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The discrete element method has been employed to simulate vertical one-dimensional compression of
an idealised soil. Direct measurement of the full stress tensor was possible and the results show that K0
(the ratio of horizontal to vertical effective stresses) increases with void ratio, which is consistent with
previous experimental studies. The anisotropic fabric induced during compression was quantified by
considering the orientations and magnitudes of the normal contact forces. For the denser samples
there was a definite bias towards more vertically oriented contacts, resulting in lower stresses being
transmitted in the horizontal direction for a given vertical stress. In contrast, the contacts were oriented
more isotropically in the looser samples, allowing more similar stresses to be transmitted in the
horizontal and vertical directions.
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NOTATION
an normal contact force anisotropy
e void ratio
F structural anisotropy (F =Φ3/Φ1)
F0 structural anisotropy after isotropic compression
Fn

ij
* average normal contact force tensor

f̄ nðΩÞ probability distribution of the average normal contact
force tensor

G particle shear modulus (Pa)
I inertial number

K0 coefficient of lateral earth pressure at rest
p′ mean effective stress (Pa)
p′0 mean effective stress after isotropic compression (Pa)
q deviatoric stress (Pa)
ε1 major principal strain
μ interparticle friction coefficient
ν particle Poisson’s ratio
ρ particle density (kg/m3)

σ′h horizontal effective stress (σ′h=0·5(σ′x+σ′y)) (Pa)
σ′v vertical effective stress (σ′v=σ′z) (Pa)
Φij
*

fabric tensor
Φ1, Φ2,

Φ3

major, intermediate and minor components of the
fabric tensor Φij

*

ϕ′ effective angle of shearing resistance
ϕ′cv critical state angle of shearing resistance

ϕ′mob mobilised angle of shearing resistance
ϕ′p peak angle of shearing resistance

INTRODUCTION
The coefficient of lateral earth pressure at rest (K0), defined
as the ratio of horizontal effective stress (σ′h) to vertical
effective stress (σ′v) measured under zero lateral strain
conditions, is an important parameter used for the design

of geotechnical structures. Measurement of horizontal
effective stresses is non-trivial and so practising engineers
tend to use the formula put forward by Jaky (1944), which
correlates K0 to the angle of shearing resistance

K0 ¼ 1� sin ϕ0 ð1Þ
where ϕ′ is the effective angle of shearing resistance, which is
often taken as the angle of shearing resistance at the critical
state (ϕ′cv) (Jaky, 1944; Mesri &Hayat, 1993). This definition
implies that there is a unique K0 value for a given soil type
and that K0 is independent of initial state (i.e. packing
density and stress level). The angle of shearing resistance at
peak stress (ϕ′p) is sometimes used in equation (1) (Mesri &
Vardhanabhuti, 2007; Talesnick, 2012; Lee et al., 2013); ϕ′p
depends on the material state (Been & Jefferies, 1985) and
thus if ϕ′p is used in equation (1), at a given stress level, K0
will increase with increasing void ratio. While Jaky′s equa-
tion has been successfully applied in a large range of
engineering applications, it may fail to predict the measured
K0 as it does not consider certain factors in granular
materials that may affect the K0 value. K0 experiments
conducted by Chu & Gan (2004) and Wanatowski & Chu
(2007) found relatively high K0 values and a marked
sensitivity of the K0 response to the initial void ratio (e0)
for loose sand samples; for denser sands, the K0 values were
lower and less sensitive to variations in packing density.
Similar observations were reported by Okochi & Tatsuoka
(1984), Mesri & Vardhanabhuti (2007), Lee et al. (2013) and
Northcutt & Wijewickreme (2013). In contrast, Talesnick
(2012) reported higher K0 values for dense states than for
loose ones. It is worth mentioning that differences in the
experimental procedures, testing devices, sample preparation
techniques and data acquisition methods between the studies
likely influence any variation in the observed K0–void ratio
dependency.

Differences in size, shape or roughness of particles also
influence the measured K0 values. Lee et al. (2013) measured
higher values of K0 for non-etched glass beads than for
etched glass beads. Furthermore, sub-angular and angular
particles showed lower values of K0 than glass beads.
Changes in particle shape and hence in the connectivity of
particles affect the fabric of granular materials, which is
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closely related to the K0 value (Guo & Stolle, 2006;
Northcutt & Wijewickreme, 2013).
Lee et al. (2013) attributed the low K0 values obtained for

dense materials to the development of strong force chains in
the vertical direction, leading to less stress transmission in
the horizontal direction. However, Talesnick (2012) attrib-
uted the high K0 values for dense materials to the dilatant
nature of dense soils, but it is difficult to accept this ex-
planation as dilation is suppressed during one-dimensional
(1D) compression.
The aim of the current article is to develop a science-based

fundamental understanding of the dependency of K0 on void
ratio. Discrete element method (DEM) simulations of 1D
compression tests were performed; the stresses could be
directly calculated from the contact forces and so the vertical
and horizontal stresses could be quantified accurately, which
is difficult to achieve in physical experiments.

DEM SIMULATIONS
This study used a modified version of the open-source code
Lammps (Plimpton, 1995). Three-dimensional numerical
samples were created as a representative volume element
consisting of 22 312 initially non-contacting spherical
particles enclosed by periodic boundaries. These boundary
conditions eliminate inhomogeneities (Thornton, 2000;
Huang et al., 2014a). The particle size distribution (PSD)
used for all simulations is representative of Toyoura sand
(Fig. 1). A simplified Hertz–Mindlin contact model was
used. The input parameters used were shear modulus G=
29 GPa, particle Poisson’s ratio ν=0·12, particle density
ρ=2650 kg/m3 and local damping coefficient=0·1. Initially,
the periodic cell was deformed until the system reached
an isotropic stress state with an initial mean effective stress
(p′0) of 25 kPa. After reaching the desired p′0, the system
was subjected to numerical cycling until p′ and the number
of contacts became constant, indicating equilibrium. Ten
samples were created and the initial void ratio (e0) of each
sample was controlled using different interparticle friction
coefficients (μ) during the isotropic compression stage, as
indicated in Table 1.
Once the isotropic compression stage was completed, μ

was set to 0·25 (Huang et al., 2014b). One-dimensional

compression was then simulated by deforming the periodic
cell: the top boundary was moved at a constant velocity in
the vertical direction while the horizontal and bottom boun-
daries were maintained in a fixed position. The velocity
chosen was sufficiently small to ensure that the system was
maintained in the quasi-static regime (i.e. inertial number
I ≤ 2·5×10−3) (GDR MiDi, 2004; da Cruz et al., 2005). The
stresses in the periodic cell were determined using the par-
ticle and contact force data (Bagi, 1996; Potyondy &
Cundall, 2004). Ten triaxial tests were carried out to define
the e0–ϕ′p relationship and to obtain ϕ′cv for the simulated
sand. Details of the triaxial simulations and corresponding
results are shown in Table 2.

RESULTS
Macro response
Results from six representative 1D compression tests are
plotted in Fig. 2. The initial void ratios at the start of com-
pression ranged from e0=0·544 for the densest sample to
e0=0·664 corresponding to the loosest of these six samples.
Tests were terminated at mean effective stress values of p′=
750–950 kPa. Referring to Fig. 2(a), the effective stress ratio
(q/p′) decreased as e0 increased. Figure 2(b) indicates that
the axial strain level (ε1) at which a given value of q was
reached increased with e0. For the densest sample (e0=
0·544), q=100 kPa was achieved at ε1 ≈ 0·07%; for the
loosest sample, ε1 exceeded 0·25% at the same q level.
Figure 2 also includes results from laboratory tests reported
byWanatowski & Chu (2007) and Chu & Gan (2004), which
indicate that the observations from the simulations are
qualitatively consistent with experimental data.

The horizontal stresses were calculated as the mean value
of σ′x and σ′y. Figure 3(a) illustrates the variation of K0 with
effective vertical stress (σ′v), while Fig. 3(b) illustrates the
variation in K0 with the major principal strain (ε1) (i.e. the
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Fig. 1. Particle size distribution of numerical samples compared
with laboratory data for Toyoura sand

Table 1. Summary of numerical K0 tests conducted

Test
ID

μ during isotropic
compression

e0 (after isotropic
compression)

K0-1 5·0×10−4 0·544
K0-2 1·0×10−3 0·543
K0-3 1·0×10−2 0·561
K0-4 5·0×10−2 0·598
K0-5 0·110 0·630
K0-6 0·150 0·645
K0-7 0·190 0·659
K0-8 0·200 0·661
K0-9 0·215 0·664
K0-10 0·235 0·669

Table 2. Summary of data from triaxial simulations

Test ID e0 p′0:
kPa

ϕ′p:
degrees

ϕ′cv:
degrees

TX-CD-100-0·5928 0·5928 100 20·10 17·82
TX-CD-500-0·5533 0·5533 500 22·73 17·82
TX-CD-500-0·6059 0·6059 500 19·65 17·82
TX-CD-500-0·6142 0·6142 500 19·21 17·82
TX-CD-500-0·6615 0·6615 500 17·82 17·82
TX-CD-1000-0·6142 0·6142 1000 19·00 17·82
TX-CD-2500-0·5781 0·5781 2500 20·80 17·82
TX-CD-5000-0·6482 0·6482 5000 17·82 17·82
TX-CV-500-0·6238 0·6238 500 19·27 17·82
TX-CV-500-0·6280 0·6280 500 19·13 17·82
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vertical strain); both sets of data illustrate a clear depen-
dency of K0 on e0. Generally, loose samples attained higher
K0 values than denser samples, in line with previous experi-
mental observations by Chu & Gan (2004), Wanatowski &
Chu (2007) and Okochi & Tatsuoka (1984), which are
included in Fig. 3 for comparison. Interestingly, while differ-
ent preparation methods were used in the experimental
studies (i.e. air pluviation (Okochi & Tatsuoka, 1984) or
moist tamping (Chu & Gan, 2004; Wanatowski & Chu,
2007)) and different initial stress conditions were applied, the
trend is more or less the same for all the experiments and
DEM simulations. Note that K0 did not reach a constant
value when plotted against either σ′v or ε1, but decreased
continuously for all samples, indicating that K0 depends on
σ′v and ε1.
Figure 4(a) shows the variation ofK0 with initial void ratio

at three discrete values of σ′v, while Fig. 4(b) gives K0 at three
discrete ε1 values. For each value of σ′v or ε1 considered, the
relationship between K0 and void ratio can be represented by
a power-law equation. Laboratory data in terms of K0 and e0

were collected and are also plotted in Fig. 4 for comparison.
The dashed lines correspond to Jaky’s equation used by
Wanatowski & Chu (2007) from plane strain and triaxial
tests. Generally, K0 values obtained in the DEM simulations
and laboratory tests increase with increasing e0. A power-law
relationship between K0 and e0 was identified for the nu-
merical data. This relationship differs from the linear K0–e0
relationship observed and proposed by Chu & Gan (2004)
and Wanatowski & Chu (2007) for loose marine sand
samples prepared bymoist tamping (MT) andwater sedimen-
tation (WS) methods. Results from Hendron (1963) indicate
a more gentle linear increase of K0 with e0 for rounded
Minnesota sand. A steeper response was found for Toyoura
sand, as reported by Okochi & Tatsuoka (1984). The K0
values for Toyoura sand are closer to those from the nu-
merical tests than other types of sand. Figure 4(a) illustrates
a similar dependency of K0 on σ′v observed by Okochi &
Tatsuoka (1984). The differences between the magnitudes of
K0 for the physical sands tested and the numerical simu-
lations can be attributed to particle size, shape (perfect
spheres, angular and sub-angular sands) and differences in
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Fig. 2. Results from K0 tests: (a) effective stress paths q versus
p′; (b) stress–strain curves q versus ε1. Experimental data after
Wanatowski & Chu (2007) and Chu & Gan (2004) are presented in
the inset figures
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initial anisotropies (Guo & Stolle, 2006). It is important to
note, however, that in the current study structural anisotropy
was induced entirely by the strain path imposed, while in the
experimental studies, there will be an initial anisotropic
structure as a consequence of gravity deposition during
sample preparation.

Figure 4(c) compares measured K0 values with predicted
K0 values from Jaky’s equation using ϕ′p, ϕ′cv and the angle
of shearing resistance mobilised during the 1D compression
tests (ϕ′mob), calculated from

sin ϕ0mob ¼
σ0v � σ0h
σ0v þ σ0h

at the same discrete values of σ′v where K0 was directly
measured. From the triaxial results shown in Table 2, an
exponential relationship between ϕ′p and e0 as observed by
Wanatowski & Chu (2006) is evident and thus the K0–e0
relationship is established. For the case of σ′v=700 kPa,
Jaky’s equation overestimates the K0 values for dense
samples (e0 < 0·65) by as much as 0·12 considering ϕ′p as
input for Jaky’s formula; for looser samples (e0 > 0·65), K0 is
underestimated by up to 0·05 when ϕ′cv is used. Similar
findings are presented by Wanatowski & Chu (2007), as
indicated in Fig. 4(a), which are consistent with how Jaky
(1944) derived equation (1), by considering a normally
consolidated mass of soil in a loose condition and thus
giving better predictions for loose states when considering
ϕ′cv. The data points calculated for K0 using ϕ′mob in Jaky’s
equation are located above those measured in the
numerical simulations. Considering that the ratio of hori-
zontal to vertical stresses can be expressed as (1 − sinϕ′mob)/
(1+sinϕ′mob), applying ϕ′mob in Jaky’s equation would
displace the predicted values from those measured. The
variance of the numerical K0 is in line with those reported
from laboratory experiments. This can be observed in Fig. 5,
which shows K0 against ϕ′cv for a range of soils including
sands and clays as summarised by Wood (1990) based on
results from Wroth (1972) and Ladd et al. (1977). Jaky’s
equation is also included in Fig. 5: the experimental results
are enclosed between −0·20 and +0·12 from Jaky’s equation,
with the numerical results also falling between these limits.
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Micro-scale analysis
Prior authors have attributed the K0 dependency on void
ratio to the different internal fabrics formed during sample
preparation (Wanatowski & Chu, 2007; Lee et al., 2013).
However, these relationships are hypothetical as the material
fabric cannot be directly quantified in conventional labora-
tory tests. The DEM simulation data provide information on

the direction of contacts. Satake (1982) proposed quantify-
ing structural (fabric) anisotropy using the fabric tensor,
which is defined as

Φij
* ¼ 1

Nc

XNc

1

ninj ð2Þ
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where Nc is the total number of contacts and ni is the unit
contact normal. The largest, intermediate and smallest
eigenvalues of the fabric tensor are denoted as Φ1, Φ2 and
Φ3, respectively. The ratio betweenΦ3 andΦ1 can be adopted
to describe the degree of structural anisotropy, F =Φ3/Φ1,
with the condition Φ3=Φ2 being closely satisfied. F=0
represents the highest degree of structural anisotropy while
F=1 indicates an isotropic state. Figures 6(a) and 6(b)
show the evolution of normalised F (F/F0) with σ′v and ε1
respectively, F0 being the degree of structural anisotropy
after isotropic compression and is in the range 0·9904 to
0·9961. Figure 6(a) indicates that F/F0 decreases as σ′v
increases. Dense samples attained lower values of F/F0 than
looser samples and, as shown in Fig. 6(b), dense samples
also showed a more rapid decrease in F/F0 than looser
samples during straining. Figure 6(c) plots K0 against F/F0
(up to ε1=0·25%), from which it is evident that K0 values
increase as F/F0 values increase for all the packing densities
considered. In general, while dense samples showed a higher
degree of anisotropy, loose samples remained more isotropic.
It is also noticeable that while K0 decreases with σ′v, the
degree of structural anisotropy increases with σ′v.
Rothenburg & Bathurst (1989) analytically showed that

the stress ratio is related to different sources of anisotropy,
including geometrical anisotropy, normal contact force

anisotropy and tangential contact force anisotropy, of
which normal contact force anisotropy (an) dominates. It is
worth exploring the K0–an relationship for the DEM simu-
lations. The definition of an follows Rothenburg & Bathurst
(1989) and Guo & Zhao (2013), with the average normal
contact force tensor expressed by equation (3) (where Φij

0*

is the deviatoric part of Φij
*

) with its probability distribution
given by equation (4) and anij ¼ ð15=2ÞF*0n

ij =f̄ 0. f̄ 0 ¼ Fn
ii

*
is

the average normal contact force calculated considering the
entire Ω, different from the mean normal contact force
averaged over all contacts. an is related to the second
invariant of aij

n as an= [(3/2)aij
naij

n]1/2.

F
*

ij
n ¼ 1

4π

ð

Ω

f̄ nðΩÞninj dΩ

¼ 1
Nc

XNc

1

fnninj
1þ ð15=2ÞΦij

0*
nknl

ð3Þ

f̄ nðΩÞ ¼ f̄ 0½1þ anij � ð4Þ
Figures 7(a) and 7(b) indicate the evolution of an with σ′v

and ε1, respectively. There is a clear influence of the initial
void ratio, with denser samples attaining higher values of an
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than looser ones. Figure 7(b) shows that all samples attained
an almost constant value of an after 0·05% of ε1. Figure 7(c)
plots K0 against an, where a similar path is noticed for all the
samples.
The relationships between K0 and F/F0 at different values

of σ′v and ε1 are presented in Figs 8(a) and 8(b), respectively.
In both cases, and for all stages, a linear relationship can be
found between K0 and F/F0 in which higher values of K0
are always related to higher F/F0. The relationships between
K0 and an at different values of σ′v and ε1 are presented in
Figs 8(c) and 8(d), respectively. Regardless of stress or strain
levels, the relationship between K0 and an can be represented
by a single line that shows lower values of K0 at higher an.
For a clearer illustration of the influence of structural

anisotropy and normal contact force anisotropy, Figs 9(a)
and 9(b) present contact rose diagrams for a dense (test
K0-1) sample and a loose (test K0-9) sample at the same
level of σ′v considering the projections onto the x–z vertical
plane using an angular increment of 10°. The radial length
of each bin indicates the number of contacts oriented within
the angle defining the bin. The colour of each bin is
proportional to the sum of the normal contact forces that
are present in that bin. For the dense sample, the stronger
contacts that carry higher forces are preferentially aligned in
the loading (i.e. vertical) direction, while the weaker contacts
(transmitting lower force) tend to be oriented orthogonal to
the loading direction. A larger number of contacts are
present in the vertical direction than in the horizontal
direction, leading to lower values of F. More stress is
transmitted in the vertical direction than in the horizontal
direction, resulting in a larger value of σ′v and a smaller
value of σ′h. The loose sample presents a more isotropic
distribution of both contact direction and force magnitude,
yielding higher values of F. Moreover, contact forces
transmitted in the horizontal direction are closer in
magnitude to those transmitted in the vertical direction,

making the values of σ′v and σ′h more alike. This explains
why K0 values decrease with increasing packing density.

CONCLUSIONS
One-dimensional tests on initially isotropic samples with a
range of void ratios were simulated using the discrete element
method. The resulting dependency of K0 on void ratio
qualitatively agrees with previously published laboratory
tests (i.e. K0 increases as void ratio increases). A power-law
relationship between K0 and e0 was observed and this
relationship depends on the stress level and vertical strain.
Three definitions of ϕ′ were considered when applying Jaky’s
expression (ϕ′mob, ϕ′p and ϕ′cv) and compared to the
measured K0. While the use of ϕ′p gave the best match at
lower void ratios and ϕ′cv reported fair predictions for looser
samples, none of these expressions gave a good match with
the measured K0 values for the entire range of void ratio and
stress levels considered. Micro-scale analysis revealed that
the variation of K0 with void ratio is related to the degree of
both structural anisotropy and normal contact force aniso-
tropy. K0 decreases linearly with increasing structural
anisotropy, quantified using the ratio of major and minor
principal values of the fabric tensor F. The K0–F relationship
was seen to depend on stress and strain level while a unique
relationship, independent of stress or strain level, was found
between K0 and an. Dense samples had higher degrees of
structural and normal contact force anisotropy at all test
stages while loose samples remained more isotropic with
lower normal contact force anisotropy. Loose samples were
found to transmit similar stresses in all directions while, for
dense samples, stress transmission coincided preferentially
with the vertical loading direction. Therefore, K0 values for
dense samples are smaller than those of loose samples. The
results of this study support the hypothesis of Lee et al.
(2013) and Wanatowski & Chu (2007) that K0 values are
related to the internal structure.

ACKNOWLEDGEMENTS
This research was supported and financed by The University
of Hong Kong Seed Funding Programme for Basic
Research. Mr Lopera Perez would like to thank the IT
Department at The University of Hong Kong for providing
access to the high-performance computer HPCPOWER2 in
order to conduct the simulations presented in this work.

REFERENCES
Bagi, K. (1996). Stress and strain in granular assemblies. Mech.

Mater. 22, No. 3, 165–177.
Been, K. & Jefferies, M. G. (1985). A state parameter for sands.

Géotechnique 35, No. 2, 99–112.
Chu, J. &Gan, C. L. (2004). Effect of void ratio onK0 of loose sand.

Géotechnique 54, No. 4, 285–288.
da Cruz, F., Emam, S., Prochnow, M., Roux, J. N. & Chevoir, F.

(2005). Rheophysics of dense granular materials: discrete simul-
ation of plane shear flows. Phys. Rev. E 72, No. 2, 021309.

Guo, N. & Zhao, J. (2013). The signature of shear-induced aniso-
tropy in granular media. Comput. Geotech. 47, 1–15.

Guo, P. J. & Stolle, D. F. E. (2006). Fabric and particle shape
influence onK0 of granular materials. Soils and Found. 46, No. 5,
639–652.

Hendron, A. J. (1963). The behaviour of sand in one-dimensional
compression. PhD thesis, University of Illinois at Urbana
Champaign, Urbana, IL, USA.

Huang, X., Hanley, K. J., O’Sullivan, C. & Kwok, C. Y. (2014a).
Effect of sample size on the response of DEM samples with a
realistic grading. Particuology 15, 107–115.

Huang, X., Hanley, K. J., O’Sullivan, C. & Kwok, C. Y. (2014b).
Exploring the influence of interparticle friction on critical state

40
N

35

30

25

20

15

10

5

0 950 1900 2850 3800950190028503800

e0 = 0·544 – σv = 250 kPa

40
N

35

30

25

20

15

10

5

0 950 1900 2850 3800950190028503800

e0 = 0·664 – σv = 250 kPa

(a)

(b)

'

'

Fig. 9. Comparison of contact rose diagrams at the same value
of σ′v for a dense sample (a) and a loose sample (b)

Lopera Perez, Kwok, O’Sullivan, Huang and Hanley102

Downloaded by [ University of Hong Kong] on [16/08/16]. Copyright © ICE Publishing, all rights reserved.



behaviour using DEM. Int. J. Numer. Anal. Methods 38, No. 12,
1276–1297.

Jaky, J. (1944). A nyugalmi nyomas tenyezoje (The coefficient of
earth pressure at rest). J. Soc. Hung. Eng. Arch. 78, No. 22,
355–358 (in Hungarian).

Ladd, C. C., Foott, R., Ishihara, K., Schlosser, F. & Poulus, H. G.
(1977). Stress-deformation and strength characteristics. Proc.
9th Int. Conf. on Soil Mechanics and Foundation Engineering,
Tokyo. Tokyo: Japanese Society of Soil Mechanics and
Foundation Engineering, vol. 2, pp. 421–494.

Lee, J., Yun, T. S., Lee, D. & Lee, J. (2013). Assessment of K0
correlation to strength for granular materials. Soils and Found.
53, No. 4, 584–595.

Mesri, G. & Hayat, T. M. (1993). The coefficient of earth pressure at
rest. Can. Geotech. J. 30, No. 4, 647–666.

Mesri, G. & Vardhanabhuti, B. (2007). Coefficient of earth pressure
at rest for sands subjected to vibration. Can. Geotech. J. 44,
No. 10, 1242–1263.

GDR MiDi (Groupement de Recherche Milieux Divisés) (2004).
On dense granular flows. Eur. Phys. J E 14, No. 4, 341–365.

Northcutt, S. & Wijewickreme, D. (2013). Effect of particle fabric
on the coefficient of lateral earth pressure observed during
one-dimensional compression of sand. Can. Geotech. J. 50,
No. 5, 457–466.

Okochi, Y. & Tatsuoka, F. (1984). Some factors affecting K0-values
of sand measured in triaxial cell. Soils and Found. 24, No. 3,
52–68.

Plimpton, S. (1995). Fast parallel algorithms for short-range
molecular dynamics. J. Comput. Phys. 117, No. 1, 1–19.

Potyondy, D. O. & Cundall, P. A. (2004). A bonded-particle
model for rock. Int. J. Rock. Mech. Mining Sci. 41, No. 8,
1329–1364.

Rothenburg, L. & Bathurst, R. J. (1989). Analytical study
of induced anisotropy in idealized granular materials.
Géotechnique 39, No. 4, 601–614.

Satake, M. (1982). Fabric tensor in granular materials. In
Deformation and failure of granular materials (P. A. Vermeer &
H. J. Luger (eds)). Rotterdam: Balkema, pp. 63–68.

Talesnick, M. L. (2012). A different approach and result to the
measurement of K0 of granular materials. Géotechnique 62,
No. 11, 1041–1045.

Thornton, C. (2000). Numerical simulations of deviatoric shear
deformation of granular media. Géotechnique 50, No. 1, 43–53.

Wanatowski, D. & Chu, J. (2006). Stress–strain behaviour of a
granular fill measured by a new plane-strain apparatus. Geotech.
Test J. 29, No. 2, 149–157.

Wanatowski, D. & Chu, J. (2007). K0 of sand measured by
a plane-strain apparatus. Can. Geotech. J. 44, No. 8, 1006–1012.

Wood, D. M. (1990). Soil behaviour and critical state soil mechanics.
Cambridge: Cambridge University Press.

Wroth, C. P. (1972). General theories of earth pressure and
deformation. Proc. 5th Euro. Conf. on Soil Mechanics and
Foundation Engineering, Madrid. Madrid: Sociedad Española de
Mecanica del Suelo y Cimentaciones, vol. 2, pp. 33–52.

WHAT DO YOU THINK?

To discuss this paper, please email up to 500 words to the
editor at journals@ice.org.uk. Your contribution will be
forwarded to the author(s) for a reply and, if considered
appropriate by the editorial panel, will be published as a
discussion.
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