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ABSTRACT 
Summary: MEGAHIT is a NGS de novo assembler for assembling 
large and complex metagenomics data in a time- and cost-efficient 
manner. It finished assembling a soil metagenomics dataset with 
252Gbps in 44.1 hours and 99.6 hours on a single computing node 
with and without a GPU, respectively. MEGAHIT assembles the data 
as a whole, i.e., no pre-processing like partitioning and normalization 
was needed. When compared with previous methods (Chikhi and 
Rizk, 2012; Howe, et al., 2014) on assembling the soil data, 
MEGAHIT generated a 3-time larger assembly, with longer contig 
N50 and average contig length; furthermore, 55.8% of the reads 
were aligned to the assembly, giving a 4-fold improvement . 
Availability: The source code of MEGAHIT is freely available at 
https://github.com/voutcn/megahit under GPLv3 license. 
Contact: rb@l3-bioinfo.com, twlam@cs.hku.hk 

1 INTRODUCTION 
    Next generation sequencing technologies have offered new op-
portunities to study metagenomics and understand various micro-
bial communities such as human guts, rumen and soil. Due to the 
lack of reference genomes, de novo assembly of metagenomics 
data (short reads) is a beneficial and almost inevitable step for 
metagenomics analysis (Qin, et al., 2010).  This step is, however, 
constrained by the heavy requirement of computational resources, 
especially for large and complex datasets encountered in environ-
mental metagenomics (Howe, et al., 2014). The soil metagenomics 
dataset recently published by Howe et al. comprises 252G base-
pairs even after trimming low quality bases. The dataset was suc-
cessfully assembled with pre-processing steps including partition-
ing and digital normalization. At present no de novo assembler can 
assemble the data as a whole using a feasible amount of computer 
memory. Estimated memory requirement for SOAPdenovo2 (Luo, 
et al., 2012) and IDBA-UD (Peng, et al., 2012) to assemble the soil 
data is at least 4TB. As the volume of metagenomics data keeps 
growing, we are motivated to develop MEGAHIT, an assembler 
that can assemble large and complex metagenomics data in a time- 
and cost-efficient manner, especially on a single-node server (cur-
rent maximum memory capacity 768 GB for a 2-socket server). 

2 METHODS 
    MEGAHIT makes use of succinct de Bruijn graphs (Bowe, et 
al., 2012), which are compressed representation of de Bruijn 
graphs. A succinct de Bruijn graph (SdBG) encodes a graph with m 
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edges in O(m) bits, and supports O(1) time traversal from a vertex 
to its neighbors. Our implementation has added a bit-vector of 
length m to mark the validity of each edge (so as to support dy-
namic removal of edges efficiently), and an auxiliary vector of 2kt 
bits (where k is the k-mer size and t is the number of zero-indegree 
vertices) to store the sequence of zero-indegree vertices to ensure 
the graph being lossless.  
    Despite its advantages, constructing a SdBG efficiently is non-
trivial. MEGAHIT is rooted in a fast parallel algorithm for SdBG 
construction; the bottleneck is sorting a set of (k+1)-mers that are 
the edges of an SdBG in reverse lexicographical order of their 
length-k prefixes (k-mers). MEGAHIT exploits the parallelism of a 
Graphics Processing Unit (GPU, CUDA-enabled) by adapting the 
recent BWT-construction algorithm CX1 (Liu, et al., 2014), which 
takes advantage of a GPU to sort the suffices of a set of reads very 
efficiently. Limited by the relatively small size of GPU’s on-board 
memory, we adopt a block-wise strategy that partitions the k-mers 
according to their length-l prefix (l=8 in our implementation).  The 
k-mers in consecutive partitions that fit within the GPU memory 
are sorted together. Leveraging the parallelism of GPU, 
MEGAHIT speeds up the construction by 3-5 times over its CPU-
only counterpart. 
    Notably, sequencing error is problematic, because a single base 
of sequencing error leads to k erroneous k-mer singletons, which 
increases the memory consumption of MEGAHIT significantly. To 
cope with the problem, before graph construction, all (k+1)-mers 
from the input reads are sorted and counted, and only (k+1)-mers 
that appear at least d (2 by default) times are kept as solid-kmer. 
This method removes many spurious edges, but may be risky for 
metagenomics assembly since many low-abundance species may 
have been sequenced at very low depth. Thus we introduce a mer-
cy-kmer strategy to recover these low-depth edges. Given two solid 
(k+1)-mers x and y from the same read, where x has no outdegree 
and y has no indegree. If all (k+1)-mers between x and y in that 
read are not solid, they will be added to the de Bruijn graph as 
mercy-kmers. Mercy-kmers strengthen the contiguity of low-depth 
regions. Without this approach, many authentic low-depth edges 
would be incorrectly identified as tips and removed. 
    Based on SdBG, we implemented a multiple k-mer size strategy 
in MEGAHIT (Peng et al., 2012). The method iteratively builds 
multiple SdBGs from a small k to a large k.  While a small k-mer 
size is favorable for filtering erroneous edges and filling gaps in 
low-coverage regions, a large k-mer size is useful for resolving 
repeats. In each iteration, MEGAHIT cleans potentially erroneous 
edges by removing tips, merging bubbles and removing low local 
coverage edges. The last approach is especially useful for meta-
genomics, which suffers from non-uniform sequencing depths.  
The overall workflow of MEGAHIT is shown in Fig 1. 
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Fig. 1. The workflow of MEGAHIT 

3 RESULTS 
    Table 1 compares the performance of MEGAHIT with SPAdes 
(Bankevich, et al., 2012) on three subsets (100-fold, 20-fold and 
10-fold) of an E. coli MG1655 dataset. QUAST (Gurevich, et al., 
2013) was used to evaluate the assembled contigs (Table 1). 
MEGAHIT (CPU version) is 6 times faster than SPAdes, and per-
forms well even on the low-coverage subset. 
    To evaluate the performance on large scale metagenomics data, 
we assembled an Iowa prairie soil metagenomics dataset that com-
prises 3.3 billion reads totaling 252 billion base-pairs (Howe, et al., 
2014) using MEGAHIT and Minia, another memory-efficient as-
sembler (Chikhi and Rizk, 2012). The assembly conducted by 
Howe et al. was included for comparison (Table 2). On a server 
with 384 GB memory, MEGAHIT took 44.1 hours, ~7 times faster 
than Minia. It reached peak memory consumption at 345 GB dur-
ing k-mer counting and SdBG construction; this matches the ex-
pectation since MEGAHIT’s sorting module automatically adjusts 
to fully utilize all available memory in a server. Notably, 
MEGAHIT can assemble this dataset with as little as 260GB 
memory, using 55.3 hours (Supp. Section 4).  

  To be consistent with Howe’s analysis, we only considered 
contigs ≥300 bp for further analysis. The contigs produced by 
MEGAHIT had a total size at least 3 times larger than by other 
methods, and achieved better statistics on N50, average length, and 
the number of long contigs (length ≥1000bp). Thus MEGAHIT 
gives better assembly contiguity. Raw reads were aligned back to 
the assembled contigs using Bowtie2 (Langmead and Salzberg, 
2012). As shown in Table 3, MEGAHIT gets >4 times more reads 
mapped and 5-6 times more read pairs properly aligned. 37% of 
distinct 17-mers appeared ≥2 in the assembly, which might imply 
that MEGAHIT did a better job in recovering low-abundance sub-
species in ultra-diversified metagenomics (Supp. Fig. S3). 

4 CONCLUSIONS 
    MEGAHIT enables an efficient assembly of large and complex 
metagenomics data on a single server, while giving better com-
pleteness and contiguity. MEGAHIT is available in both CPU-only 
and GPU-accelerated versions. With GPU, the assembly time of 
the soil dataset is shortened from 4 days to less than 2 days. 

Table 1. Performance of MEGAHIT and SPAdes on the E.coli dataset 

 MEGAHIT 
100x 

MEGAHIT 
20 x 

MEGAHIT 
10 x 

SPAdes 
10 x 

N50 (bp) 73,736 52,352 9,067 18,264 
Largest Alignment (bp)  221k 178k 31k 62k 

bp in contigs >= 1kbp 4.55M 4.55M 4.52M 4.55M 
Genome Fraction 98.0% 98.1% 97.4% 97.9% 

Misassemblies (bp) 2k 41k 81k 64k 
Wall Time (sec.) 185 82 47 318 

MEGAHIT: CPU version, options “--k-min 21 --k-max 81 –m 1000000000”; SPAdes and QUAST 
was run with default parameters. 

Table 2.  Summary statistics for MEGAHIT, Howe et al. and Minia 

 MEGAHIT Howe et al. Minia !!!

Wall Time (hr) 44.1 >488 331.4 !!!
Peak Memory (GB) 345 287 29 !!!

Total Size (Mbp) 4,902 1,503 1,490 !!!
Average Length (bp) 633 485 505 !!!

N50 (bp) 657 471 488 !!!
Longest (bp) 184,210 9,397 32,679 !!!
# of Contigs 7,749,211 3,096,464 2,951,575 !!!

# of Contigs ≥ 1kbp 841,257 129,513 158,402 !!!
MEGAHIT utilizes all 24 CPU threads with options “--k-min 27 --k-max 87 --k-step 10 -m 
370000000000”. The wall time for CPU version of MEGAHIT is 99.4 hour. Minia does not support 
multi-threads; it was run with k=31 and min_abundance=2. The time and memory of Howe et al. 
were excerpted from the paper; the time accounts for digital normalization and partitioning only.  

Table 3. Alignment statistics of MEGAHIT, Howe et al. and Minia 

 MEGAHIT Howe et al. Minia 

Total # of reads 3,252,369,195 
Reads overall aligned (%) 55.81 10.72 13.03 

Total # of SE reads 356,742,333 
SE aligned 1 time (%) 37.00 8.72 12.38 

SE aligned >1 time (%) 14.68 0.32 0.02 
Total # of PE reads 1,447,813,431 

PE p. aligned 1 time (%) 36.78 7.41 9.48 
PE p. aligned >1 time (%) 8.90 0.20 0.01 

PE improperly aligned (%) 2.67 0.54 0.82 
SE: Single-end; PE: Paired-end; p.: Properly; Bowtie2 were run with “-L 27”. 
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