
 1

Application Note

MEGAHIT: An ultra-fast single-node solution for large and com-
plex metagenomics assembly via succinct de Bruijn graph
Dinghua Li1,†, Chi-Man Liu2,†, Ruibang Luo2,†, Kunihiko Sadakane3 and Tak-Wah Lam1,2,*
1 HKU-BGI Bioinformatics Algorithms Research Laboratory & Department of Computer Science, University of Hong Kong,
Hong Kong 2 L3 Bioinformatics Limited, Hong Kong 3 National Institute of Informatics, Chiyoda-ku, Tokyo, Japan
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

ABSTRACT
Summary: MEGAHIT is a NGS de novo assembler for assembling
large and complex metagenomics data in a time- and cost-efficient
manner. It finished assembling a soil metagenomics dataset with
252Gbps in 44.1 hours and 99.6 hours on a single computing node
with and without a GPU, respectively. MEGAHIT assembles the data
as a whole, i.e., no pre-processing like partitioning and normalization
was needed. When compared with previous methods (Chikhi and
Rizk, 2012; Howe, et al., 2014) on assembling the soil data,
MEGAHIT generated a 3-time larger assembly, with longer contig
N50 and average contig length; furthermore, 55.8% of the reads
were aligned to the assembly, giving a 4-fold improvement .
Availability: The source code of MEGAHIT is freely available at
https://github.com/voutcn/megahit under GPLv3 license.
Contact: rb@l3-bioinfo.com, twlam@cs.hku.hk

1 INTRODUCTION
 Next generation sequencing technologies have offered new op-
portunities to study metagenomics and understand various micro-
bial communities such as human guts, rumen and soil. Due to the
lack of reference genomes, de novo assembly of metagenomics
data (short reads) is a beneficial and almost inevitable step for
metagenomics analysis (Qin, et al., 2010). This step is, however,
constrained by the heavy requirement of computational resources,
especially for large and complex datasets encountered in environ-
mental metagenomics (Howe, et al., 2014). The soil metagenomics
dataset recently published by Howe et al. comprises 252G base-
pairs even after trimming low quality bases. The dataset was suc-
cessfully assembled with pre-processing steps including partition-
ing and digital normalization. At present no de novo assembler can
assemble the data as a whole using a feasible amount of computer
memory. Estimated memory requirement for SOAPdenovo2 (Luo,
et al., 2012) and IDBA-UD (Peng, et al., 2012) to assemble the soil
data is at least 4TB. As the volume of metagenomics data keeps
growing, we are motivated to develop MEGAHIT, an assembler
that can assemble large and complex metagenomics data in a time-
and cost-efficient manner, especially on a single-node server (cur-
rent maximum memory capacity 768 GB for a 2-socket server).

2 METHODS
 MEGAHIT makes use of succinct de Bruijn graphs (Bowe, et
al., 2012), which are compressed representation of de Bruijn
graphs. A succinct de Bruijn graph (SdBG) encodes a graph with m

*To whom correspondence should be addressed. † Equal first-author.

edges in O(m) bits, and supports O(1) time traversal from a vertex
to its neighbors. Our implementation has added a bit-vector of
length m to mark the validity of each edge (so as to support dy-
namic removal of edges efficiently), and an auxiliary vector of 2kt
bits (where k is the k-mer size and t is the number of zero-indegree
vertices) to store the sequence of zero-indegree vertices to ensure
the graph being lossless.
 Despite its advantages, constructing a SdBG efficiently is non-
trivial. MEGAHIT is rooted in a fast parallel algorithm for SdBG
construction; the bottleneck is sorting a set of (k+1)-mers that are
the edges of an SdBG in reverse lexicographical order of their
length-k prefixes (k-mers). MEGAHIT exploits the parallelism of a
Graphics Processing Unit (GPU, CUDA-enabled) by adapting the
recent BWT-construction algorithm CX1 (Liu, et al., 2014), which
takes advantage of a GPU to sort the suffices of a set of reads very
efficiently. Limited by the relatively small size of GPU’s on-board
memory, we adopt a block-wise strategy that partitions the k-mers
according to their length-l prefix (l=8 in our implementation). The
k-mers in consecutive partitions that fit within the GPU memory
are sorted together. Leveraging the parallelism of GPU,
MEGAHIT speeds up the construction by 3-5 times over its CPU-
only counterpart.
 Notably, sequencing error is problematic, because a single base
of sequencing error leads to k erroneous k-mer singletons, which
increases the memory consumption of MEGAHIT significantly. To
cope with the problem, before graph construction, all (k+1)-mers
from the input reads are sorted and counted, and only (k+1)-mers
that appear at least d (2 by default) times are kept as solid-kmer.
This method removes many spurious edges, but may be risky for
metagenomics assembly since many low-abundance species may
have been sequenced at very low depth. Thus we introduce a mer-
cy-kmer strategy to recover these low-depth edges. Given two solid
(k+1)-mers x and y from the same read, where x has no outdegree
and y has no indegree. If all (k+1)-mers between x and y in that
read are not solid, they will be added to the de Bruijn graph as
mercy-kmers. Mercy-kmers strengthen the contiguity of low-depth
regions. Without this approach, many authentic low-depth edges
would be incorrectly identified as tips and removed.
 Based on SdBG, we implemented a multiple k-mer size strategy
in MEGAHIT (Peng et al., 2012). The method iteratively builds
multiple SdBGs from a small k to a large k. While a small k-mer
size is favorable for filtering erroneous edges and filling gaps in
low-coverage regions, a large k-mer size is useful for resolving
repeats. In each iteration, MEGAHIT cleans potentially erroneous
edges by removing tips, merging bubbles and removing low local
coverage edges. The last approach is especially useful for meta-
genomics, which suffers from non-uniform sequencing depths.
The overall workflow of MEGAHIT is shown in Fig 1.

Li et al.

2

Fig. 1. The workflow of MEGAHIT

3 RESULTS
 Table 1 compares the performance of MEGAHIT with SPAdes
(Bankevich, et al., 2012) on three subsets (100-fold, 20-fold and
10-fold) of an E. coli MG1655 dataset. QUAST (Gurevich, et al.,
2013) was used to evaluate the assembled contigs (Table 1).
MEGAHIT (CPU version) is 6 times faster than SPAdes, and per-
forms well even on the low-coverage subset.
 To evaluate the performance on large scale metagenomics data,
we assembled an Iowa prairie soil metagenomics dataset that com-
prises 3.3 billion reads totaling 252 billion base-pairs (Howe, et al.,
2014) using MEGAHIT and Minia, another memory-efficient as-
sembler (Chikhi and Rizk, 2012). The assembly conducted by
Howe et al. was included for comparison (Table 2). On a server
with 384 GB memory, MEGAHIT took 44.1 hours, ~7 times faster
than Minia. It reached peak memory consumption at 345 GB dur-
ing k-mer counting and SdBG construction; this matches the ex-
pectation since MEGAHIT’s sorting module automatically adjusts
to fully utilize all available memory in a server. Notably,
MEGAHIT can assemble this dataset with as little as 260GB
memory, using 55.3 hours (Supp. Section 4).

 To be consistent with Howe’s analysis, we only considered
contigs ≥300 bp for further analysis. The contigs produced by
MEGAHIT had a total size at least 3 times larger than by other
methods, and achieved better statistics on N50, average length, and
the number of long contigs (length ≥1000bp). Thus MEGAHIT
gives better assembly contiguity. Raw reads were aligned back to
the assembled contigs using Bowtie2 (Langmead and Salzberg,
2012). As shown in Table 3, MEGAHIT gets >4 times more reads
mapped and 5-6 times more read pairs properly aligned. 37% of
distinct 17-mers appeared ≥2 in the assembly, which might imply
that MEGAHIT did a better job in recovering low-abundance sub-
species in ultra-diversified metagenomics (Supp. Fig. S3).

4 CONCLUSIONS
 MEGAHIT enables an efficient assembly of large and complex
metagenomics data on a single server, while giving better com-
pleteness and contiguity. MEGAHIT is available in both CPU-only
and GPU-accelerated versions. With GPU, the assembly time of
the soil dataset is shortened from 4 days to less than 2 days.

Table 1. Performance of MEGAHIT and SPAdes on the E.coli dataset

 MEGAHIT
100x

MEGAHIT
20 x

MEGAHIT
10 x

SPAdes
10 x

N50 (bp) 73,736 52,352 9,067 18,264
Largest Alignment (bp) 221k 178k 31k 62k

bp in contigs >= 1kbp 4.55M 4.55M 4.52M 4.55M
Genome Fraction 98.0% 98.1% 97.4% 97.9%

Misassemblies (bp) 2k 41k 81k 64k
Wall Time (sec.) 185 82 47 318

MEGAHIT: CPU version, options “--k-min 21 --k-max 81 –m 1000000000”; SPAdes and QUAST
was run with default parameters.

Table 2. Summary statistics for MEGAHIT, Howe et al. and Minia

 MEGAHIT Howe et al. Minia !!!

Wall Time (hr) 44.1 >488 331.4 !!!
Peak Memory (GB) 345 287 29 !!!

Total Size (Mbp) 4,902 1,503 1,490 !!!
Average Length (bp) 633 485 505 !!!

N50 (bp) 657 471 488 !!!
Longest (bp) 184,210 9,397 32,679 !!!
of Contigs 7,749,211 3,096,464 2,951,575 !!!

of Contigs ≥ 1kbp 841,257 129,513 158,402 !!!
MEGAHIT utilizes all 24 CPU threads with options “--k-min 27 --k-max 87 --k-step 10 -m
370000000000”. The wall time for CPU version of MEGAHIT is 99.4 hour. Minia does not support
multi-threads; it was run with k=31 and min_abundance=2. The time and memory of Howe et al.
were excerpted from the paper; the time accounts for digital normalization and partitioning only.

Table 3. Alignment statistics of MEGAHIT, Howe et al. and Minia

 MEGAHIT Howe et al. Minia

Total # of reads 3,252,369,195
Reads overall aligned (%) 55.81 10.72 13.03

Total # of SE reads 356,742,333
SE aligned 1 time (%) 37.00 8.72 12.38

SE aligned >1 time (%) 14.68 0.32 0.02
Total # of PE reads 1,447,813,431

PE p. aligned 1 time (%) 36.78 7.41 9.48
PE p. aligned >1 time (%) 8.90 0.20 0.01

PE improperly aligned (%) 2.67 0.54 0.82
SE: Single-end; PE: Paired-end; p.: Properly; Bowtie2 were run with “-L 27”.

ACKNOWLEDGEMENTS
We thank S.M. Yiu, C.M. Leung and Y. Peng for the detailed ex-
planation about IDBA-UD. We also thank C. Titus Brown for
providing the open evaluation with the E. coli data (Table 1).
Conflict of Interest: None declared.

REFERENCES
Bankevich, A., et al. (2012) SPAdes: a new genome assembly algorithm and its
applications to single-cell sequencing, Journal of Computational Biology, 19, 455-477.
Bowe, A., et al. (2012) Succinct de Bruijn Graphs. In Raphael, B. and Tang, J. (eds),
Algorithms in Bioinformatics. Springer Berlin Heidelberg, pp. 225-235.
Chikhi, R. and Rizk, G. (2012) Space-Efficient and Exact de Bruijn Graph
Representation Based on a Bloom Filter. In Raphael, B. and Tang, J. (eds), Algorithms
in Bioinformatics. Springer Berlin Heidelberg, pp. 236-248.
Gurevich, A., et al. (2013) QUAST: quality assessment tool for genome assemblies,
Bioinformatics, 29, 1072-1075.
Howe, A.C., et al. (2014) Tackling soil diversity with the assembly of large, complex
metagenomes, Proceedings of the National Academy of Sciences, 111, 4904-4909.
Langmead, B. and Salzberg, S.L. (2012) Fast gapped-read alignment with Bowtie 2,
Nat Meth, 9, 357-359.
Liu, C.-M., Luo, R. and Lam, T.-W. (2014) GPU-Accelerated BWT Construction for
Large Collection of Short Reads, arXiv:1401.7457.
Luo, R., et al. (2012) SOAPdenovo2: an empirically improved memory-efficient
short-read de novo assembler, GigaScience, 1, 18.
Peng, Y., et al. (2012) IDBA-UD: a de novo assembler for single-cell and meta-
genomic sequencing data with highly uneven depth, Bioinformatics, 28, 1420-1428.
Qin, J., et al. (2010) A human gut microbial gene catalogue established by
metagenomic sequencing, Nature, 464, 59-65.

