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Abstract: Exposure misclassification in case–control studies leads to bias in odds ratio estimates. There has
been considerable interest recently to account for misclassification in estimation so as to adjust for bias as
well as more accurately quantify uncertainty. These methods require users to elicit suitable values or prior
distributions for the misclassification probabilities. In the event where exposure misclassification is highly
uncertain, these methods are of limited use, because the resulting posterior uncertainty intervals tend to be
too wide to be informative. Posterior inference also becomes very dependent on the subjectively elicited
prior distribution. In this paper, we propose an alternative “robust Bayesian” approach, where instead of
eliciting prior distributions for the misclassification probabilities, a feasible region is given. The extrema of
posterior inference within the region are sought using an inequality constrained optimization algorithm.
This method enables sensitivity analyses to be conducted in a useful way as we do not need to restrict all of
our unknown parameters to fixed values, but can instead consider ranges of values at a time.
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1 Introduction

Exposure misclassification is a common problem in case–control studies. When exposure misclassification
is present, estimates of exposure prevalences and odds ratios are biased. Early references have pointed out
that if the extent of misclassification is the same for both cases and controls and a dichotomous exposure is
used, then bias is towards the null, and the p-value is not affected [4, 7], such that if a positive/negative
relationship is demonstrated between exposure and disease, the evidence for the relationship being
positive/negative is not affected by misclassification, under frequentist inference anyway. However, even
if this is the case, estimates remain biased, and confidence intervals are inaccurate, and in Bayesian
inference, the implication of bias towards the null is also not necessarily true [21]. Moreover, it has been
argued that even small departures from the strict non-differential misclassification assumption does not
warrant the “bias towards the null” implication [23], and so inference based on the misclassified exposure
becomes even less reliable.

Assuming a binary (dichotomous) exposure, then true exposure prevalence (π) and misclassified
exposure prevalence (p) are related through a simple formula:

p ¼ πsensþ ð1 � πÞð1 � specÞ ð1Þ
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where sens is the sensitivity and spec the specificity of the exposure measure and is defined as:

sens ¼
Number of truly exposed people who
would have been categorized as exposed in the population

� �
Total number of truly exposed people in the population

spec ¼
Number of truly unexposed people who
would have been categorized as unexposed in the population

� �
Total number of truly unexposed people in the population

Because of this simple relationship, it has been proposed in the literature [1, 7, 28, 30] that the misclassified
exposure prevalence estimate can be corrected in order to estimate the true relative risk/odds ratio, and
variance formulae for the adjusted estimate can be obtained using the delta method or maximum likelihood
for large samples [14]. In the case of a binary exposure, the adjustment formula is simply the inverse of (1):

π̂ ¼ p̂� 1þ spec
sensþ spec� 1

ð2Þ

where p̂ is an estimate of p and π̂ the adjusted estimate of π. Adjustment formulae such as (2), however,
assume that the misclassification probabilities sens and spec are known. This, however, is almost never
the case. Even in situations where these probabilities can be estimated from a validation study, estimates
are subject to sampling error. In many situations, validation studies are not available, and estimates of
sens and spec will have to depend entirely on intelligent guesses, if the adjustment formulae were to be
used at all. Perhaps for this reason, even though exposure misclassification is widespread in epidemiology,
adjustment for bias due to misclassification appears to be rarely applied.

Another problem with the adjustment formulae (such as (2)) is that sometimes the adjusted estimate for
π (i.e. π̂) is undefined. For example, if a rare exposure is involved, with prevalence of exposure p ¼ 0:01,
then so long as sens >0:01, any value of spec<0:99 leads to an undefined estimate for π, since according
to (2), π̂ is either negative or greater than 1. This happens because although sens and spec are fixed (they are
population values), p̂ is subject to sampling error and may lead to estimates that are incompatible with the
population parameters sens and spec.

To a certain extent, the above problems can be overcome by adopting a Bayesian approach, as has been
demonstrated by Gustafson, Le and Saskin [22], Gustafson [19], Chu, Gustafson and Le [6] and MacLehose
and Gustafson [29]. In these authors’ approach, prior distributions are given to π1, π0, sens1, sens0, spec1,
spec0, where the subscript 1 refers to the case population and 0 the control population, and the posterior
distribution of the odds ratio ¼ π1ð1�π0Þ

π0ð1�π1Þ is sought, through the model

Yi , BinðNi; piÞ; i ¼ 0; 1 ð3Þ

pi ¼ πisensi þ ð1� πiÞð1� speciÞ
where Yi denotes the number of exposed subjects and Ni the total number of cases or controls. Estimation of
the posterior distribution can be derived through Markov chain Monte Carlo, which is easily implemented in
software such as WinBUGS [27]. This approach does not make use of the estimate p̂, and hence is not
affected by possible incompatibility between p̂ and sens and spec. There are, however, still a number of
potential difficulties, such as:
1. It may not be immediately clear which parameterization we should adopt for the model. In the above-

cited studies, prior distributions are given to the parameters π1, π0, sens1, sens0, spec1, spec0. On the
other hand, Chu, Wang, Cole and Greenland [5] assigned prior distributions to π0 and
ðlogit π1 � logit π0Þ (instead of π0 and π1). Still, other vastly different parameterizations could have
also been used (e.g. [8, 16]). The choice of parameterization is especially unclear when there are no
suitable estimates of sens1, sens0, spec1, spec0 from validation studies.
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2. If the extent of misclassification is great, the posterior distribution of the odds ratio becomes especially
sensitive to the choice of prior and parameterization (to be demonstrated in Section 2). Moreover,
accurate elicitation of prior distribution is made more difficult by the fact that it is often reasonable that
prior distributions of the parameters are correlated [5, 6,9], as elicitation of correlation is difficult [11].

3. Because inference from these analyses can depend so crucially on subjectivelyelicited probability
distributions for the misclassification parameters, it is unsure what conclusions can be drawn by a
reader who does not agree with the prior distributions used.

Because of the problems listed above, the goal of this paper is to present an alternative approach to
analysing case–control studies subject to exposure misclassification, which is a type of robust Bayes
analysis. Robust Bayes inference [2, 3] was originally introduced to examine the robustness of Bayesian
estimates to departure from prior distributional assumptions. One type of robust Bayes analysis seeks the
maximum and minimum possible inference from a class of prior distributions [12]. This type of analysis
overcomes an important limitation in subjective Bayesian analysis, namely that it is rarely possible to
specify a unique prior distribution for a particular analysis. Although philosophically appealing, this type of
analysis has not been widely applied in practice, probably because of computational difficulties. This paper
aims to demonstrate its use in solving an epidemiological problem, as well as to show that this type of
analysis is not computationally infeasible.

In the rest of this paper, we illustrate some of the deficiencies of the Bayesian approach in Section 2,
with reference to the example of a case–control study of childhood leukaemia and electromagnetic fields
(EMF) exposure. In Section 3, the approach of this paper is introduced. Section 4 and 5 give further
extension of the method. Section 6 discusses the use of the method in sensitivity analyses. Concluding
remarks are given in Section 7.

2 Deficiencies of the Bayesian approach in accounting for bias
due to exposure misclassification in case–control studies

In this section, we consider how Bayesian inference in the presence of exposure misclassification can be
very sensitive to the prior distribution used. First, consider the case–control study by Linet, Hatch,
Kleinerman, Robison, Kaune, Friedman, Severson, Haines, Hartsock, Niwa, Wacholder and Tarone [26]
on the risk of childhood leukaemia and exposure to high levels of EMF. EMF exposure was assessed by 24 h
bedroom measurements at a convenient time (which can be up to a few years) after the diagnosis of
leukaemia, where possible, and spot measurements around the residence where this was not possible.
Controls were matched to the cases by sex and age and recruited by random-digitdialling. Out of 624 cases,
45 had EMF measurements >0:3 μT (micro-Tesla). Among the 615 controls, 28 had measurements >0:3 μT.
This resulted in an odds ratio estimate of 1.63 comparing the risk of leukaemia in the >0:3 μT group versus
the <0:3 μT group, with standard large sample 95% confidence interval (1.00, 2.65). Because the exposure
measurement was performed in the residences of the children potentially several years after the etiologi-
cally relevant period, severe misclassification of exposure is very possible. Bayesian inference for this
dataset can be conducted using model (3). In Table 1, we compare the posterior median and 95% credible
interval of the (log) odds ratio under three non-differential misclassification scenarios (no misclassification,
minor misclassification and severe misclassification), using four different prior distributions. Results are
derived using WinBUGS 1.4 [27].

Priors 1 and 2 are both weakly informative. Prior 1, in particular, was used by Gustafson et al. [22]. It has
been argued that prior distributions should be given independently to π0 and θ, rather than π0 and π1 [15],
where

θ ¼ logit π1 � logit π0
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This is the case for priors 2, 3 and 4. Prior 2 has nearly flat prior distribution for both π0 and θ, whereas in
priors 3 and 4, the distribution for π0 is made to have mean equal to the mean of p0 ¼ Y0=N0 ¼ 0:046, the
observed prevalence of exposure among the controls, on the log-odds scale. Prior 3 differs from prior 4 in that
for prior 3, the variance of θ is 1, while for prior 4 the variance is 0.5. The former corresponds to a 95% credible
interval for the odds ratio ¼ (0.14, 7.1). The latter corresponds to a 95% credible interval of (0.25, 4.0).

It can be seen that posterior inference for θ, the log odds ratio, is similar using all four different prior
distributions in the “no misclassification” and the “minor misclassification” scenario. However, the poster-
ior inference under the “severe misclassification” scenario is very sensitive to the prior distributions given.

The above results show that in the presence of severe exposure misclassification, the prior distribution
of θ has a large impact on the posterior distribution. This is the case even if the misclassification
probabilities sensi; speci are known. An intuitive explanation of this may be seen by considering the
variance of πi in comparison to the variance of pi (supposing fixed sensi and speci):

Var πi ¼ Var
pi � 1þ speci

sensi þ speci � 1

� �
¼ VarðpiÞ

ðsensi þ speci � 1Þ2 ðcf eq:ð2ÞÞ ð4Þ

We see that variance of πi is the variance of pi divided by ðsensi þ speci � 1Þ2 and is likely to be much
greater than the variance of pi if sensi þ speci is close to 1. Because θ ¼ logit π1 � logit0, the variance of θ is
also likely to be much larger than the variance of the log-observed odds ratio logit p1 � logit p0, if
sensi þ speci is close to 1. Thus we see that the data are “diluted” and the posterior distribution becomes
more influenced by the prior distribution.

As another example, we examined the sensitivity of posterior inference to specification of the prior
distribution for the misclassification probabilities (sens1; sens0; spec1; spec0). For this example, we fixed the
prior distribution for π0 and θ at logit π0 ,Nðlogit 0:046;0:1Þ; θ,Nð0; 1Þ (prior 3). In Table 2, priors A and B
assume non-differential misclassification and consist of uniform priors given to sens and spec, though with
different but largely overlapping ranges. Priors C and D assign bivariate Normal distributions to
ðlogit sens1; logit sens0Þ and ðlogit spec1; logit spec0Þ, with a correlation of 0.8. Means and variance of these
bivariate Normal distributions are chosen such that their 2.5% and 97.5%-ile match the limits of priors A and
B. As can be seen, although the variation is not as great as those seen in the last column of Table 1, there are
still considerable differences between the results. Thus, when presented with a Bayesian analysis of a case–
control study with potentially severe misclassification, one set of results is rarely enough. We generally need
to examine various situations to see how sensitive the results are to prior distributions used.

In view of these limitations, one may ask whether there is an alternative way to quantify our
uncertainties over such Bayesian analysis. In the next section, we present the robust Bayesian method of
this paper as one such alternative.

Table 1: Posterior median and 95% credible intervals for θ under different non-differential exposure misclassification
scenarios and different prior distributions.

Log odds ratio (θ) No misclassification Minor misclassification Severe misclassification

Odds ratio (exp θ) sens ¼ 1; spec ¼ 1 sens ¼ 0:7; spec ¼ 0:98 sens ¼ 0:3; spec ¼ 0:95

Prior 1: π0,Uð0; 1Þ; π1,Uð0; 1Þ 0.49 (0.004, 0.97) 0.74 (0.01, 1.65) 1.58 (–0.49, 4.81)
1.61 (1.00, 2.63) 2.09 (1.01, 5.18) 4.87 (0.61, 122.9)

Prior 2: π0,Uð0; 1Þ; θ,Nð0; 100Þ 0.45 (–0.03, 0.94) 0.69 (–0.04, 1.61) 0.45 (–18.16, 4.08)
1.57 (0.97, 2.56) 1.99 (0.96, 5.01) 1.57 (0.00, 58.99)

Prior 3: logit π0 ,Nðlogit0:046;0:1Þ; θ,Nð0; 1Þ 0.46 (0.02, 0.89) 0.58 (–0.03, 1.16) 0.42 (–1.30, 1.48)
1.58 (1.02, 2.42) 1.78 (0.97, 3.19) 1.52 (0.27, 4.38)

Prior 4: logit π0 ,Nðlogit0:046;0:1Þ; θ,Nð0;0:5Þ 0.44 (0.01, 0.86) 0.53 (–0.04, 1.11) 0.32 (–0.95, 1.30)
1.55 (1.01, 2.36) 1.70 (0.96, 3.02) 1.38 (0.39, 3.68)
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3 A proposed method for robust Bayesian analysis for
case–control studies with potentially severe exposure
misclassification

Assume that our target parameter of interest is θ, given a suitable range of possible values for η, a set of
nuisance parameters, the goal of the method of this paper is to find the feasible range of θ̂ðηÞ. In the
exposure misclassification example, for example, η ¼ fsens1; sens0; spec1; spec0; π0g. Here, we have
denoted by θ̂ðηÞ an estimate of θ, given η, such that the goal can be written as

minimize=maximize θ̂ ðηÞ over η subject to η 2 e

In this paper, θ̂ðηÞ represent certain percentile values of the posterior distribution of θ given η and the data.
Thus, if θ̂ðηÞ is the posterior median, then

½min
η2e

θ̂ðηÞ;max
η2e

θ̂ðηÞ�

defines the feasible range of the posterior medians of θ.
A similar aim has been described by Vansteelandt, Goetghebeur, Kenward and Molenberghs [31],

although these authors did not use a Bayesian estimate or credible interval for θ̂ðηÞ. In principle, the
methods of this paper can be applied to other non-Bayesian estimators for θ̂ðηÞ. However, Bayesian
estimators are used here in order that we may take advantage of the use of informative prior distributions,
which can greatly aid the extraction of meaningful information from data with severe misclassification, as
we have seen in Section 2.

Furthermore, by seeking ½min
η2e

θ̂ðηÞ;max
η2e

θ̂ðηÞ�, we provide bounds to the set of posterior median/credible

intervals for the set of priors for ðθ; ηÞ where θ and η are independent and that the density of η is 0 outside
e, and thus provides a means of carrying robust Bayes analysis (see Appendix A).

In the exposure misclassification problem considered here, θ̂ðηÞ is a posterior percentile of the
log odds ratio θ, which is the inverse function of the cumulative posterior distribution function of θ.
Thus, denoting the cumulative distribution by FðθjX; ηÞ and its inverse by F�1

θjX;ηðpÞ for a percentile p,
we have:

θ̂ðηÞ ¼ F�1
θjX;ηðpÞ

Table 2: Posterior median and 95% credible intervals for θ using different prior distributions for sens1, sens0, spec1, spec0. Prior
distribution for π0 and θ is the same as prior 3 of Table 1.

Log odds ratio (θ) Odds ratio (exp θ)

Prior A: sens1 ¼ sens0,Uð0:1;0:4Þ 0.95 (–0.51, 2.07) 2.58 (0.60, 7.95)
spec1 ¼ spec0,Uð0:95;0:98Þ

Prior B: sens1 ¼ sens0,Uð0:2;0:5Þ 0.89 (–0.01, 1.75) 2.43 (0.99, 5.74)
spec1 ¼ spec0,Uð0:96;0:99Þ

Prior C: logit sens1; logit sens0 ,MVN
�1:30
�1:30

� �
;

0:21 0:17
0:17 0:21

� �� �
1.08 (–0.48, 2.22) 2.93 (0.62, 9.24)

logit spec1; logit spec0 ,MVN
3:42
3:42

� �
;

0:06 0:05
0:05 0:06

� �� �
Prior D: logit sens1; logit sens0 ,MVN

�0:90
�0:90

� �
;

0:13 0:10
0:10 0:13

� �� �
0.94 (–0.09, 1.77) 2.57 (0.91, 5.89)

logit spec1; logit spec0 ,MVN
3:89
3:89

Þ; 0:13 0:10
0:10 0:13

� �� ��
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FðθjX; ηÞ ¼
ðθ

�1
pðθjX; ηÞdθ

pðθjX; ηÞ ¼ LikðXjθ; ηÞpðθjηÞ
pðXjηÞ

LikðXjθ; ηÞ ¼ N1

Y1

� �
N0

Y0

� �
pY1
1 ð1� p1ÞN1�Y1pY0

0 ð1� p0ÞN0�Y0

pi ¼ πisensi þ ð1� πiÞð1� speciÞ; i ¼ 0; 1

logit π1 ¼ logit π0 þ θ

where X denote the data: X ¼ fY1;Y0;N1;N0g.
It can be seen that as a function of θ, the likelihood LikðXjθ; ηÞ only depends on pY1

1 ð1� p1ÞN1�Y1 , and
pY1
1 ð1� p1ÞN1�Y1 only depends on sens1, spec1 and π0, and not on sens0 and spec0. Thus, sens0 and spec0

cannot affect the posterior percentile function θ̂ðηÞ. Indeed, given π0, the likelihood does not even depend
on Y0 and N0. We are therefore considering a probabilistic modelling of the case data fY1;N1g only. This
may appear a very unusual way of analysing case–control data, but it has been suggested in Zelen and
Parker [32] that in a case–control study, we may have a priori information over the prevalence of exposure
among the controls, if the controls are representative of the general population, and thus control data are
not always necessary. In the presence of severe misclassification, the control data can tell us very little
about the true exposure prevalence due to data dilution as discussed above, and a priori information, such
as the degree to which the prevalence of misclassified exposure differs from the prevalence of true
exposure, can be as important or more important than the control data.

As an example, consider the control data of the above example, where we have Y0 ¼ 28;N0 ¼ 615.
Assuming an uninformative prior distribution of π0,Uð0; 1Þ and supposing sens0 ¼ 0:3; spec0 ¼ 0:95
(severe misclassification), the posterior distribution of π0 has median and 95% credible interval 0.02
(0.0008, 0.08), while those for p0 is 0.055 (0.050, 0.070). Thus, the control data itself tells us very
little about the prevalence π0 (even though it gives us considerable information for the misclassified
prevalence p0).

As the information concerning π0 given by the data is limited, it is sensible to seek alternative sources
of information. One potential source of information can be gained by considering the measurement error
model that relates the true exposure to the observed exposure. For example, assuming a classical
measurement error model, the true exposure ought to have lower prevalence than the observed preva-
lence. This can be seen by writing the observed EMF exposure levels (Z) as their true EMF levels (ζ ) plus
an error term ("):

Z ¼ ζ þ "

where " is typically 0 centred, and " is independent of ζ . Our observed prevalence estimate (p ¼ Y=N)
estimates PrðZ > cÞ, and our true prevalence is Prðζ > cÞ, where c denotes a certain threshold, 0.3 μT in
this particular case. If ζ and " were both Normal, and " has 0 mean, then PrðZ > cÞ will always be
greater than Prðζ > cÞ if Prðζ > cÞ<0:5. Since 0.3 μT is quite a high threshold for exposure,
Prðζ > cÞ � 0:5, and hence we would expect the observed prevalence to be greater than the true
prevalence. Given that the 95% confidence intervals for p0 is (0.03, 0.065), let us tentatively assume
that a reasonable range for π0 is

0:01 � π0 � 0:05 ð5Þ
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3.1 Finding min bθ
η2e

ηð Þ;max
η2e

bθ ηð Þ
� �

To conduct the robust Bayesian analysis, we need to further specify feasible ranges for the parameters sens1
and spec1. As the misclassification is potentially severe, let us assume:

0:1 � sens1 � 0:5 ð6Þ

0:95 � spec1 � 1 ð7Þ

Equation (6)indicates that sensitivity is unlikely to be high.1 This is because of the nature of the exposure
assessment. For a rare exposure, however, it is often feasible to have a fairly tight bound on the specificity,
such as (7). This is because if we believe that classification is better than chance, then spec1 > 1� p1.

2 If
misclassification is non-differential, then spec1 > 1� p0. Given that the 95% confidence interval for p0 is
(0.03, 0.065), it seems reasonable that spec1 has a lower bound of 0.95.

For the analysis, let us also assume at this stage that the prior distribution of θ is

θ,Nð0;0:5Þ
although this can be relaxed later.

Our aim is to find

½min θ̂ðπ0; sens1; spec1Þ;max θ̂ðπ0; sens1; spec1Þ�
subject to constraints (6)–(7) where θ̂ðπ0; sens1; spec1Þ denote the posterior median of θ given
ðπ0; sens1; spec1Þ. Since

θ ¼ logit π1 � logit π0

for θ̂þ ¼ max θ̂ðπ0; sens1; spec1Þ, we want logit π1 to be as positive as possible, while logit π0 should be as
negative as possible. We note also that

@π

@sens
¼ 1� spec� p

ðsensþ spec� 1Þ2
>0 if spec< 1� p
¼ 0 if spec ¼ 1� p
<0 if spec > 1� p

:

8<: ð8Þ

and

@π
@spec

¼ sens� p

ðsensþ spec� 1Þ2
>0 if sens > p
¼ 0 if sens ¼ p
<0 if sens< p

8<: ð9Þ

if sensþ spec�1. Moreover, when sensþ spec > 1, sens � p and spec � 1� p. Therefore for θ̂þ, we would
expect sens1 to be found at its minimum, spec1 at its maximum and π0 at its minimum, and the reverse for
θ̂� ¼ min θ̂ðπ0; sens1; spec1Þ. This implies that ½θ̂�; θ̂þ� should be

½θ̂ðπ0 ¼ 0:05; sens1 ¼ 0:5; spec1 ¼ 0:95Þ; θ̂ðπ0 ¼ 0:01; sens1 ¼ 0:1; spec1 ¼ 1Þ� ¼ ½�0:09; 4:47�
Of course, the above does not give us a proof that ½θ̂�; θ̂þ� ¼ ½�0:09; 4:47� since the relationship between
θ̂ðπ0; sens1; spec1Þ and ðπ0; sens1; spec1Þ is much more complicated than that between θ and

1 If we assume the true exposure and the observed exposure levels follow a bivariate Normal distribution with equal mean, with
the observed exposure levels having a standard deviation that is 1.2 times that of the true exposure, and correlation in the region
of 0.3–0.7, then for an exposure classification defined by the top 5% of underlying exposure, the sensitivity is in the region of
0.1– 0.5. The range of correlation (0.3–0.7) comes from a study which estimated r2 between bedroom measurements and
personal monitoring [10].
2 This can be seen by rearranging (1) as spec ¼ 1� pþ πðsensþ spec� 1Þ. Because 0 � π � 1, when sensþ spec> 1,
spec � 1� p.
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ðπ0; sens1; spec1Þ. In order to give us more confidence that we have found our extremes, we may use a
search algorithm to identify ½θ̂�; θ̂þ�. For this purpose, we wrote a program in Matlab, which makes use of
the fmincon algorithm in its Optimization Toolbox. The optimization took less than 1 s and confirmed that
ðπ0 ¼ 0:05; sens1 ¼ 0:5; spec1 ¼ 0:95Þ and ðπ0 ¼ 0:01; sens1 ¼ 0:1; spec1 ¼ 0:95Þ are indeed local minimum
and maximum.

4 Allowing for uncertainty in the prior distribution of θ

To facilitate exposition, in the previous section, we use the prior distribution of θ,Nð0;0:5Þ without
explanation. This prior distribution places 95% weight in the odds ratio, i.e. exp θ, being between 0.25
and 4.0. If the relationship between exposure to high levels of EMF and childhood leukaemia is unlikely to
be greatly confounded by other factors (c.f.[24], such a prior distribution might be reasonable. It is also the
prior distribution used by Greenland and Kheifets [18] in their meta-analysis of childhood leukaemia-EMF
studies. However, it is understandable that not all readers may be happy with this prior. Some may find the
prior too narrow, and others too wide. One advantage of using the method of this paper is that we can also
specify a “range” of prior distribution. For example, it may be supposed that a “reasonable” range of prior
variance for the Normal distribution may be from 0.3 to 0.7, such that we have:

θ,Nð0; σ2Þ

0:3 � σ2 � 0:7

Intuitively, the effect of having a prior distribution with a smaller variance is to shrink the estimates further
towards zero. Therefore, we would expect σ2 ¼ 0:7 for both θ̂þ and θ̂�, since previous calculations showed
that θ̂þ is positive and θ̂� is negative. Again a search algorithm may be used to confirm this. This is indeed
the case for this example, and we have:

½θ̂�; θ̂þ� ¼ ½�0:11; 4:67� ð10Þ

5 Imposing additional constraints in the parameters sens1, spec1
and π0

So far, we have only given bounds to the parameters pi0, sens1, spec1 and σ2. It may be asked whether
additional information concerning the sensitivity or specificity in the control population may help us
further narrow our feasible region for θ̂. Intuitively, giving bounds to sens0 and spec0 may help us narrow
the bounds on sens1 and spec1 since if misclassification is nearly non-differential, sens1; spec1 should not be
too different from sens0; spec0. Furthermore, p0 is related to sens0, spec0 and π0 through (1). Therefore,
giving bounds to p0 can also potentially restrict our feasible region of ðπ0; sens1; spec1Þ.

In this section, we present a scheme that would enable us to determine whether a particular combina-
tion of π0; sens1; spec1 satisfies the constraints:

Given that p̂0 ¼ 28=615 ¼ 0:046 (95% confidence interval ¼ [0.03, 0.06]), let us assume

½p0�� � p0 � ½p0�þ ð11Þ

� � sens1 � sens0 � ½sens1 � sens0�þ ð12Þ

� � spec1 � spec0 � ½spec1 � spec0�þ ð13Þ
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for some "sens and "spec. In this section, we present a scheme that would enable us to determine whether a
particular combination of π0; sens1; spec1 satisfies constraints (11), (12), (13) also.

5.1 Determining if a set of (π0, sens1, spec1) falls within the feasible region

Denote the lower and upper bounds of a quantity x by ½x�� and ½x�þ respectively, e.g.
½sens1�� � sens1 � ½sens1�þ, ½spec1 � spec0�� � spec1 � spec0 � ½spec1 � spec0�þ. To determine if a set of
ðπ0; sens1; spec1Þ is feasible, we can consider the following:
1. Assuming all of the parameters are given feasible ranges, i.e. ½x�þ � ½x�� for all x, and assuming also

0< π0 < 1, check whether:
(a) Sðsens0Þ� ¼ maxð½sens0��; sens1 � ½sens1 � sens0�þÞ

> minð½sens0�þ; sens1 � ½sens1 � sens0��Þ ¼ Sðsens0Þþ

(b) Sðspec0Þ� ¼ maxð½spec0��; spec1 � ½spec1 � spec0�þÞ
> minð½spec0�þ; spec1 � ½spec1 � spec0��Þ ¼ Sðspec0Þþ

(c) Sðp0Þ� ¼ ½p0�� > ½p0�þ ¼ Sðp0Þþ

Evidently, if any of (a), (b) or (c) is true, the set of ðπ0; sens1; spec1Þ is outside the feasible region, as it is
not possible to find values of sens0; spec0; sens1 � sens0; spec1 � spec0; p0; p0 � π0 that satisfy the
constraints.

2. If all of 1(a), 1(b), 1(c) are untrue, then we further test for feasibility by considering whether:

max
ðSðp0Þ� � ð1� π0Þð1� Sðspec0Þ�ÞÞ=π0;

Sðsens0Þ�
� �

>

min
ðSðp0Þþ � ð1� π0Þð1� Sðspec0ÞþÞÞ=π0;

Sðsens0Þþ
 ! ð14Þ

If this is true then ðπ0; sens1; spec1Þ is not feasible. If it is untrue, then it is feasible. This comes from the
fact that sens0, spec0, π0 and p0 are related by identity (1). Equation (14) is derived by considering the
maximum and minimum of sens0 implied by constraints given to spec0 and p0 as well as the location of
π0, sens1 and spec1. The rationale behind the scheme can be seen by considering Figure 1. It can be seen

π0

p0

0 1

(a) (b)

1 –spec0
1 –spec0

S(p0)
–

S(p0)
–

S(p0)
+

S(p0)
+

1 – S(spec0)
+ 

1 – S(spec0)
+ 

1 – S(spec0)
– 1 – S(spec0)

– 

S(sens0)
– 

S(sens0)
– 

S(sens0)
+ S(sens0)

+ 

π0

p0

0 1

sens0 sens0

Figure 1: (a) A situation where the set of ðπ0; sens1; spec1Þ is feasible as it is possible to draw a line through intervals defined by
½1� Sðspec0Þþ; 1� Sðspec0Þ��, ½Sðπ0Þ�;Sðπ0Þþ� and ½Sðsens1Þ�;Sðsens1Þþ� is shown. (b) A situation where it is not possible to
draw such a line is shown.
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that in order that a ðπ0; sens1; spec1Þ be feasible, we must be able to draw a straight line through
½Sðp0Þ�; Sðp0Þþ�, ½Sðsens0Þ�; Sðsens0Þþ� and ½1� Sðspec0Þþ; 1� Sðspec0Þ��. (This is because
p0 ¼ π0 sens0 þ ð1� π0Þð1� spec0Þ represents a linear relationship between p0 and π0.) The range of
½Sðp0Þ�; Sðp0Þþ�, ½Sðsens0Þ�; Sðsens0Þþ� and ½1� Sðspec0Þþ; 1� Sðspec0Þ�� is in turn determined by the
position of ðsens1; spec1Þ as well as π0.

5.2 Finding min bθ
η2e

ηð Þ;max
η2e

bθ ηð Þ
� �

with additional constraints

Now assume we have the following constraints:

0:01 � π0 � 0:05 ð15Þ

0:1 � sens0 � 0:5 ð16Þ

0:25 � sens1 � 0:4 ð17Þ

0:95 � spec0 � 1 ð18Þ

0:95 � spec1 � 1 ð19Þ

0:03 � p0 � 0:065 ð20Þ

� 0:05 � sens1 � sens0 � 0:05 ð21Þ

� 0:02 � spec1 � spec0 � 0:02 ð22Þ

0:3 � σ2 � 0:7 ð23Þ
The presence of constraints such as (15)–(22) makes it difficult to use simple relationships such as (8) and
(9) to locate the extremes of θ̂. For this, an optimization algorithm becomes more useful. Still, it should be
borne in mind that a surface such as θ̂ðπ0; sens1; spec1Þis not necessarily convex, and multiple local optima
may exist. For this reason, it is necessary to repeat the optimization a number of times from different
starting points in order to adequately explore the parameter space. For this particular example, we repeated
the optimization 10 times (using Matlab’s fmincon as before) with the locations of the extrema given
in Table 3.

Compared to the previous results (10), we see that the lower bound of –0.11 remained unchanged but the
upper bound is shrunk towards 0. Thus, the effect of constraints (15)–(22) is to limit the upper extreme of θ̂.
The location of min θ̂ is not limited by the additional constraints imposed in (15)–(22), although the location
of max θ̂ is. The active constraints at max θ̂M and max θ̂U are (20), (21) and (22). These can be derived as
results from the optimization.

Table 3: Location of ðπ0; sens1; spec1; σ2Þ at the maximum and minimum posterior median of θ
given the constraints of (15)–(23).

ðπ0; sens1; spec1;σ2Þ Posterior median θ (exp θ)

max θ̂ (0.01, 0.01, 0.991, 0.7) 4.44 (84.8)
min θ̂ (0.05, 0.5, 0.95, 0.7) –0.11 (0.90)
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6 The use of the method as a tool for sensitivity analysis

As noted in the introduction and Section 2 of this paper, Bayesian, probabilistic strategies for adjustment of
exposure misclassification might suffice in the scenario where misclassification is not too serious, where
the data are not too “diluted”. In the situation where exposure misclassification is potentially serious, not
only does it become more difficult to elicit prior distributions for the parameters, but the dilution of the data
means that it is unlikely that the data can tell us much about the direction of θ. This is when the method of
this paper is most useful. For example, we might ask, what values do sens1, sens0, spec1, spec0 have to take
in order that we may have evidence of a positive relationship between EMF and childhood leukaemia, or
how does departure from the assumption of non-differential misclassification affect inference? These
questions can be answered by using the method of this paper.

Before we discuss further, it will be useful to introduce the following terminology. Denoting by θ̂MðηÞ the
posterior median of θ given η and θ̂LðηÞ the posterior 2.5%-ile and θ̂UðηÞ the posterior 97.5%-ile, let us define the

Feasible posterior median interval ðFPMIÞ ¼ ½min θ̂M ;max θ̂M �
Feasible posterior credible interval ðFPCIÞ ¼ ½min θ̂L;max θ̂U �

In Figure 2, we can examine how departures from non-differential misclassification affect the FPMI and
FPCI. Here, we see that while departures from non-differential specificity increases the FPMI and FPCI,
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Figure 2: Sensitivity analyses showing how FPMI and FPCI vary with departures from non-differential misclassification,
assuming all other constraints hold.
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departures from non-differential sensitivity did not affect the intervals very much. In Figure 3, we can look
at how restricting the ranges of sens1; sens0; spec1; spec0 affect the intervals. It can be seen that if spec1 and
spec0 were greater than 0.97, then there is greater evidence for a positive relationship between EMF and
childhood leukaemia. As sens0 and sens1 increase, the width of the FPMI and FPCI decreases. We also see
that when ðspec1; spec0Þ are >0:97, and ðsens1; sens0Þ are between 0.2 and 0.4, the FPCI just includes 0.
Further increase in ðsens1; sens0Þ does not lead to the FPCI being further away from 0.

Finally we may also look at how π0 affect the FPMI and FPCI. In Figure 4, we can see that as π0
increases, the upper limit of the FPMI and FPCI become lower, but the lower limit remains nearly the same.
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Figure 3: Sensitivity analyses showing how FPMI and FPCI vary with changes in the feasible range of sens1, sens0, spec1 and
spec0, assuming all other constraints hold.
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Figure 4: Sensitivity analyses showing how FPMI and FPCI vary with changes in the feasible range of π0, assuming all other
constraints hold.
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7 Discussion

In this paper, we have introduced a new method for carrying out sensitivity analysis in case–control studies
subject to exposure misclassification bias. In traditional Bayesian analysis, in the presence of severe
misclassification, results are very sensitive to the prior distributions given, and different investigators
may have different prior distributions. A common way to deal with uncertainty in prior distributions is
through the use of a hierarchical prior [13]. However, in specifying a hierarchical prior, one is still specifying
a unique prior distribution. If one does not agree with the prior, one also cannot strictly agree with the
posterior. The robust Bayesian approach of this paper offers an alternative. Instead of averaging out results
from different prior distributions, we seek out the most extreme inference possible among a specified class
of prior distributions. Readers can compare their own beliefs with the feasible region specified for
the various parameters. If his/her belief falls within the feasible region, then his/her posterior inference
will also fall within the FPMI/FPCI. If the feasible region is wide, however, inevitably the FPMI/FPCI
will also be wide. In these situations, perhaps a better use of this method is in exploring what misclassi-
fication probabilities are needed in order that the data may confer evidence in support of a positive or a
negative association. As a tool for sensitivity analysis, the advantage of this approach is that one does not
have to specify unique values for the uncertain parameters, but can instead specify ranges for the
parameters.

A major contribution of this paper is its computational aspect. It is increasingly realized that data
collected from observational studies cannot give unbiased estimates of epidemiological quantities of
interest (e.g. [17, 20]), and that standard confidence intervals often underestimate the true uncertainty
associated with estimates as they ignore bias. Therefore it has often been suggested that realistic models of
epidemiologic data should take into account of uncertainty of bias by using models that integrate data with
subjective “expert” knowledge [17, 20, 25]. Some have proposed that we seek out feasible region of
inference given subjectively specified constraints for the unidentifiable parameters [31]. Application of
these approaches, however, has been limited to simple scenarios, where such bounds can be computed
analytically. In this paper, this is extended through the use of an optimization algorithm to situation where
no such analytical solution exists. The method of this paper also paves the way for more general robust
Bayesian inference, which has yet to become popular despite its philosophical integrity [2, 3]. The present
paper shows that this type of inference is computationally feasible in a situation involving three unidentifi-
able parameters, although the existence of multiple local minima/maxima remains a potential difficulty in
the general adoption of this method. Because the computation is suitably fast in the example of this paper,
optimization can be repeated at a large number of starting points to ensure that the failure to locate the
global optima is unlikely. As the number of unidentifiable parameters increases, this may become more and
more infeasible, and further research is needed to help us locate the global optima in those situations.

Appendix A: robust Bayes interpretation of FPMIs and FPCIs

In robust Bayes analysis, we seek to summarize the many possible posterior inferences arising from a class
of prior distributions. Assuming θ and η are independent and supposing θ̂ is a posterior percentile of θ,
seeking the minimum and maximum of θ̂ can be thought of as seeking the minimum and maximum
posterior percentile among the class of prior distributions which have zero density outside the feasible
region of η. To see this, note that the posterior density of θ can be written as:

pðθjXÞ ¼
ð
η

pðθ; ηjXÞdη

Denoting the cumulative distribution of θ given X by FθjX : θ ! p, which maps θ onto the percentiles p, we
have:
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FθjXðθÞ ¼
ðθ

�1

ð
η

pðθ; ηjXÞdηdθ

¼
ðθ

�1

ð
η

pðXjθ; ηÞpðθÞpðηÞpðXjηÞ
pðXjηÞpðXÞ dηdθ ðby Bayes’ theoremÞ

¼
ð
η

ðθ
�1

pðθjX; ηÞdθpðηjXÞdη

¼
ð
η

FθjX;ηðθÞpðηjXÞdη

Hence, we see that the cumulative distribution of θ given X is a weighted average of the cumulative
distribution of θ given X and η. Now, if our prior distribution of η belongs to a class that has zero mass for
values outside the feasible region of η, denoted e, i.e.:

pðηÞ ¼ 0 "η‚e

then

pðηjXÞ ¼ 0 "η‚e

and because averages cannot be greater than the maximum or less than the minimum,

min
η2e

FθjX;ηðθÞ � FθjXðθÞ � max
η2e

FθjX;ηðθÞ

Now because our Bayesian estimates θ̂ are percentile functions F�1 : p ! θ, which is the inverse of the
cumulative distribution function. Since the cumulative distribution function FðθÞ is necessarily a mono-
tonically increasing function, we have:

min
η2e

θ̂ ¼ min
η2e

F�1
θjX;ηðpÞ � F�1

θjXðpÞ � max
η2e

F�1
θjX;ηðpÞ ¼ max

η2e
θ̂

Thus, by finding min
η

θ̂ and max
η

θ̂, we give bounds to F�1
θjXðpÞ. Note that when we give bounds to F�1

θjXðpÞ, we
are assuming that the prior distribution of θ is the same as the prior distribution we use to calculate the

bounds (i.e. F�1
θjXðpÞ and F�1

θjX;ηðpÞ share the same prior distribution for θ). For this to be possible, the prior

distribution of θ must not depend on η.
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