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STAVES: Speedy Tensor-Aided Volterra-Based
Electronic Simulator

Abstract—Volterra series is a powerful tool for blackbox macro-
modeling of nonlinear devices. However, the exponential complex-
ity growth in storing and evaluating higher order Volterra kernels
has limited so far its employment on complex practical applica-
tions. On the other hand, tensors are a higher order generalization
of matrices that can naturally and efficiently capture multi-
dimensional data. Significant computational savings can often be
achieved when the appropriate low-rank tensor decomposition is
available. In this paper we exploit a strong link between tensors
and frequency-domain Volterra kernels in modeling nonlinear
systems. Based on such link we have developed a technique
called speedy tensor-aided Volterra-based electronic simulator
(STAVES) utilizing high-order Volterra transfer functions for
highly accurate time-domain simulation of nonlinear systems.
The main computational tools in our approach are the canonical
tensor decomposition and the inverse discrete Fourier transform.
Examples demonstrate the efficiency of the proposed method in
simulating some practical nonlinear circuit structures.

Keywords—Tensor, tensor decomposition, Volterra series, nonlin-
ear simulation, discrete Fourier transform

I. INTRODUCTION

The advancement in electronic design automation (EDA) has
been crucial in supporting the ever-growing complexity and
functionality in modern electronic products. Fast and accurate
device and on-chip structure modeling and simulation are at
the heart of EDA research. In particular, the analog and radio-
frequency modules, though typically occupying a small part of
a mixed-signal chip, are critical but difficult to analyze owing
to their inherent nonlinearities. An important analytical tool
for describing nonlinear systems is the Volterra theory [1],
[2] which has been in use for at least more than half a
century. In particular, the Volterra series has been successfully
applied to modeling and simulating weakly nonlinear systems,
e.g., [1], [3], [4]. Some recent work [5] developed a systematic
approach to obtain the Volterra series representation from
X-parameters [6]–[8] via the harmonic input method. The
extracted Volterra transfer functions then allow time-domain
simulations to be conducted by the frequency-domain Volterra
kernels. This further facilitates the application of Volterra
series on blackbox macro-modeling of nonlinear devices and
systems. Although the formulation of Volterra series does
not preclude itself from modeling strong nonlinearities, the
exponential complexity growth in storing and evaluating higher
order Volterra kernels and transfer functions results in the so-
called “curse of dimensionality” that forbids practical imple-
mentation.

On the other hand, if we regard scalars, vectors and matrices
as dth-order data structures whereby d = 0, 1, 2, respectively,
then tensors are higher order (d ≥ 3) counterparts [9]. In fact,

many engineering problems and data can be represented intrin-
sically as multi-dimensional arrays. Using the tensor format to
present their inherent structure can often lead to significant
savings in computation and storage, thus providing a powerful
tool to overcome the curse of dimensionality. The tensor
representation and decompositions were proposed and studied
almost a century ago [10]. However their potential power
was only recognized and successfully demonstrated around
the 1980s in chemometrics and psychometrics [11]. In the
past decade, their use has further spread into communications,
signal processing, numerical linear algebra and big data [12]–
[17] etc. Nonetheless, in the EDA field and particularly in
nonlinear circuit modeling and simulation, tensors still remain
a relatively new technique.

The key contribution of this paper is the proposal and
demonstration of the utilization of the canonical tensor decom-
position for a highly compact representation of the frequency-
domain Volterra kernels. Consequently, despite the order of the
kernel or of the nonlinearity, a single off-line decomposition
(the computationally expensive step) gives rise to several factor
matrices which can then be repeatedly used with the inverse
Fourier transform (IFT) (the computationally cheap step) to
produce time-domain simulations subject to arbitrary inputs.
This procedure is summarized in a routine we named: speedy
tensor-aided Volterra-based electronic simulator (STAVES).

We remark that the integration of Volterra theory and
tensors has also appeared in previous works on nonlinear
simulation [18], [19] and in a different context of system
identification [20]. The former works in [18], [19] use tensor
decompositions with ad hoc symmetrization of tensor mode
factors, while the method in [20] is the reverse process
of reconstructing the rank-1 tensors (called outer products)
from time-domain observations. It should be noticed that all
such previously existent works are time-domain methods. This
paper differs in the sense that STAVES allows a genuine use
of frequency-domain Volterra transfer functions, which can be
easily derived from X-parameters. Indeed, with its elegant for-
mulation and low complexity in representing large nonlinear-
ities, we believe STAVES constitutes a powerful supplement,
if not a replacement, to existing nonlinear circuit simulation
platforms. We expect further optimization of STAVES, both
theoretically and numerically, will come along shortly after
this first inception.

This paper is organized as follows. Section II reviews
Volterra series and its kernel extraction, as well as the basics
of tensors. Section III presents the STAVES algorithm. Nu-
merical examples are given in Section IV, together with some
additional remarks. Finally, Section VI draws the conclusion.
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II. BACKGROUND

A. Volterra series

Volterra theory has long been used in analyzing communica-
tion systems and nonlinear control [1], [2]. Volterra series can
be regarded as a Taylor series with memory effects since its
evaluation at a particular time point requires input information
from the past. Specifically, a nonlinear time-invariant system
with an input u(t) and an output y(t) can be expanded into a
Volterra series as

y(t) = y1(t) + y2(t) + y3(t) + · · · ,

where

yn(t) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

hn(τ1, · · · , τn)·

u(t− τ1) · · ·u(t− τn)dτ̄ , (1)

where dτ̄ = dτ1 · · · dτn, and hn(τ1, · · · , τn) is the nth-
order Volterra kernel. Due to the commutable product struc-
ture of u(t − τ1) · · ·u(t − τn) in higher order (n ≥ 2)
terms, the kernel is not unique. However it can be made
unique via symmetrization by permuting arguments [2], e.g.,
for n = 2, h2 ← (h2(t1, t2) + h2(t2, t1)) /2. We will as-
sume symmetric kernels from now on. Note that y1 is the
usual first-order convolution with a frequency-domain input-
output relationship Y1(ω) = H1(ω)U(ω) where H1(ω) =∫∞
−∞ h1(τ)e−jωτdτ is the impulse response transfer function

and U(ω) =
∫∞
−∞ u(τ)e−jωτdτ . Analogously, the (nonlinear)

higher-order transfer functions (frequency-domain kernels) are
defined as

Hn(ω1, · · · , ωn) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

hn(τ1, · · · , τn)·

e−jω1τ1 · · · e−jωnτndτ̄ . (2)

Nonetheless, unlike the first-order case, there is no direct
counterpart in the (multivariate) frequency domain with respect
to a (univariate) input U(ω). Instead, we need to replace the
single time axis in the product of u in (1) by multiple axes as
u(t1 − τ1) · · ·u(tn − τn), yielding [2]

Yn(ω1, · · · , ωn) = Hn(ω1, · · · , ωn)U(ω1) · · ·U(ωn). (3)

The multi-dimensional IFT of (3) is a generalization of the
univariate formula, given by

yn(t1, · · · , tn) = F−1(n) (Yn(ω1, · · · , ωn))

=
1

(2π)n

∫ ∞
−∞
· · ·
∫ ∞
−∞

Yn(ω1, · · · , ωn)·

ejω1t1 · · · ejωntndω1 · · · dωn. (4)

To restore the required yn(t) which is the nth-order response
of the circuit subject to u(t), one then evaluates along the
diagonal line in the multi-time hyperplane, i.e.,

yn(t) = yn(t1, · · · , tn)|t1=t2=···=tn=t. (5)

Fig. 1. An example tensor A ∈ R3×4×2.

B. Volterra kernel extraction from X-parameters
Without knowing the state equation, it is difficult to deter-

mine the higher order Volterra kernels hn or transfer functions
Hn in nature. Fortunately, the recently developed X-parameter
method [5] provides a systematic way to obtain the Volterra
transfer functions from X-parameters. X-parameters are a
superset of S-parameters [6]–[8]. They describe the relation-
ships between incident and scattered waves by using not only
port-to-port but also harmonic-to-harmonic interactions under
certain large signal operating points.

To obtain a complete description of the Volterra kernels
Hn(ω1, ω2, . . . , ωn), a frequency sweep along the axes ω1, ω2,
. . . , ωn in the interested region is required when generating
the X-parameters. Suppose the number of frequency sweeping
points along each frequency axis is m, the equivalent number
of frequency sweeping points of Hn is nm thanks to the sym-
metry properties of the kernels. By matching the X-parameters
with the corresponding Volterra kernels at each frequency
point, the discrete frequency-domain Volterra kernels Hn can
be obtained.

Given Hn as the blackbox model of the nonlinear system,
its output response can be computed via (3) and (4), with
complexities O(mn) and O(nmn logm) if the fast Fourier
transform (FFT) is deployed in (4). However, it is readily seen
that the exponential growth of the computational complexity
and memory requirement forbids its application on highly
nonlinear systems.

C. Tensors
We use a calligraphic font, e.g., A, to denote a tensor.

A dth-order (or d-way) tensor, first assumed real for ease
of illustration, is a multi-way array A ∈ Rn1×n2×···×nd

generalizing the matrix format to its dth-order counterpart [9],
wherein the ni’s are called the dimensions. An example third-
order tensor is shown in Fig. 1.

A dth-order rank-1 tensor can be written as the outer product
of d vectors

A = a(1) ◦ a(2) ◦ · · · ◦ a(d), a(k) ∈ Rnk , (6)

where ◦ is the outer product. Its element Ai1i2···id =

a
(1)
i1
a
(2)
i2
· · · a(d)id , where a(k)ik

is the ikth entry of vector a(k).
The CANDECOMP/PARAFAC (CP) decomposition1 [9],

1CANDECOMP (canonical decomposition) by Carroll and Chang [11] and
PARAFAC (parallel factors) by Harshman [21].
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Fig. 2. A CP decomposition of a third-order tensor.

[11], [15], [21] approximates a tensor A by a finite sum of
rank-1 tensors, which can be written by

A ≈
R∑
j=1

a
(1)
j ◦ a

(2)
j ◦ · · · ◦ a

(d)
j , a

(k)
j ∈ Rnk , (7)

where R ∈ Z+ is called the rank of the approximation.
For ease of notation, people usually express the CP (7) by
A ≈ [[A(1), . . . ,A(d)]], where the factor matrices are defined
by A(k) , [a

(k)
1 , a

(k)
2 , . . . , a

(k)
R ] ∈ Rnk×R. Fig. 2 illustrates a

rank-R approximation of a third-order tensor. Several methods
have been developed to compute the CP decomposition, such
as the alternating least squares [11], [21] method or the
optimization method CPOPT [22]. For more details about
different CP methods, readers may refer to [9].

III. STAVES

In this section we present the main STAVES algorithm.
First of all, we obtain the X-parameter data generated by the
harmonic-balance simulation (e.g., the ADS X-parameter gen-
eration platform [23]) or measured by any modern nonlinear
vector network analyzers. Next, the discrete Volterra transfer
functions Hn can be found using the extraction method [5]
introduced in Section II-B.

It is readily seen that the discrete Hn and Yn in (2) and (3)
are naturally nth-order tensors

Hn, Yn ∈ C

n︷ ︸︸ ︷
m× · · · ×m, (8)

with each element (Hn)m1···mn
= Hn(ωm1

, . . . , ωmn
),

(Yn)m1···mn
= Yn(ωm1

, . . . , ωmn
) and m be the number of

sampling points along each frequency axis. Consequently, (3)
becomes

Yn = Hn � (U ◦ · · · ◦ U) , (9)

where � denotes the Hardmard product between tensors. It is
necessary to separate the real and imaginary parts of Hn such
that we end up with two real tensors Re(Hn) and Im(Hn) via
Hn = Re(Hn) + j Im(Hn).

The key to STAVES is to decompose high-order Re(Hn)
and Im(Hn) by CP for n > 2. We can always use certain
ranks Rreal,n and Rimag,n to approximate Re(Hn) and Im(Hn)

by

Re(Hn) ≈ [[RH(1)
n , . . . ,RH(n)

n ]] =

Rreal,n∑
j=1

h
(1)
r,j ◦ · · · ◦ h

(n)
r,j ,

Im(Hn) ≈ [[IH(1)
n , . . . , IH(n)

n ]] =

Rimag,n∑
j=1

h
(1)
i,j ◦ · · · ◦ h

(n)
i,j ,

(10)

where h
(k)
r,j , h

(k)
i,j ∈ Rm, RH(k)

n = [h
(k)
r,1 , . . . , h

(k)
r,Rreal,n

] ∈
Rm×Rreal,n and IH(k)

n = [h
(k)
i,1 , . . . , h

(k)
i,Rimag,n

] ∈ Rm×Rimag,n

are the factor matrices of Re(Hn) and Im(Hn), respectively.
Using the CP structure (10), the Hardmard product in (9)
simply becomes

Yn = [[RH(1)
n � U, . . . ,RH(n)

n � U ]]

+ j[[IH(1)
n � U, . . . , IH

(n)
n � U ]]. (11)

Furthermore, the multi-dimensional IFT in (4) reads

F−1(n)(Yn) = F−1(n)([[RH(1)
n � U, . . . ,RH(n)

n � U ]])

+ jF−1(n)([[IH
(1)
n � U, . . . , IH

(n)
n � U ]])

= [[F−1(1) (RH(1)
n � U), . . . ,F−1(1) (RH(n)

n � U)]]

+ j[[F−1(1) (IH(1)
n � U), . . . ,F−1(1) (IH(1)

n � U)]], (12)

where F−1(n) denotes the n-dimensional inverse discrete Fourier
transform (IDFT) and F−1(1) (H) represents the single-mode
IDFT on each column of the matrix H.

Moreover, the diagonal elements of yn(t1, . . . , tn) in (5)
(i.e., setting t1 = · · · = tn = t) can be easily read off
by reconstructing only the diagonal elements of (12) and the
elements are given by

(yn)k =

Rreal,n∑
j=1

n∏
l=1

(
F−1(1) (h

(l)
r,j � U)

)
k

+ j

Rimag,n∑
j=1

n∏
l=1

(
F−1(1) (h

(l)
i,j � U)

)
k
, (13)

where (·)k retrieves the kth element of the vector, for k =
1, . . . ,m. STAVES is summarized in Algorithm 1.

In STAVES, it is not necessary to perform the multi-
dimensional IDFT, neither to rebuild the whole tensor with
mn entries. The most expensive step in STAVES will be
calculating the CP decompositions for Re(Hn) and Im(Hn).
However, it is worth pointing out that these two decomposi-
tions (steps 5-6 in Algorithm 1) can be pre-computed once
“offline” and then reused for different on-going simulations.
For a specific u ∈ Rm, the complexity of evaluating yn by
steps 7-9 in Algorithm 1 is dominated by the single-mode
IDFT of n(Rreal,n+Rimag,n) vectors with length m. Therefore
the complexity will be in O((Rreal,n + Rimag,n)nm logm), in
contrast with the original complexity O(nmn logm) for (4).

In addition, STAVES requires the storage of only the factor
matrices in memory, with space complexity O((Rreal,n +



4

Algorithm 1 STAVES Algorithm
Input: H1,H2, . . . ,Hn, u
Output: y

1: U = F(1)(u);
2: y1 = F−1(1) (H1 � U);
3: y2 = F−1(2) (H2 � (U ◦ U));
4: for i = 3 to n do
5: [[RH

(1)
i , . . . ,RH

(i)
i ]] = CP(Re(Hi));

6: [[IH
(1)
i , . . . , IH

(i)
i ]] = CP(Im(Hi));

7: Yr = F−1(1) (RH
(1)
i � U)� · · · � F−1(1) (RH

(i)
i � U);

8: Yi = F−1(1) (IH
(1)
i � U)� · · · � F−1(1) (IH

(i)
i � U);

9: yi = sum(Yr, 2) + j · sum(Yi, 2);
{sum(·,2) represents the sum over each column vector
of a matrix.}

10: end for
11: y = y1 + y2 + · · ·+ yn;

L

C C

1

2

3

v1*v2

Z

Z

Z

(a)

(b) (c)

Fig. 3. (a) System diagram of a third-order mixer circuit. The symbol Π
denotes a mixer. (b) The equivalent circuit of the mixer. Z = R = 50 Ω. (c)
The circuit schematic diagram of the low-pass filters Ha, Hb and Hc, with
L = 42.52 nH and C = 8.5 pF.

Rimag,n)nm), while O(mn) memory is required for the con-
ventional approach.

IV. NUMERICAL EXAMPLES

We apply STAVES to several practical circuit design exam-
ples in order to verify its validity and demonstrate its efficiency
compared to the traditional approach via the multi-dimensional
IDFT. The algorithm is implemented in MATLAB and run on
a desktop with an Intel i5 3.3GHz CPU and 16GB RAM. The
CP decomposition in STAVES is computed by the CPOPT
algorithm provided in the Tensor Toolbox [15], [22].

A. Example 1: A third-order nonlinear mixer system
The first example is a third-order nonlinear system with

two mixers. Fig. 3(a) shows the system diagram. The circuit

TABLE I. FREQUENCY SWEEP SCHEME FOR THE 3-TONE
X-PARAMETERS GENERATOR

Frequency Start Step Stop
ω1 7 MHz 120 MHz 2.047 GHz
ω2 41 MHz 120 MHz 2.081 GHz
ω3 87 MHz 120 MHz 2.127 GHz

structure of the mixers is in Fig. 3(b), with V-I relationship
at port 3 given by i3(t) = [v1(t)v2(t)− v3(t)] /Z, where vj
and ij are the voltage and current at port j respectively. Ha,
Hb and Hc are identical linear low-pass filters whose scheme
shown in Fig. 3(c).

Volterra transfer functions of the nonlinear system are ex-
tracted from the X-parameters by using the method presented
in II-B. The 3-tone X-parameters of the nonlinear system are
generated by applying the ADS X-parameters generator [23].
The frequency sweep scheme of each axis is given in Table I.
The number of sampling points m is 201, therefore we
obtain the transfer functions H1 ∈ C201, H2 ∈ C201×201,
H3 ∈ C201×201×201, etc.

We focus on computing the third-order response y3, as
the procedures of calculating y1 and y2 are the same in
both approaches. Equations (3)-(5) are used by the traditional
approach to generate the reference result y3,ref, while the output
of our STAVES is denoted by y3,STAVES. The relative error of
STAVES is calculated by the normalized mean-square error of
its time-domain waveform as ‖y3,STAVES − y3,ref‖2/‖y3,ref‖2.
Meanwhile, the speedup of STAVES is defined as tref/tSTAVES,
where tref is the run time for executing (3)-(5) and tSTAVES is
the run time for STAVES to compute steps 7-9 in Algorithm 1.

The system is fed by a rectangular pulse input with raise
and fall time tr = tf = 1 ns, width tw = 5 ns, and magnitude
V0 = 1 V. We sweep the tensor ranks Rreal,3 = Rimag,3 = R
for R = 1, . . . , 100 to illustrate the performance of STAVES.
Fig. 4(a) demonstrates the time-domain responses of y3 when
different ranks are applied, comparing with the reference curve.
A fairly good match is observed when the rank R ≥ 20. On
the other hand, the relative error and speedup of STAVES for
different ranks are plotted in Fig. 4(b) and 4(c), respectively.
From these figures, a certain trade-off between the accuracy
and efficiency of STAVES can be discovered, though, a 60x
speedup is still achievable for R around 100 with a 0.6% error.

B. Example 2: A low-noise amplifier

The second numerical example is a low-noise amplifier.
The schematic is obtained from the X-parameter generation
tutorial of the example directory of ADS [23]. Again, the
3-tone X-parameters are generated with the same frequency
sweep scheme displayed in Table I and the Volterra transfer
functions are extracted. In this case, m is also 201 and we use
the same pulse excitation as the previous one.

This time, we sweep the tensor ranks Rreal,3 = Rimag,3 =
R for R = 1, . . . , 200. The time-domain waveforms of the
first 6 ns are plotted in Fig. 5(a). It is shown that STAVES
accurately captures the third-order response when R ≥ 40. The
error plotted in Fig. 5(b) indicates that a larger rank is needed
to achieve a similar accuracy compared to the previous circuit,
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Fig. 4. (a) Time-domain results of STAVES with different rank approxi-
mations for the mixer system. (b) Relative errors of STAVES with different
ranks. (c) Speedups brought by STAVE with different ranks.

due to the fast changing rate of y3 in this example. Meanwhile,
Fig. 5(c) shows that simulating an R = 200 model of STAVES
is still 10x faster than using the traditional approach. It further
confirms that STAVES can always accelerate the simulation if
the ranks are less than O(m).

V. REMARKS

Accurate low-rank CP approximations of Re(Hn) and
Im(Hn) are critical to the performance of STAVES. However,
to the best of our knowledge, there is no feasible way to
determine the actual rank of a specific tensor, nor is there
an empirical method to prescribe the rank before the CP
decomposition. Nonetheless, as it is shown in Section IV,
practical examples demonstrate that ranks Rreal,n and Rimag,n
less than O(m) are usually enough for fast and accurate
simulations.

A major merit of STAVES is that the factor matrices for
a particular device or on-chip structure are computed only
once, and can then be repeatedly used for all types of input,
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Fig. 5. (a) Time-domain results of STAVES with different rank approxima-
tions for the low noise amplifier. (b) Relative errors of STAVES with different
ranks. (c) Speedups brought by STAVE with different ranks.

while requiring only a linear complexity cost. That is, the most
expensive step is performed only once, with all subsequent
simulations being very cheap.

Moreover, a device or on-chip structure can be fully char-
acterized by the mode factors associated with each order of its
Volterra kernel without any knowledge of the actual schematic
or topology. This allows accurate third party simulation while
protecting IP of the circuit layout.

VI. CONCLUSION

This paper has described a natural connection between ten-
sor arithmetic and Volterra theory. Such connection allows fast
and accurate nonlinear circuit simulation. The key innovation
was to cast the frequency-domain Volterra kernels into tensors
and to obtain their rank-1 factors. High-order convolutions
in the time domain are then drastically reduced to single-
mode inverse discrete Fourier transform (IDFT) despite the
order of the kernel. The expensive tensor decomposition is
done only once whereas all subsequent simulations require
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only cheap single-mode IDFT for which highly optimized
routines abound. This algorithm, called speedy tensor-aided
Volterra-based electronic simulator (STAVES), has been veri-
fied through design examples achieving remarkable speedups
compared to the traditional routine.
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