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Abstract

In this article, we provide a systematic study on the nonzero-sum stochastic differ-
ential investment and reinsurance game between two insurance companies. Each insur-
ance company’s surplus process consists of a proportional reinsurance protection and an
investment in risky and risk-free assets. Each insurance company is assumed to maxi-
mize his utility of the difference between his terminal surplus and that of his competitor.
The surplus process of each insurance company is modeled by a mixed regime-switching
Cramer-Lundberg diffusion approximation process, i.e. the coefficients of the diffusion
risk processes are modulated by a continuous-time Markov chain and an independent
market-index process. Correlation between the two surplus processes, independent of
the risky asset process, is allowed. Despite the complex structure, we manage to solve
the resulting non-zero sum game problem by applying the dynamic programming prin-
ciple. The Nash equilibrium, the optimal reinsurance/investment, and the resulting
value processes of the insurance companies are obtained in closed forms, together with
sound economic interpretations, for the case of an exponential utility function.
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1 Introduction

Since the classical works of Bühlmann (1970) and Gerber (1970), the study of optimal invest-
ment and reinsurance strategies has been a recurrent theme in the insurance literature. In
practice, insurance companies can diversify their risks by purchasing reinsurance protection
from a reinsurance company, and also by investing in the stock markets. For example, Browne
(1995) validated the long-standing conjecture concerning the relation between minimizing the
probability of ruin and maximizing the exponential utility. More specifically, when there is
no interest rate, Browne (1995) proved the equivalence between a policy that maximizes the
exponential utility function of the wealth at a fixed terminal time and a policy that mini-
mizes the probability of ruin. Yang and Zhang (2005) obtained the closed-form solution to
the optimal investment policies of an insurer under a jump-diffusion risk process. Liu and Ma
(2009) revisited the optimal reinsurance/investment/consumption problem under a general
insurance risk model. More specifically, by modeling the reserve process of the insurance
company using a stochastic differential equation (SDE) driven by a Brownian motion and a
Poisson random measure, they modified the “duality method” in finance and the solvability
of a special type of backward stochastic differential equation (BSDE) to obtain the necessary
and sufficient conditions for the well-posedness and solvability of the utility maximization
problems.

Over the past decades, the theory of stochastic differential games has been studied exten-
sively in the realm of control theory. At the theoretical level, many fundamental results on
the existence of Nash equilibria have been obtained. For example, Elliott (1976) examined
the relationship between the values of the zero-sum stochastic differential games with two
players and the Isaacs condition. Regarding the development of the non-zero sum stochastic
differential games, the pioneering work by one of our authors (Bensoussan and Frehse (2000))
used the dynamic programming approach to solve the non-zero sum stochastic differential
game with N players over an infinite time horizon. They showed that the existence of the
Nash equilibrium can be proved by applying the regularity theory of the system of nonlinear
partial differential equations (PDEs).

In the contexts of finance and insurance, there has been rapid development in extending
the optimal investment/reinsurance problem in the context of stochastic differential games.
Browne (2000) studied the zero-sum stochastic differential games of two competing investors
with one payoff function depending on both investors’ wealth processes. Recently, Zeng
(2010) studied the existence of the Nash equilibrium in a zero-sum stochastic differential
reinsurance game. Øksendal and Sulem (2011) formulated the model uncertainty of the
optimal portfolio problem in the form of a zero-sum game. Elliott and Siu (2011a) adopted
the BSDE approach to study a similar zero-sum game between the insurer and the market,
in which the insurer aims to minimize the risk described by a convex risk measure of his
terminal wealth, whereas the market selects the probability measure that maximizes the risk
under the worst-case scenario.
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Economic trends often have a significant influence on the dynamics of asset prices. Corre-
spondingly, the optimal reinsurance/investment strategies should be subject to changes in
the economic trends. However, the aforementioned works studied the non-game or game
problem under the assumption that the reserve process follows a jump-diffusion process with
constant coefficients. To incorporate changes in economic trends, Markovian regime-switching
processes, i.e. the SDEs with coefficients modulated by the continuous-time Markov chain,
prove to be a valuable class of candidate processes with tractable properties. For example,
Elliott et al. (2010) developed the robust filter-based and smoother-based Expectation-
Maximization (EM) algorithms to recursively estimate the unknown parameters of insurance
claim processes when the arrival and size of the claims are state-dependent. In earlier works
by one of our authors, Ng and Yang (2006) and Zhu and Yang (2009) studied the joint dis-
tribution of the surplus process immediately before/after the ruin and the differentiability
of the ruin functions under the Markovian regime-switching environment, respectively. To
further develop the control theory in finance and insurance, Zhou and Yin (2003) consid-
ered the mean-variance problem under the regime-switching diffusion process, which Chen
and Yam (2013) recently extended to the case of reinsurance and investment strategies with
short-sell prohibition. Zhu (2011) derived the optimal control that minimizes the total cost
of an insurance company up to a stochastic exit time under the regime-switching diffusion
framework. In the context of stochastic differential games, Elliott and Siu (2011b) formu-
lated the optimal investment problem in the form of a zero-sum stochastic differential games
between the insurance company and the market. They adopted a Girsanov transform for the
regime-switching Markov chain to incorporate the model risk when modeling the economic
risk introduced by the Markov chain.

The development of non-zero sum stochastic differential games in finance and insurance is
relatively new. Espinosa and Touzi (2013) considered the problem of optimal investment
when agents take into account their relative performance against their peers in the form of
a non-zero sum stochastic differential game with N players. They showed the existence and
uniqueness of the Nash equilibrium under the cases of unconstrained and constrained agents
with exponential utilities within the Black-Scholes market framework, i.e. with constant
coefficients in the corresponding SDEs. Wang and Yu (2012) studied a specific form of the
non-zero sum differential game under the BSDE framework. In particular, they established
a necessary Pontryagin maximum principle for an open-loop Nash equilibrium point of a
partial information game and provided a sufficient condition for the existence of the Nash
equilibrium point.

In this paper, we study the non-zero sum reinsurance and investment game in the context
of mixed regime-switching reserve processes, in which the correlation between the competing
insurance companies is allowed. We formulate the problem via the dynamic programming
principle, resulting in the coupled Hamilton-Jacobi-Bellman (HJB) formulation under a gen-
eral, differentiable, concave utility function with regime-switching effects. We connect the
existence of the Nash equilibrium to the solvability of the coupled system of nonlinear PDEs.
For the case of the exponential utility function, we obtain explicit solutions for the rein-
surance/investment strategies of two competing insurance companies and the corresponding
value functions at equilibrium, together with economic interpretations.

The rest of the paper is organized as follows. Section 2 defines the risk and surplus processes of
each competitive insurance company and his reinsurance/investment opportunities. Section
3 provides the objective of each insurer. We assume that the prime objective of each insurer
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is to maximize the expected terminal utility of the difference between his surplus process and
that of his competitor. Section 4 formulates the non-zero sum stochastic differential game
problem by means of the dynamic programming principle. The conditions for the existence
of the Nash equilibrium and the verification theorem for the corresponding (coupled) HJB
equations are provided. In Section 5, we provide the explicit solutions for the equilibrium
reinsurance/investment strategies under the case of the exponential utility function with some
numerical illustrations. Section 6 concludes the paper with suggestions for future research.

2 Model

Let (Ω,F ,P) be a complete probability space and [0, T ∗] be the planning horizon, with
0 < T ∗ <∞. Here, we assume that F = (Ft)t≥0, where Ft , Fαt ∨ FBt . Processes {α(t)}t≥0

and {B(t)}t≥0 , {(B1(t), B2(t), BL(t), BS(t))}t≥0, are defined.

2.1 Dynamics of economic trends

Let E = {1, ..., d} be the finite state space. Following Elliott and Siu (2011b) and the
references therein, we model the state of the economy over time by the continuous time,
finite state, observable Markov chain, {α(t)}t≥0, taking the values in the state space E.

To specify the distributional properties of the Markov chain {α(t)}t≥0, let Q = (qij)i,j∈E
denote the Q-matrix of {α(t)}t≥0, such that qij ≥ 0, for j 6= i, qii = −

∑
j 6=i qij ≤ 0.

According to Elliott et al. (1994), the Markov chain {α(t)}t≥0 admits the following semi-
martingale representation:

α(t) = α(0) +

∫ t

0

Q>α(u)du+M(t), t > 0, (1)

where M(t) is some Rd-valued martingale with respect to filtration (Fα)t≥0, generated by
{α(t)}t≥0. Finally, b> denotes the transpose of b.

2.2 Market index process

In addition to the changes in economic trends modeled by the Markov chain {α(t)}t≥0, we
assume there is another diffusion process, independent of the Markov chain {α(t)}t≥0, that
captures the dynamics of the market index. Let {L(t)}t≥0 denote a market index process
with the following representation

dL(t) = µL(t, L(t))dt+ σL(t, L(t))dBL(t), (2)

where {BL(t)}t≥0 is the standard Brownian motion independent of {B1(t)}t≥0, {B2(t)}t≥0,
and {BS(t)}t≥0, the Brownian motions to be defined below. Let (FBL

t )t≥0 denote the filtration
generated by Brownian motion {BL(t)}t≥0.

A common model of the market index process includes a mean-reverted diffusion process such
as the Ornstein-Uhlenbeck process, where µL(t, L(t)) is an affine function of L(t) and σL is a
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constant. To ensure the SDE in (2) admits a unique strong solution, we assume that µL and
σL satisfy a uniform Lipschitz condition, i.e. there exists KL ≥ 0 for all l1, l2 ∈ R, such that

|µL(., l1)− µL(., l2)|+ |σL(., l1)− σL(., l2)| ≤ KL|l1 − l2|. (3)

In this case, Doob’s Lp-inequality gives

E
[

sup
0≤t≤T ∗

|L(t)|2
]
<∞. (4)

2.3 Insurance companies

Consider a market with two competing insurance companies and one reinsurance company.
Following the assumption that the companies have large insurance portfolios relative to the
size of each individual claim, we model the surplus process of each insurer using the standard
Cramer-Lundberg diffusion approximation. See, for example, Klugman et al. (2008), for
the standard treatise on the Cramer-Lundberg diffusion approximation in insurance models.
More specifically, {Rk(t)}t≥0 denotes the Cramer-Lundberg diffusion approximation of the
surplus process of insurer k ∈ {1, 2}, then {Rk(t)}t≥0 takes the form

dRk(t) = pk(α(t), L(t))− λk(α(t), L(t))E[ξk]dt+
√
λk(α(t), L(t))E[ξ2

k]dBk(t), (5)

where pk > 0 is the uniformly bounded premium rate, λk > 0 is a uniformly bounded arrival-
rate function of claims, and ξk 6= 0 is a random variable representing the size of the claims
with E[ξ2

k] < ∞, for k = 1, 2. (FBk
t )t≥0, for k = 1, 2, denotes the filtration generated by the

standard Brownian motion {Bk(t)}t≥0.

To capture the notion that these two competing insurers have negligible effects on the econ-
omy, we assume that {Bk(t)}t≥0 and {α(t)}t≥0 are mutually independent, for k = 1, 2. To
model the dependence between two insurance companies, we assume that {B1(t)}t≥0 and
{B2(t)}t≥0 are correlated, i.e. d〈B1(t), B2(t)〉 = ρdt, for ρ ∈ [−1, 1].

2.4 Reinsurance and investment opportunities

To reduce the underlying risks, each insurer has an option to purchase a proportional rein-
surance protection. Let θk be the premium rate paid by insurer k ∈ {1, 2} to the reinsurance
company. Let {ak(t)}t≥0 be the F -progressively measurable process valued in [0, 1], repre-
senting the proportional reinsurance protection bought by insurer k ∈ {1, 2} at t ≥ 0. Let
Ak , [0, 1] be the set of proportional reinsurance strategies of insurer k.1 In other words,
upon purchasing the proportional reinsurance protection, the reinsurance company will cover
(1− ak(t))100% of the claims, while insurance company k will cover the remaining ak(t)%.

After purchasing reinsurance, the surplus process of insurer k ∈ {1, 2}, denoted as {Rak
k (t)}t≥0,

becomes

dRak
k (t) ,

[
pk(α(t), L(t))− ak(t)λk(α(t), L(t))E[ξk]− (1− ak(t))θk(α(t), L(t))

]
dt

+ak(t)
√
λk(α(t), L(t))E[ξ2

k]dBk(t), (6)

1The same method can be applied to the case when Ak ⊂ [0, 1], for k ∈ {1, 2}.
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where the premium rate of the proportional reinsurance protection, θk(α(t), L(t)) > 0, is
assumed to be uniformly bounded.

For simplicity, we write Rak
k (t) as follows:

dRak
k (t) = (µk(α(t), L(t)) + θ̄k(α(t), L(t))ak(t))dt+ ak(t)σk(α(t), L(t))dBk(t), (7)

where

µk(α(t), L(t)) , pk(α(t), L(t))− θk(α(t), L(t)),

θ̄k(α(t), L(t)) , θk(α(t), L(t))− λk(α(t), L(t))E[ξk],

σk(α(t), L(t)) ,
√
λk(α(t), L(t))E[ξ2

k].

Note that the uniform boundedness of pk, θk, and λk, together with the finiteness of E[ξ2
k],

ensure that µk, θ̄k, and σk are uniformly bounded in R, for k = 1, 2.

In addition to purchasing reinsurance protection, assume that each insurer k, for k = 1, 2,
can invest in a risk-free asset, denoted as {S0(t)}t≥0, and a risky asset, denoted as {S(t)}t≥0.

The dynamics of the risk-free asset {S0
t }t≥0 are given as

dS0(t)

S0(t)
= rdt, (8)

where r > 0 denotes the constant, risk-free interest rate.

The dynamics of the risky asset {S(t)}t≥0 are given as

dS(t)

S(t)
= mS(α(t), L(t))dt+ σS(α(t), L(t))dBS(t), (9)

where mS and σS > 0 denote the uniformly bounded return and the volatility functions of
the risky asset S, respectively. (FBS

t )t≥0 denotes the filtration generated by the standard
Brownian motion {BS(t)}t≥0. We assume that {Bk(t)|t ∈ [0, T ∗], k = 1, 2} and {BS(t)|t ∈
[0, T ∗]} are independent.2

Let {bk(t)}t≥0 be an F -progressively measurable process valued in R representing the amount
that insurer k invests in the risky asset S at t ≥ 0. Here, we assume that short-selling of
the risky asset is allowed. Let Bk denote the set of investment strategies of insurer k. Let
{Xπk

k (t)}t≥0, where πk(t) , (ak(t), bk(t)) ∈ Ak ×Bk, be the surplus process of insurer k after
purchasing reinsurance protection (ak) and making investment (bk). Following the common
approach to the proportional reinsurance and investment models (see, for example, Liu and
Ma (2009) and Chen and Yam (2013)), insurer k’s surplus process can be modeled as follows

dXπk
k (t) =

[
rXπk

k (t) + µk(α(t), L(t)) + θ̄k(α(t), L(t))ak(t)

+bk(t)(mS(α(t), L(t))− r)
]
dt

+ak(t)σk(α(t), L(t))dBk(t) + bk(t)σS(α(t), L(t))dBS(t), k = 1, 2. (10)

2As we assume the two competing insurers have no influence on the market, their investment decisions
should have no effect on the stock market. The independence between {Bk(t)|t ∈ [0, T ∗], k = 1, 2} and
{BS(t)|t ∈ [0, T ∗]} reflects this assumption.
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Observe that the processes {µk(α(t), L(t))}t≥0, {σk(α(t), L(t))}t≥0, {mS(α(t), L(t))}t≥0, and
{σS(α(t), L(t))}t≥0 are (Fα ∨ FBL)t≥0-adapted. To ensure that the SDE in (10) admits a
strong unique solution, we impose additional assumptions on the strategy (ak, bk) of insurer
k ∈ {1, 2}. To this end, let us first denote, for k = 1, 2,

dk(x, l, j, ak, bk) , rx+ µk(j, l) + θ̄kak + bk(mS(j, l)− r),

vk(x, l, j, ak, bk) , akσk(j, l), vSk (x, l, j, ak, bk) , bkσS(j, l).

Let Ak ⊂ Ak and Bk ⊂ Bk be the set of strategies (ak, bk) of insurer k such that dk, vk, and
vSk satisfy the following.

1. A uniformly Lipschitz condition in Ak × Bk:
there exists K ≥ 0, such that for all x, y, l1, l2 ∈ R and (ak, bk) ∈ Ak × Bk,

sup
j∈E

{
|dk(x, l1, j, ak, bk)− dk(y, l2, j, ak, bk)|+ |vk(x, l1, j, ak, bk)− vk(y, l2, j, ak, bk)|

+|vSk (x, l1, j, ak, bk)− vSk (y, l2, j, ak, bk)|

}
≤ K(|x− y|+ |l1 − l2|). (11)

2. L2-integrability condition in Ak × Bk:
for all x, l ∈ R and (ak, bk) ∈ Ak × Bk,

sup
j∈E

E

{∫ T ∗

0

[
|dk(x, l, j, ak(t), bk(t))|2

+|vk(x, l, j, ak(t), bk(t))|2 + |vSk (x, l, j, ak(t), bk(t))|2
]
dt

}
<∞. (12)

We use Πk , Ak ×Bk to denote the set of strategies πk = (ak, bk) ∈ Πk of insurer k ∈ {1, 2},
satisfying (11) and (12).

From the standard stochastic control theory (see, for example, Pham (2009)), conditions
(11) and (12) ensure that for all πk = (ak, bk) ∈ Πk, and for any initial condition (t, x, l, i) ∈
[0, T ∗]× R× R× E, the SDE in (10) admits a strong unique solution. In this case, we also
have

E
[

sup
0≤t≤T ∗

|Xπk
k (t)|2

]
<∞, for k = 1, 2. (13)

3 Objectives of the insurance companies

Insurer k = 1, 2 has a utility function denoted as Uk : R → R, where Uk is assumed to be
increasing, strictly concave, and satisfies Inada conditions, i.e.,

∂xUk(−∞) = +∞, ∂xUk(+∞) = 0. (14)
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Similar to Espinosa and Touzi (2013), we assume that the prime objective of insurer k
is to maximize the expected utility of his performance at the terminal time T ∈ [0, T ∗),
relative to his competitor. That is, insurer k will choose a reinsurance/investment strategy
πk = (ak, bk) ∈ Πk such that

E [Uk ((1− κk)Xπk
k (T ) + κk(X

πk
k (T )−Xπm

m (T )))] = E [Uk (Xπk
k (T )− κkXπm

m (T ))] ,

for m 6= k ∈ {1, 2}, is maximized. Here, κk ∈ [0, 1], k = 1, 2, measures the sensitivity of
insurer k to the performance of his competitor.

In other words,

Problem 3.1. Find a Nash equilibrium (π∗1, π
∗
2) ∈ Π1 × Π2 such thatE

[
U1

(
Xπ1

1 (T )− κ1X
π∗
2

2 (T )
)]
≤ E

[
U1

(
X
π∗
1

1 (T )− κ1X
π∗
2

2 (T )
)]
,

E
[
U2

(
Xπ2

2 (T )− κ2X
π∗
1

1 (T )
)]
≤ E

[
U2

(
X
π∗
2

2 (T )− κ2X
π∗
1

1 (T )
)]
.

(15)

4 Nash Equilibrium

To establish a Nash equilibrium for Problem 3.1, we study the problem in the form of a
dynamic programming principle. For notational convenience, we suppress the arguments of
the functions of α(t) and L(t). For example, we abbreviate mS , mS(α(t), L(t)). To this
end, observe first that, for m 6= k ∈ {1, 2},

dXπm
m (t) =

[
rXπm

m (t) + µm + θ̄mam(t) + bm(t)(mS − r)
]
dt

+am(t)σmdBm(t) + bm(t)σSdBS(t), (16)

hence, it readily follows that

d(Xπk
k − κkX

πm
m )(t) =

[
r(Xπk

k (t)− κkXπm
m (t)) + (µk − κkµm) + (θ̄kak(t)− κkθ̄mam(t))

+(bk(t)− κkbm(t))(mS − r)
]
dt+ ak(t)σkdBk(t)− κkam(t)σmdBm(t)

+(bk(t)− κkbm(t))σSdBS(t). (17)

Let

V k(t, x, l, i) , sup
πk∈Πk

E[U(Xπk
k (T )− κkXπ∗

m
m (T ))], for k 6= m ∈ {1, 2}, (18)

be the value function in R+ × R × R × E. Denote Xπk
k (t) , xk, ak , ak(t), and bk , bk(t),

for k = 1, 2.

4.1 Verification Theorem

Following the standard ideas in the dynamic programming principle (see Pham (2009)), the
verification-type theorem below presents the first important result of the present work.
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Theorem 4.1. (Verification Theorem)
Denote Γ , [0, T ∗)× R× R× E and Γ̄ , [0, T ∗]× R× R× E.

Let W k be a function in C1,2(Γ)∩C0(Γ̄) that satisfies a quadratic growth condition, i.e. there
exists C > 0 such that

|W k(t, x, l, j)| ≤ C(1 + |x|2 + |l|2), for all (t, x, l, j) ∈ Γ̄, k = 1, 2. (19)

Define, for x , xk − κkxm, for m 6= k ∈ {1, 2},

LπkW k(t, x, l, i) ,
[
rx+ (µk(i, l)− κkµm(i, l)) + (θ̄k(i, l)ak(t)− κkθ̄m(i, l)a∗m(t))

+(bk(t)− κkb∗m(t))(mS(i, l)− r)
]
W k
x (t, x, l, i)

+
1

2

[
(a2
k(t)σ

2
k(i, l)− 2ak(t)a

∗
m(t)κkσk(i, l)σm(i, l)ρ+ κ2

ka
∗2
m (t)σ2

m(i, l))

+(b2
k(t)− 2κkbk(t)b

∗
m(t) + κ2

kb
∗2
m (t))σ2

S(i, l)
]
W k
xx(t, x, l, i)

+µL(t, l)W k
l (t, x, l, i) +

1

2
σ2
L(t, l)W k

ll (t, x, l, i)

+
∑
j∈E

qijW
k(t, x, l, j). (20)

and define π∗k , (a∗k, b
∗
k), where

a∗k(t) = arg max
ak(t)∈Ak

{[
θ̄k(i, l)ak(t)

]
W k
x (t, x, l, i)

+
1

2

[
a2
k(t)σ

2
k(i, l)− 2κkak(t)a

∗
m(t)σk(i, l)σm(i, l)ρ

]
W k
xx(t, x, l, i)

}
(21)

b∗k(t) = arg max
bk(t)∈Bk

{[
bk(t)(mS(i, l)− r)

]
W k
x (t, x, l, i)

+
1

2
[b2
k(t)− 2κkbk(t)b

∗
m(t)

]
σ2
S(i, l)W k

xx(t, x, l, i)

}
, (22)

(i) Suppose that

−∂W
k(t, x, l, i)

∂t
− sup

πk∈Πk

{LπkW k(t, x, l, i)} ≥ 0, (23)

W k(T, x, l, i) ≥ Uk(x), for all (t, x, l, j) ∈ Γ,

then W k ≥ V k on Γ, where V k is defined in (18).

(ii) For π∗k ∈ Γ ∩ Πk, it follows that

−∂W
k(t, x, l, i)

∂t
− Lπ∗

kW k(t, x, l, i) = 0, (24)

and the SDE

dX̂
π∗
k

k (t) , dX
π∗
k

k (t)− κkdXπ∗
m

m (t), m 6= k ∈ {1, 2}, (25)
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admits a unique solution, denoted by X̂
π∗
k

k , given initial condition X̂
π∗
k

k (0) = x, α(0) = i,
and L(0) = l. Furthermore, the process {π∗k(t)}t≥0 lies in Πk. Then

W k = V k, on Γ, (26)

and π∗k is an optimal Markovian control.

Proof. (i) As W k ∈ C1,2(Γ), applying Itô’s Lemma to W k gives, for all (t, x, l, i) ∈ Γ,
πk ∈ Πk, s ≥ t, and any stopping time τ in [t,∞),

W k(s ∧ τ, X̂πk
k (s ∧ τ), L(s ∧ τ), α(s ∧ τ))

= W k(t, x, l, i) +

∫ s∧τ

t

{
∂W k

∂t
(u, X̂πk

k (u), L(u), α(u)) + LπkW k(u, X̂πk
k (u), L(u), α(u))

}
du,

+

∫ s∧τ

t

DxW
k(u, X̂πk

k (u), L(u), α(u))ak(u)σk(α(u), L(u))dBk(u)

−
∫ s∧τ

t

DxW
k(u, X̂πk

k (u), L(u), α(u))κkam(u)σm(α(u), L(u))dBm(u)

+

∫ s∧τ

t

DxW
k(u, X̂πk

k (u), L(u), α(u))(bk(u)− κkbm(u))σS(α(u), L(u))dBS(u)

+

∫ s∧τ

t

DlW
k(u, X̂πk

k (u), L(u), α(u))σL(u, L(u))dBL(u)

+
∑
j∈E

∫ s∧τ

t

[W k(u, X̂πk
k (u), L(u), j)−W k(u, X̂πk

k (u), L(u), α(u−))]dM(u), (27)

where Dy denotes the differential operator with respect to y.

Suppressing the arguments of the functions, choose

τ = τn , inf

{
s ≥ t;

∫ s

t

|DxW
k(akσk − κkamσm)|2du+

∫ s

t

|DxW
k(bk − κkbm)σS|2du

+

∫ s

t

|DlW
kσL|2du+

∑
j∈E

∫ s

t

|[W k(., ., ., j)−W k(., ., ., α(u−))]1{α(u−)=i}qij|2du ≥ n

}
.

Note that τn ↑ ∞ as n→∞, the stopped processes,

(∫ s∧τn
t

DxW
k(u, X̂πk

k (u), L(u), α(u))ak(u)σk(α(u), L(u))dBk(u)
)
{t≤s≤T}

,(∫ s∧τn
t

DxW
k(u, X̂πk

k (u), L(u), α(u))κkam(u)σm(α(u), L(u))dBm(u)
)
{t≤s≤T}

,(∫ s∧τn
t

DxW
k(u, X̂πk

k (u), L(u), α(u))(bk(u)− κkbm(u))σS(α(u), L(u))dBS(u)
)
{t≤s≤T}

,(∫ s∧τn
t

DlW
k(u, X̂πk

k (u), L(u), α(u))σL(u, L(u))dBL(u)
)
{t≤s≤T}

,(∑
j∈E
∫ s∧τn
t

W k(u, X̂πk
k (u), L(u), j)−W k(u, X̂πk

k (u), L(u), α(u−))]dM(u)
)
{t≤s≤T}

(28)

are true martingales for each n. Taking the expectation in (27), we obtain
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E
[
W k(s ∧ τn, X̂πk

k (s ∧ τn), L(s ∧ τn), α(s ∧ τn))
]

= W k(t, x, l, i) + E
[∫ s∧τn

t

∂W k

∂t
(u, X̂πk

k (u), L(u), α(u)) + LπkW k(u, X̂πk
k (u), L(u), α(u))du

]
As W k satisfies condition (23), we have

∂W k

∂t
(u, X̂πk

k (u), L(u), α(u)) + LπkW k(u, X̂πk
k (u), L(u), α(u)) ≤ 0, πk ∈ Πk,

and so

E
[
W k(s ∧ τn, X̂πk

k (s ∧ τn), L(s ∧ τn), α(s ∧ τn))
]
≤ W k(t, x, l, i), ∀πk ∈ Πk.(29)

As W k satisfies quadratic growth condition, we have, for all s ∈ [t, T ],

sup
j∈E
|W k(s ∧ τn, X̂πk

k (s ∧ τn), L(s ∧ τn), j)| ≤ C

(
1 + sup

s∈[t,T ]

|X̂πk
k (s)|2 + sup

s∈[t,T ]

|L(s)|2
)
.

(30)

Applying the dominated convergence theorem and sending n to infinity in (29), we
have, for all πk ∈ Πk,

E
[
W k(s, X̂πk

k (s), L(s), α(s))
]
≤ W k(t, x, l, i). (31)

As W k is continuous with respect to t and X̂πk
k (t), by sending s to T , we can again

apply the dominated convergence theorem to obtain

E
[
Uk(X̂

πk
k (T ))

]
≤ W k(t, x, l, i), for all πk ∈ Πk. (32)

Because the choice of πk ∈ Πk is arbitrary, we can deduce that V k ≤ W k, for all
(t, x, l, i) ∈ Γ and attain at π∗k.

(ii) Applying Itô’s Lemma to W k(u, X̂πk
k (u), L(u), α(u)) between t ∈ [0, T ) and s ∈ [t, T ),

we have

E
[
W k(s, X̂πk

k (s), L(s), α(s))
]

= W k(t, x, l, i) + E
[∫ s

t

∂W k

∂t
(u, X̂πk

k (u), L(u), α(u)) + LπkW k(u, X̂πk
k (u), L(u), α(u))du

]
.

By the definition of π∗k ∈ Πk, we have

−∂W
k(t, x, l, i)

∂t
− Lπ∗

kW k(t, x, l, i) = 0, (33)

and so

E
[
W k(s, X̂

π∗
k

k (s), L(s), α(s))
]

= W k(t, x, l, i). (34)

Sending s to T and using (30) and the dominated convergence theorem, we have

W k(t, x, l, i) = E
[
Uk(X̂

π∗
k

k (T ))
]
. (35)

This implies that W k(t, x, l, i) ≤ V k(t, x, l, i) and, together with the result in (i), it
follows that W k = V k and π∗k is an optimal Markovian control.
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4.2 The proportional reinsurance and investment strategies at equi-
librium

Theorem 4.1 solves the optimal strategy of insurer k in terms of the strategy of insurer m, for
k 6= m ∈ {1, 2}. We now complete the formal analysis by providing the sufficient condition
that ensures the existence of the equilibrium strategy in Problem 3.1.

Under the assumptions of Theorem 4.1, it readily follows that to solve

V k(t, x, l, i) = sup
πk∈Πk

E[U(Xπk
1 (T )− κkXπ∗

m
m (T ))], for k 6= m ∈ {1, 2},

it suffices to solve W k, for k = 1, 2, which satisfies the Hamilton-Jacobi-Bellman (HJB)
equation (24).

When W k
xx(t, x, l, j) = 0, for some (t, x, l, j) ∈ Γ, where Γ is defined in Theorem 4.1, the

optimal strategy (a∗k, b
∗
k) of insurer k ∈ {1, 2} becomes a corner solution with a value de-

pending on the sign of W k
x (t, x, l, j). As the subsequent analysis of this case is relatively

straightforward and less interesting, we hereafter consider the case when W k
xx(t, x, l, j) 6= 0.

Upon suppressing the arguments of the functions, Theorem 4.1 states that the optimal
strategy (a∗k, b

∗
k) of insurer k ∈ {1, 2}, given the strategy of his competitor m, (a∗m, b

∗
m) for

k 6= m ∈ {1, 2}, can be solved as follows:{
a∗k = arg maxak∈Ak

{
[θ̄kak]W

k
x + 1

2
[a2
kσ

2
k − 2κkaka

∗
mσkσmρ]W k

xx

}
,

b∗k = arg maxbk∈Bk
{

[bk(mS − r)]W k
x + 1

2
[b2
k − 2κkbkb

∗
m]σ2

SW
k
xx

}
.

Assuming that W k
xx(t, x, l, j) 6= 0, for (t, x, l, j) ∈ Γ, the first order conditions givea∗k =

((
κkρ

σm
σk

)
a∗m −

θ̄kW
k
x

σ2
kW

k
xx
∧ 1
)+

.

b∗k = κkb
∗
m −

(mS−r)Wk
x

σ2
SW

k
xx

.
(36)

With a∗k, b
∗
k in the form of (36), the corresponding HJB equation for insurer k becomes, for

k 6= m ∈ {1, 2},

0 = W k
t +

[
rx+ (µk − κkµm)− κkθ̄ma∗m − κkb∗m(mS − r)

]
W k
x

+
1

2

[
κ2
ka
∗2
mσ

2
m + κ2

kb
∗2
mσ

2
S

]
W k
xx + θ̄kW

k
x

[(
κkρ

σm
σk

)
a∗m −

θ̄kW
k
x

σ2
kW

k
xx

]
+

1

2

[(
κkρ

σm
σk

)
a∗m −

θ̄kW
k
x

σ2
kW

k
xx

]2

σ2
kW

k
xx − κka∗mσkσmρW k

xx

[(
κkρ

σm
σk

)
a∗m −

θ̄kW
k
x

σ2
kW

k
xx

]
+(mS − r)W k

x

[
κkb
∗
m −

(mS − r)W k
x

σ2
SW

k
xx

]
+

1

2
σ2
SW

k
xx

[
κkb
∗
m −

(mS − r)W k
x

σ2
SW

k
xx

]2

−κkb∗mσ2
SW

k
xx

[
κkb
∗
m −

(mS − r)W k
x

σ2
SW

k
xx

]
+ µL(t, l)W k

l +
1

2
σ2
L(t, l)W k

ll +
∑
j∈E

qijW
k(t, x, l, j)

= W k
t +

{
rx+ (µk − κkµm)− κk

[
θ̄m − ρ

σm
σk
θ̄k

]
a∗m

}
W k
x +

1

2

{
[κ2
kσ

2
m − κ2

kρ
2σ2

m]a∗2m
}
W k
xx

−1

2

{
θ̄2
k

σ2
k

+
(mS − r)2

σ2
S

}
(W k

x )2

W k
xx

+ µL(t, l)W k
l +

1

2
σ2
L(t, l)W k

ll +
∑
j∈E

qijW
k(t, x, l, j), (37)
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with the terminal conditions

W k(T, x, l, i) = Uk(x), for k = 1, 2. (38)

We now have the sufficient condition for the existence of the Nash equilibrium in Problem
3.1.

Theorem 4.2. Assume that κ1κ2 < 1. The Nash equilibrium strategy for Problem 3.1 is the
solution of the following coupled system of non-linear equations,

a∗1(t) =
((
κ1ρ

σ2(i,l)
σ1(i,l)

)
a∗2(t)− θ̄1(i,l)W 1

x (t,x,l,i)

σ2
1(i,l)W 1

xx(t,x,l,i)
∧ 1
)+

,

b∗1(t) = κ1b
∗
2(t)− (mS(i,l)−r)W 1

x (t,x,l,i)

σ2
S(i,l)W 1

xx(t,x,l,i)
,

a∗2(t) =
((
κ2ρ

σ1(i,l)
σ2(i,l)

)
a∗1(t)− θ̄2(i,l)W 2

x (t,x,l,i)

σ2
2(i,l)W 2

xx(t,x,l,i)
∧ 1
)+

,

b∗2(t) = κ2b
∗
1(t)− (mS(i,l)−r)W 2

x (t,x,l,i)

σ2
S(i,l)W 2

xx(t,x,l,i)
,

(39)

where W 1 and W 2 are the solutions of the following system of coupled partial differential
equations (PDEs)

0 = W 1
t (t, x, l, i) +

{
rx+ (µ1(i, l)− κ1µ2(i, l))− κ1[θ̄2(i, l)− ρσ2(i,l)

σ1(i,l)
θ̄1(i, l)]a∗2(t)

}
W 1
x (t, x, l, i)

+1
2
{[κ2

1σ
2
2(i, l)− κ2

1ρ
2σ2

2(i, l)]a∗22 (t)}W 1
xx(t, x, l, i)

−1
2

{
θ̄21(i,l)

σ2
1(i,l)

+ (mS(i,l)−r)2
σ2
S(i,l)

}
(W 1

x (t,x,l,i))2

W 1
xx(t,x,l,i)

+ µL(t, l)W 1
l (t, x, l, i) + 1

2
σ2
L(t, l)W 1

ll(t, x, l, i)

+
∑

j∈E qijW
1(t, x, l, j),

0 = W 2
t (t, x, l, i) +

{
rx+ (µ2(i, l)− κ2µ1(i, l))− κ2[θ̄1(i, l)− ρσ1(i,l)

σ2(i,l)
θ̄2(i, l)]a∗1(t)

}
W 2
x (t, x, l, i)

+1
2
{[κ2

2σ
2
1(i, l)− κ2

2ρ
2σ2

1(i, l)]a∗21 (t)}W 2
xx(t, x, l, i)

−1
2

{
θ̄22(i,l)

σ2
2(i,l)

+ (mS(i,l)−r)2
σ2
S(i,l)

}
(W 2

x (t,x,l,i))2

W 2
xx(t,x,l,i)

+ µL(t, l)W 2
l (t, x, l, i) + 1

2
σ2
L(t, l)W 2

ll(t, x, l, i)

+
∑

j∈E qijW
2(t, x, l, j),

(40)

with the terminal condition {
W 1(T, x, l, i) = U1(x)

W 2(T, x, l, i) = U2(x).
(41)

Remark 4.3. In general, the existence and uniqueness of the solution of the system of coupled
PDEs in Theorem 4.2 is very difficult to obtain for any T > 0. (See, for example, Bensoussan
and Frehse (2000) on the connection between the regularities of PDEs and the existence of the
Nash equilibrium in the contexts of non-zero sum stochastic differential games.) Nonetheless,
for a sufficiently small T , the (local) existence and uniqueness of the associated coupled PDEs
can easily be ascertained by invoking Cauchy−Kowalevski Theorem.

5 Example: Nash equilibrium of CARA insurers

In this section, we show that for the case in which both insurance companies are constant
absolute risk aversion (CARA) agents, i.e. each agent has an exponential utility function, we
can obtain the explicit value function and the equilibrium strategy for each insurer.
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To this end, we simplify the subsequent analysis by suppressing the role of the market index
process {L(t)}t≥0 in this section. This allows us to focus exclusively on the effect of the change
in economic states, i.e. {α(t)}t≥0, on the equilibrium strategies and the value functions of
the insurance companies.

Denote by ei = (0, · · · , 0, 1, 0, · · · , 0)> ∈ Rd the unit vector with 1 in the i-th component
and 1d = (1, · · · , 1)> ∈ Rd.

The following theorem solves Theorem 4.2 explicitly for the non-zero sum game with two
competing CARA insurers.

Theorem 5.1. Assume κ1κ2 < 1, and that each insurer has an exponential utility function,
i.e.

Uk(x) , − 1

ηk
exp(−ηkx), for ηk > 0, k = 1, 2.

Then the HJB equation for insurer k in (37) can be solved explicitly with the value function
taking the form

W k(t, x, i) = − 1

ηk
exp

(
−ηker(T−t)x

)
fk(t, i), x , xk − κkxm, k 6= m ∈ {1, 2}, (42)

where

fk(t, i) = e>i exp

(∫ T

t

({gk(s, i)}diag + Q)ds

)
1d, (43)

with {gk(t, i)}diag which is a d×d diagonal matrix with diagonal elements gk(t, i), i ∈ {1, ..., d},

gk(t, i) , ηke
r(T−t)

[
(µk(i)− κkµm(i)) + (θ̄k(i)a

∗
k(t)− κkθ̄m(i)a∗m(t))

+
(
b∗k(t)− κkb∗m(t)

)
(mS(i)− r)

]
−1

2
η2
ke

2r(T−t)
[(
a∗2k (t)σ2

k(i)− 2κka
∗
k(t)a

∗
m(t)σk(i)σm(i)ρ+ κ2

ka
∗2
m (t)σ2

m(i)
)

+σ2
S(i)

(
b∗2k (t)− 2b∗k(t)b

∗
m(t)κk + κ2

kb
∗2
m (i)

)]
, m 6= k ∈ {1, 2}. (44)

Furthermore, the equilibrium strategy (a∗k(t), b
∗
k(t)) ∈ Πk, k = 1, 2, is given as follows. Defineâ1(t) , e−r(T−t)

1−κ1κ2ρ2

(
ρκ1θ̄2(i)

σ1(i)σ2(i)η2
+ θ̄1(i)

σ2
1(i)η1

)
,

â2(t) , e−r(T−t)

1−κ1κ2ρ2

(
ρκ2θ̄1(i)

σ1(i)σ2(i)η1
+ θ̄2(i)

σ2
2(i)η2

)
.

(45)

For a∗k(t), k = 1, 2, we have the following cases:

1. If â1(t) ≥ 0 and â2(t) ≥ 0, then

(a) If â1(t) ≤ 1 and â2(t) ≤ 1, then (a∗1(t), a∗2(t)) = (â1(t), â2(t)).

(b) If â1(t) ≤ 1 and â2(t) > 1, then (a∗1(t), a∗2(t)) =
(
κ1ρ

σ2(i)
σ1(i)

+ e−r(T−t)θ̄1(i)

σ2
1(i)η1

, 1
)

.
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(c) If â1(t) > 1 and â2(t) ≤ 1, then (a∗1(t), a∗2(t)) =
(

1, κ2ρ
σ1(i)
σ2(i)

+ e−r(T−t)θ̄2(i)

σ2
2(i)η2

)
.

(d) If â1(t) > 1 and â2(t) > 1, then (a∗1(t), a∗2(t)) = (1, 1).

2. Otherwise, the following statements are true.
Define

γ ,
θ̄1(i)σ2(i)η2

θ̄2(i)σ1(i)η1

, (46)

(a) If κ2γ ≥ −1
ρ

and 1
κ1
γ ≥ −ρ, then

(a∗1(t), a∗2(t)) =

((
e−r(T−t)θ̄1(i)

σ2
1(i)η1

)
∧ 1,

(
κ2ρ

σ1(i)

σ2(i)
+

e−r(T−t)θ̄2(i)

σ2
2(i)η2

)+
)
.

(b) If κ2γ < −1
ρ

and 1
κ1
γ < −ρ, then

(a∗1(t), a∗2(t)) =

((
κ1ρ

σ2(i)

σ1(i)
+

e−r(T−t)θ̄1(i)

σ2
1(i)η1

)+

,

(
e−r(T−t)θ̄2(i)

σ2
2(i)η2

)
∧ 1

)
.

For b∗k(t), k = 1, 2, we haveb
∗
1(t) = e−r(T−t)(mS(i)−r)

(1−κ1κ2)σ2
S(i)

(
1
η1

+ κ1
1
η2

)
,

b∗2(t) = e−r(T−t)(mS(i)−r)
(1−κ1κ2)σ2

S(i)

(
1
η2

+ κ2
1
η1

)
.

(47)

Remark 5.2. Theorem 5.1 can also be enriched to include the market index process {L(t)}t≥0,
albeit the equilibrium value functions of the insurers would then be in terms of both αt and
Lt. One key observation is that the equilibrium strategies of the insurers remain unchanged
in the presence of the market index process {L(t)}t≥0. This claim can easily be verified by
recalling the assumption that the Brownian motion {BL(t)}t≥0 in the market index process
{L(t)}t≥0 is independent of {Bk(t)}t≥0, k = 1, 2, and {BS(t)}t≥0, the Brownian motions of
the insurers’ surplus processes.

Remark 5.3. As discussed in the introduction, the problem of minimizing the probability of
ruin has a long history in the insurance literature. Ferguson (1965) conjectured the equiva-
lence of maximizing the expected exponential utility on the terminal wealth and minimizing
the probability of ruin, which was confirmed by Browne (1995) in the single-risky-asset case.
Together with its analytical tractability, this confirmation has attracted many researchers to
investigate the optimal proportional reinsurance/investment/consumption strategy within the
exponential utility framework under different asset and claim dynamics. In this respect, it
would be interesting to revisit this conjecture in the context of competition considered in this
paper.

Proof. (Proof of Theorem 5.1)
We begin with an Ansatz, i.e.

W k(t, x, i) = − 1

ηk
exp

(
−ηker(T−t)x

)
fk(t, i), for k = 1, 2, (48)
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where fk : [0, T ]× E → R+ is to be determined.

Let hk(t, x) = 1
ηk

exp
(
−ηker(T−t)x

)
, where x = xk − κkxm, for k 6= m ∈ {1, 2}, then we have

W k
t (t, x, i) = −ηkrer(T−t)xhk(t, x)fk(t, i)− hk(t, x)fkt (t, i), (49)

W k
x (t, x, i) = ηke

r(T−t)hk(t, x)fk(t, i), (50)

W k
xx(t, x, i) = −η2

ke
2r(T−t)hk(t, x)fk(t, i). (51)

The corresponding HJB equation in (37) becomes

0 = −ηkrer(T−t)
(
xk − κkxm

)
hk(t, x)fk(t, i)− fkt (t, i)hk(t, x)

+
[
(µk + rxk)− κk(µm(i) + rxm)− κkθ̄m(i)a∗m(t)− κkb∗m(mS(i)− r)

]
ηke

r(T−t)hk(t, x)fk(t, i)

−1

2

[
κ2
ka
∗2
m (t)σ2

m(i) + κ2
kb
∗2
m (t)σ2

S(i)
]
η2
ke

2r(T−t)hk(t, x)fk(t, i)

+ inf
ak∈Ak

{
θ̄k(i)ak(t)ηke

r(T−t)hk(t, x)fk(t, i)

−1

2

[
a2
k(t)σ

2
k(i)− 2ak(t)a

∗
m(t)κkσk(i)σm(i)ρ

]
η2
ke

2r(T−t)hk(t, x)fk(t, j)

}

+ inf
bk∈Bk

{
bk(t)(mS(i)− r)ηker(T−t)hk(t, x)fk(t, i)

−1

2

[
b2
k(t)− 2bk(t)b

∗
m(t)κk

]
σ2
S(i)η2

ke
2r(T−t)hk(t, x)fk(t, i)

}
−
∑
j∈E

qijh
k(t, x)fk(t, i), (52)

and after rearranging the terms, we have

fkt (t, i) =

{
ηke

r(T−t)
[
(µk(i)− κ1µm(i))− κ1θ̄m(i)a∗m(t)− κ1b

∗
m(t)(mS(i)− r)

]
−1

2
η2
ke

2r(T−t)κ2
k

[
a∗2m (t)σ2

m(i) + b∗2m (t)σ2
S(i)

]
+ infak∈Ak

[
η1er(T−t)θ̄k(i)ak(t)− 1

2
η2
ke

2r(T−t)
(
a2
k(t)σ

2
k(i)− 2ak(t)a

∗
m(t)κkσk(i)σm(i)ρ

)]
+ infbk∈Bk

[
ηke

r(T−t)bk(t)(mS(i)− r)− 1
2
η2
kσ

2
S(i)

(
b2
k(t)− 2bk(t)b

∗
m(t)κ1

)]}
fk(t, i)

−
∑

j∈E qijf
k(t, j)

fk(T, i) = 1, for all i ∈ {1, ..., d}.

With (50) and (51) in explicit forms, we now derive the corresponding a∗k(t) and b∗k(t), for
k = 1, 2.

16



Observe that the equations

a∗1(t) = arg min
a1∈A1

{
θ̄1(i)a1(t)]η1er(T−t)h1(t, x)f 1(t, i)

−1

2

[
a2

1σ
2
1(i)− 2a1(t)a∗2(t)κ1σ1(i)σ2(i)ρ

]
η2

1e2r(T−t)h1(t, x)f 1(t, i)

}
,

a∗2(t) = arg min
a2∈A2

{
[θ̄2(i)a2(t)]η2er(T−t)h2(t, x)f 2(t, i)

−1

2

[
a2

2(t)σ2
2(i)− 2a2(t)a∗1(t)κ2σ1(i)σ2(i)ρ

]
η2

2e2r(T−t)h2(t, x)f 2(t, i)

}
,

are, respectively, equivalent toa
∗
1(t) =

(
κ1ρ

σ2(i)
σ1(i)

)
a∗2(t) + e−r(T−t)θ̄1(i)

η1σ2
1(i)

,

a∗2(t) =
(
κ2ρ

σ1(i)
σ2(i)

)
a∗1(t) + e−r(T−t)θ̄2(i)

η2σ2
2(i)

.
(53)

For notational convenience, we suppress the argument of the functions.

First, let us consider the case when ρ ∈ [0, 1]. As the case when ρ = 0 is straightforward, we
focus on the case when ρ ∈ (0, 1].

Define lines l1 and l2 as follows

l1 : a1 =

(
κ1ρ

σ2

σ1

)
a2 +

e−r(T−t)θ̄1

η1σ2
1

, (54)

l2 : a2 =

(
κ2ρ

σ1

σ2

)
a1 +

e−r(T−t)θ̄2

η2σ2
2

. (55)

As κ1, κ2, σ1, σ2, ρ > 0, the lines l1 and l2 have positive slopes and intersect with each other
at (â1, â2), defined in (45), which lies in the first quadrant of the (a1, a2)-plane. From this
observation, it becomes clear that if âk ≤ 1, k = 1, 2, a∗1 = â1 and a∗2 = â2, thus proving Case
1(a). Furthermore, for âk > 1, k = 1, 2, we have a∗1 = 1 and a∗2 = 1, thus proving Case 1(d).

Consider Case 1(c), when â1 ≤ 1 and â2 > 1. The graph of

a2 =

(
κ2ρ

σ1

σ2

a1 +
e−r(T−t)θ̄2

η2σ2
2

)
∧ 1 (56)

intersects l1 at ((
κ1ρ

σ2

σ1

)
+

e−r(T−t)θ̄1

η1σ2
1

, 1

)
.

Case 1(b), i.e. when â1 > 1 and â2 ≤ 1, can be proven analogously.

Now consider the case when ρ ∈ [−1, 0).
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Let h11 and h21 denote the a1-intercepts of lines l1 and l2, respectively. Similarly, let h12 and
h22 denote the a2-intercepts of lines l1 and l2, respectively. Then, it follows that

h11 ,
e−r(T−t)θ̄1

η1σ2
1

, h21 , −
e−r(T−t)θ̄2

η2κ2ρσ1σ2

,

h12 , − e−r(T−t)θ̄1

η1κ1ρσ1σ2

, h22 ,
e−r(T−t)θ̄2

η2σ2
2

.

This readily implies that when ρ ∈ [−1, 0), h11, h21, h12, h22 ≥ 0.

Let γ be defined in (46). We then have four cases:

(i) h11 ≥ h21 and h12 ≥ h22.
In this case, we have κ2γ ≥ −1

ρ
and 1

κ1
γ ≥ −ρ. If h11 ≤ 1, the graph of

a2 =

(
κ2ρ

σ1

σ2

a1 +
e−r(T−t)θ̄2

η2σ2
2

)
∨ 0

will intersect l1 at (h11, 0). However, if h11 > 1, then the graph of

a1 =

(
κ1ρ

σ2

σ1

a2 +
e−r(T−t)θ̄1

η1σ2
1

)
∧ 1

will intersect l2 at (
1,

(
κ2ρ

σ1

σ2

+
e−r(T−t)θ̄2

η2σ2
2

)+
)
.

(ii) h11 ≥ h21 and h12 < h22

In this case, as κ1κ2 < 1 and γ ≥ 0, we have

−ρ ≥ 1

κ1

γ > κ2γ > −
1

ρ
,

which is a contradiction because ρ ∈ [−1, 0).

(iii) h11 < h21 and h12 ≥ h22

In this case, h11 < h21 is equivalent to â2 > 0, while h12 ≥ h22 is equivalent to â1 > 0.
We then proceed as in the case when ρ ∈ [0, 1] to compute (a∗1, a

∗
2).

(iv) h11 < h21 and h12 < h22

In this case, we have κ2γ < −1
ρ

and 1
κ1
γ < −ρ. We then proceed as in Case (i) to find

(a∗1, a
∗
2).
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To find b∗k, k = 1, 2, solving

b∗1 = arg minb1∈B1

{
[b1(mS − r)]η1er(T−t)h1(t, x)f 1(t, i)

−1
2
[b2

1 − 2κ1b1b
∗
2]σ2

Sη
2
1e2r(T−t)h1(t, x)f 1(t, i)

}
,

b∗2 = arg minb2∈B2

{
[b2(mS − r)]η2er(T−t)h2(t, x)f 2(t, i)

−1
2
[b2

2 − 2κ2b2b
∗
1]σ2

Sη
2
2e2r(T−t)h2(t, x)f 2(t, i)

}
,

simultaneously gives

b∗1 =
e−r(T−t)(mS − r)

(1− κ1κ2)σ2
S

(
1

η1

+ κ1
1

η2

)
, (57)

and

b∗2 =
e−r(T−t)(mS − r)

(1− κ1κ2)σ2
S

(
1

η2

+ κ2
1

η1

)
. (58)

It is now clear that the equilibrium strategy ((a∗1, b
∗
1), (a∗2, b

∗
2)) ∈ Π1 × Π2 depends only on

the Markov chain {α(t)}t≥0. The resulting HJB equation for insurer k becomes the following
matrix ordinary differential equation (ODE),

fkt (t, i) =

{
ηke

r(T−t)
[
(µk(i)− κkµm(i)) + (θ̄k(i)a

∗
k(t)− κkθ̄m(i)a∗m(t))

+
(
b∗k(t)− κkb∗m(t)

)
(mS(i)− r)

]
−1

2
η2
ke

2r(T−t)
[(
a∗2k (t)σ2

k(i)− 2κka
∗
k(t)a

∗
m(t)σk(i)σm(i)ρ+ κ2

ka
∗2
m (t)σ2

m(i)
)

+σ2
S(i)

(
b∗2k (t)− 2b∗k(t)b

∗
m(t)κk + κ2

kb
∗2
m (t)

)]}
fk(t, i)

−
∑

j∈E qijf
k(t, j)

fk(T, i) = 1, for all i ∈ {1, ..., d}.

(59)

Solving the system of ODEs in (59), we have

fk(t, i) = e>i exp

(∫ T

t

({gk(s, i)}diag + Q)ds

)
1d, (60)

where gk(t, i) takes the form in (44).

Theorem 5.1 explicitly provides the strategy and value function of each insurer at equilibrium
under the case of the exponential utility. Observe that the equilibrium reinsurance strategy
(a∗1(t), a∗2(t)) is presented in a case-by-case manner, to ensure that the equilibrium strategy on
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the reinsurance protection is indeed a proportional reinsurance protection, i.e. (a∗1(t), a∗2(t)) ∈
[0, 1]× [0, 1].

As ηk > 0, for k = 1, 2, and κ1κ2 < 1, the equilibrium investment strategy is positive if
the rate of return of the risky asset S(t) is greater than the risk-free interest rate r, i.e.
b∗k(t) ≥ 0 if mS ≥ r. In fact, the equilibrium investment strategy (b∗1(t), b∗2(t)) at time t in
(47) indicates that it is directly proportional to the Sharpe ratio of the risky asset, which is

denoted hereafter as S(t) , mS(α(t))−r
σS(α(t))

, at time t. That is,

b∗k(t) =
e−r(T−t)

(1− κ1κ2)σS(i)

(
1

ηk
+ κk

1

ηm

)
S(t), for k 6= m ∈ {1, 2}.

This implies that as long as the Sharpe ratio S(t) is positive, the insurer will hold the risky
asset S; the opposite would occur if the risky asset offered a smaller return than that of the
risk-free bond. More importantly, the notion of competition is reflected by the sensitivity
parameter κk. As increasing κk implies that insurer k has become more concerned with the
performance of his competitor m 6= k, a rise in κk will result in an increase in the holding of
the risky asset S, ceteris paribus. We provide more detailed comparative-static analyses on
the equilibrium strategy (a∗k(t), b

∗
k(t)) in Section 5.1.

In the absence of competition, i.e. κ1 = κ2 = 0, the equilibrium strategy (a∗k(t), b
∗
k(t)),

for k = 1, 2, of insurer k would simply be the optimal proportional reinsurance and invest-
ment strategy arising from the classical (single-agent) utility maximization problem; see, for
example, Liu and Ma (2009).

Three important features of the equilibrium strategy (a∗k(t), b
∗
k(t)), for k = 1, 2, are inherited

from the single-agent, utility-maximization framework. The first feature is that although the
equilibrium strategy (a∗k(t), b

∗
k(t)), for k = 1, 2, is a function of the current state of the Markov

chain {α(t)}t≥0, it does not depend on its intensity (qij)i,j∈E = Q. However, the intensity of
the regime-switch Q is reflected in the equilibrium value function W k, for k = 1, 2.

Second, the equilibrium strategy (a∗k(t), b
∗
k(t)), for k = 1, 2, of insurer k is independent of his

current level of wealth. It is intrinsic to the nature of an exponential utility agent that his
optimal decision is independent of the current level of his wealth. The direct consequence
is that the corresponding coupled PDEs in (40) become a system of matrix ODEs, in which
analytical solutions of the insurance companies’ value functions exist.

Finally, the equilibrium proportional reinsurance strategy a∗k and the equilibrium investment
strategy b∗k are separated in the sense that given the risk-aversion parameter ηk, a change in
the purchase of the proportional reinsurance will not affect the investment in the risky asset
S, and vice versa. This means that the CARA-insurer k can set up two separate funds based
on his risk-aversion level: one for the purchase of reinsurance protection and the other for
the investment in the risky asset. For related works on the three aforementioned features
in a single-agent optimal portfolio selection problem with regime-switching under a class of
utility functions, see, for example, Bäuerle and Rieder (2004), Sotomayor and Cadenillas
(2009), Çanakoğlu and Özekici (2010), Elliott and Siu (2011b), Busch et al. (2013), and the
references therein.
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5.1 Numerical illustrations

To better understand the effects of the model parameters on the equilibrium strategy a∗k(t)
and b∗k(t), for k = 1, 2, we now turn to study some numerical examples. Unless otherwise
stated, we assume the model parameters under the current economic regime (t = 0) are as
shown in Table 1.

Base parameters

σS r mS T

0.4 0.05 0.2 4

Insurer 1

θ1 λ1 E[ξ1] E[ξ2
1 ] η1 κ1

7 0.8 2.5 80 0.1 0.7

Insurer 2

θ2 λ2 E[ξ2] E[ξ2
2 ] η2 κ2

4 0.5 2 50 0.3 0.5

Table 1: Model parameters

Figure 1 provides a graphical illustration of Theorem 5.1 of a∗k(0), for k = 1, 2. The top row of
Figure 1 shows the effect of the risk-aversion parameter of insurer k (ηk) on his proportional
reinsurance strategy a∗k(0) at equilibrium when the insurance companies are positively corre-
lated (ρ = 0.5), while the bottom row displays the case of a negative correlation (ρ = −0.5).
Observe first that a∗k(0) is a decreasing function of the risk-aversion parameter ηk. This
is in agreement with the optimal reinsurance strategy without competition in the existing
literature. Because a∗k(0) denotes the proportion that insurer k retains upon purchasing a
proportional reinsurance protection, the higher the risk-aversion parameter ηk, the greater
the risk that insurer k transfers to the reinsurance company, i.e. higher (1− a∗k(0))%, which
in turn implies lower a∗k(0)%. Additionally, the conditions on a∗k(0) in Theorem 5.1 ensure
that a∗k(0) ∈ [0, 1], which is particularly apparent in the second column of Figure 1, where
the effect of η2 on a∗2(0) is displayed for the case when ρ = 0.5 and ρ = −0.5.

To illustrate the effect of competition, Figure 1 also displays the effect of insurer k’s risk-
aversion parameter ηk on his proportional reinsurance strategy a∗k(0), for k = 1, 2, when
κk = 0, κk = 0.3, and κk = 0.7. As parameter κk captures the degree of dependence on the
terminal wealth of insurer k’s competitor (see Problem 3.1), a higher κk results in insurer
k becoming more concerned with his performance compared with that of his competitor in
the terminal period T . While purchasing proportional reinsurance can reduce the risk borne
by insurer k, it is nonetheless costly because insurer k needs to pay (1 − a∗k(0))θk to the
reinsurance company for the reinsurance protection (see (6)), which decreases his terminal
wealth value relative to that of his competitor, Xk(T )−κkXm(T ), for k 6= m ∈ {1, 2}. In the
case when the correlation between the insurance companies is positive, i.e. ρ = 0.5, insurer
k tends to decrease his expenditure on the reinsurance company, i.e. smaller (1 − a∗k(0))θk,
which increases the dependence parameter κk, which in turn implies increasing a∗k(0). The top
row of Figure 1 summarizes this observation. The opposite results occur when the insurance
companies are negatively correlated, i.e. ρ = −0.5. In this case, increasing the dependence
parameter κk would result in decreasing a∗k(0), as shown in the bottom row of Figure 1.
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Figure 1: Effect of ηk on a∗k(0), for k = 1, 2.

Note: The figures on the top row show the effect of ηk on a∗k(0), for k = 1, 2, when ρ = 0.5, whereas the
figures on the bottom row show the effect of ηk on a∗k(0), for k = 1, 2, when ρ = −0.5.

Figure 2 shows the effects of the rate of return (mS) and the volatility (σS) of the risky asset
S on the investment strategy of insurer k at equilibrium. The top row of Figure 2 captures
the linear relationship between b∗k(0) and mS, which is in agreement with the representation
of b∗k(0) in (47). Increasing the rate of return of the risky asset S increases the amount
invested in S for a given value of σS. The bottom row of Figure 2 also shows that σS and
b∗k(0) are inversely proportional to each other. This makes sense because high volatility in
the risky asset S, makes it more likely that the risky asset will drop in value, thereby eroding
the terminal value of each insurer. Collectively, Figure 2 serves as a visual confirmation that
holding the risky asset S increases as the Sharpe ratio S(0) increases.

Similar to the case of the proportional reinsurance strategy at equilibrium, the concept of
competition can also be found in Figure 2. In particular, increasing the dependence parameter
κk increases the amount invested in the risky asset S, provided mS ≥ r. This is in line with
our discussion on the the proportional reinsurance strategy a∗k(0) at equilibrium, increasing
the amount invested in risky asset S increases the chance of generating greater terminal
wealth against that of his competitor at the terminal time T , if mS ≥ r, but off-set by a high
value of σS.
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Figure 2: Effects of mS and σS on b∗k(0), for k = 1, 2.

Note: The figures on the top row show the effect of mS on b∗k(0), for k = 1, 2, when σS = 0.4, whereas the
figures on the bottom row show the effect of σS on b∗k(0), for k = 1, 2, when mS = 0.2.

6 Conclusion

In this paper, we consider the relative performance of two insurance companies in the form of
a non-zero sum stochastic differential game framework. More specifically, we study the prob-
lem in which each insurer has the option of purchasing reinsurance protection and investing
in the stock market. Similar to Espinosa and Touzi (2013), we incorporate the concept of
competition into the problem by assuming that each insurer will make an optimal propor-
tional reinsurance and investment decision, such that his expected utility of the difference
between his terminal wealth and that of his competitor is maximized. To capture the effect
of economic cycles on the optimal decisions of the insurance companies, we assume that the
coefficients of each insurer’s surplus process are modulated by a continuous-time Markov
chain and an independent market index processes. Sufficient conditions for the proportional
reinsurance and investment strategies to exist at equilibrium are provided. In the case of
the exponential utility function, we obtain the closed-form solutions to the proportional rein-
surance and investment strategy, together with the corresponding value function, for each
insurer at equilibrium.

The present paper only covers the beginning of the optimal decision in the presence of com-
petition. The non-zero sum game problem considered in this paper can be extended in many
directions. For example, it would be interesting to study the problem under the possibility
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of investing multiple assets, which is more in line with reality. However, as shown in the case
of multi-asset strategic investment with no competition, the condition of optimality is by no
means trivial, as we find ourselves working under the multi-dimensional optimization prob-
lem. Explicit solutions to such optimization problems can be of great importance in showing
the existence of a Nash equilibrium. In addition, instead of considering one competitor, we
could embrace the ideas of Espinosa and Touzi (2013) to study the difference between one in-
surance company’s wealth and the average of other insurance companies. The benefit of this
approach is that it allows us to endogenize the concept of a benchmark process that gauges
the performance of an insurance company against its peers. Finally, as presented in Theorem
4.2, the optimal terminal value functions and equilibrium strategies for the case of the gen-
eral utility functions are the solutions to the coupled PDEs. When closed-form solutions are
not available, numerical approximation becomes inevitable. The issues of convergence and
stability for any proposed algorithm would be of great interest.
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