4 u = 5 u = 6 u = 7 u = 8
A 1 1.780 0.405 0.086 0.017 0.003 6.11× 10−4 1.14× 10−4 2.08× 10−5

A 2 2.041 0.390 0.072 0.013 0.002 4.23× 10−4 7.54× 10−5 1.34× 10−5

B 1 1.779 0.406 0.083 0.016 0.003 5.58× 10−4 1.02× 10−4 1.83× 10−5

B 2 1.685 0.295 0.050 0.009 0.001 2.52× 10−4 4.32× 10−5 7.41× 10−6

C 1 4.404 1.877 0.775 0.313 0.125 0.049 0.019 0.008
C 2 9.012 4.199 1.847 0.769 0.317 0.128 0.051 0.020
D 1 6.503 2.963 1.277 0.540 0.226 0.094 0.040 0.017
D 2 8.947 4.514 2.092 0.934 0.408 0.176 0.075 0.032

Table 3: Values of PI under four cases

Finally, for reference we also include Table 3 showing the values of PIi,U (u). It is noted that the
ranking of the values in Table 3 follows closely that in Table 2, and the probabilistic interpretation in
relation to the concept of risk is identical to that for Table 2. Moreover, whenever PIi,U (u) is small (of
order 10−4 or less) under initial surplus levels of u = 6, 7, 8, the value of APIi(u) in Table 2 is very close
to the corresponding PIi,U (u) in Table 3. In these cases, the purchase of the perpetual insurance itself
has virtually no impact on the initial surplus. ¤
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5.2 Ordering properties of the last inter-arrival time containing ruin

In a dependent Sparre Andersen insurance risk model where a given inter-arrival time affects the dis-
tribution of the resulting claim severity, Cheung et al. (2011b, Section 2) provided sufficient conditions
under which the size of the claim causing ruin (resp. the last inter-arrival time before ruin) is stochas-
tically larger (resp. smaller) than the generic claim size (resp. inter-arrival time) random variable. In
this subsection, we aim at studying whether similar ordering properties hold true in the context of a
dual risk model. For example, (given that ruin occurs) it is natural to expect that the last inter-arrival
time containing the time of ruin tends to be long, since a prolonged period without a gain would be
detrimental to the company and can be a reason for ruin.

First, we recall from Section 1 that the inter-arrival time containing the time of ruin is related to
other variables by VN(τU )+1 = (U(TN(τU )) + |U(τ∗−U )|)/c. Therefore, by letting w(x, y, v, r) = e−s(x+y)/c

and δ = 0 in (1.6), we retrieve the Laplace transform (with argument s) of VN(τU )+1. This will be denoted
by, for i, j ∈ E and u ≥ 0,

q̃ij,U (s, u) = E
[
e−sVN(τU )+11{τU < ∞}1{GN(τU ) = j}|G0 = i, U(0) = u

]
. (5.6)

Upon Laplace transform inversion with respect to s, one obtains qij,U (·, u) which is the defective density
of VN(τU )+1 together with the events {τU < ∞} and {GN(τU ) = j}, given G0 = i and U(0) = u. Moreover,
setting s = 0 in (5.6) (or setting w(·, ·, ·, ·) ≡ 1 and δ = 0 in (1.6)) leads to Pr{τU < ∞, GN(τU ) = j|G0 =
i, U(0) = u}. Therefore, the normalized density of VN(τU )+1 is given by, for i, j ∈ E ; u ≥ 0 and t > 0,

q∗ij,U (t, u) =
qij,U (t, u)

Pr{τU < ∞, GN(τU ) = j|G0 = i, U(0) = u} .

Further define the associated proper survival function Q
∗
ij,U (t, u) =

∫∞
t q∗ij,U (x, u) dx. With the oc-

currences of gains and the resulting amounts following a semi-Markovian structure, it is reasonable to
compare Q

∗
ij,U (·, u) for ruin in state j with the survival function Kj(·) of the generic inter-arrival time in

state j to see whether a stochastic ordering holds. However, unlike Cheung et al. (2011b), it is difficult to
derive ordering properties analytically in the present model which is more complex. Therefore, in what
follows we shall provide a numerical example to support the idea that Q

∗
ij,U (·, u) is larger than Kj(·).

Example 2 In this example, we follow identical parameters used in Case A in Example 1 (except that δ is
now 0). For i, j = 1, 2, Figures 4a-d first show the plots of the densities q∗ij,U (t, u) (when U(0) = 2, 4, 6, 8)
and kj(t) against t. It can be seen from Figures 4b&c (i.e. when (i, j) = (1, 2) and (i, j) = (2, 1)) that the
density q∗ij,U (t, u) is always continuous in t. However, the same is not true for Figures 4a&d: q∗ij,U (t, u)
is discontinuous at the point t = u/c with an upward jump. This is because when i = j, there is an
additional contribution to the density in the domain t > u/c for ruin occurring without any gains, which
is evident from (2.2).

INSERT FIGURE 4

Figures 4a-d: Plots of q∗ij,U (t, u) and kj(t)

Next, for i, j = 1, 2, Figures 5a-d depict the behaviour of the survival functions Q
∗
ij,U (t, u) and Kj(t)

against t. Regardless of the initial states and initial surplus levels under consideration, it can be seen

19



that Q
∗
ij,U (t, u) is always larger than Kj(t), which is expected. Note that Q

∗
ij,U (t, u) is not smooth at

t = u/c when i = j because of the discontinuity of density.

INSERT FIGURE 5

Figures 5a-d: Plots of Q
∗
ij,U (t, u) and Kj(t)

We have also performed the above analyses using the parameters of Cases B-D in Example 1, and
the same phenomena are observed. The related plots are not reproduced here for the sake of brevity. ¤
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