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Abstract: This paper is concerned with constrained control of switched positive linear systems with discrete and distributed
delays. Our goal is to design a nonnegative controller with a prescribed upper bound, such that the closed-loop system is positive
and its state trajectory is located in a boundary whenever the initial condition is within the same boundary. In addition, we
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programming. Both continuous- and discrete-time cases are investigated in this paper. Finally, several illustrative examples are
provided to show the validity of the proposed approach.

Key Words: Constrained control, Positive systems, Switched systems, Time-delay systems

1 Introduction

Positive systems are often utilized to capture physical
systems involving quantities which are in nature nonnega-
tive. Unlike general linear systems, the state variables of
such systems are con�ned within a cone instead of a linear
space. More speci�cally, the state and output of positive
systems are always constrained in the nonnegative orthant
whenever the input and initial condition are nonnegative.
Positive systems are frequently encountered in a variety
of disciplines, including systems biology, pharmacokinetics
[1], ecology [2] and epidemiology. Such systems naturally
arise in the modeling of heat exchange, compartmental
networks [3] and genetic regulatory networks [4]. It is
shown in [5] that some electrical circuits consisting of
resistors, capacitors, coils, voltage and current sources can
also be modeled by positive systems. Due to their broad
applications, great efforts have been devoted to the analysis
and synthesis of positive systems in the literature, one may
refer to [6–11] and the references therein.
Constrained control, which is also related to controller

design with input saturation, has been extensively studied
for general linear system, one can refer to [12–14] for some
recent developments. This is mainly due to the fact that
real plants involve saturations on the input and system states
and thus it is of importance to design controllers such that
both the input and the state are con�ned within a prescribed
boundary. The study of bounded control for positive system
was initiated in [15, 16], where the state-feedback controller
synthesis with the requirement of positivity and boundedness
was solved based on linear programming. The results were
further extended to discrete- and continuous-time positive
linear systems with constant discrete delays in [17] and [18],
respectively. However, to the best of our knowledge, the
above mentioned works only investigate positive systems
with constant delays and constrained control of continuous-
time positive systems with time-varying delays has not
been addressed to date. On the other hand, the synthesis
techniques for constrained control of positive systems are
quite related to the stabilization problem. Therefore, we
recall some results on the stabilization of positive systems.

This work was partially supported by GRF HKU 7140/11E.

The state-feedback stabilization problem for positive sys-
tems was �rstly solved in [19] in terms of linear matrix
inequalities. The linear programming based state-feedback
controller synthesis method was proposed in [16]. Recently,
it is shown in [20] that the output-feedback stabilization
problem for positive systems with single input or single
output can also be solved directly by linear programming.
Motivated by the above discussion, in this paper, we

address the constrained control problem for delayed posi-
tive linear systems under arbitrary switching signals. The
lemmas [18, Lemmas 3,4] play a key role in the analysis
of constrained control for continuous-time positive systems
with constant delays. However, the technical proof for
these basic lemmas in [18] has to resort to a step-by-step
construction of the solution and therefore does not work
for the time-varying delay case. In contrast, our approach
only relies on the linearity and positivity of the system and
therefore is also valid for switched positive systems time-
varying discrete and distributed delays. Also note that the
methods on constrained control for discrete-time positive
systems with delays in [21] rely heavily on mathematical
induction and hence are no longer applicable for the analysis
of the continuous-time counterpart. In addition, the state-
feedback controller proposed in [17, 18] makes use of
the delayed state, which is no longer applicable when the
magnitudes of the delays are unknown. In this paper,
we only design a memoryless controller without delayed
feedback, which also works when the delays are unknown.
It is worth mentioning that the framework considered in
this paper is very general, where the discrete delays are not
restricted to be bounded and the switching signal can be
arbitrary.

2 Notations

In this section, we introduce some notations on positive
systems, which will be frequently used in the following
sections. Z, N, N+ and R denote the set of all the integers,
nonnegative integers, positive integers and real numbers,
respectively. All the matrices, if their dimensions are not
explicitly stated, are assumed to be compatible for algebraic
operations. 1 stands for a column vector with each entry
equals 1. diag{x1,x2, . . . ,xn} stands for a diagonal matrix

Proceedings of the 33rd Chinese Control Conference
July 28-30, 2014, Nanjing, China

6031



with diagonal entries being x1,x2, . . . ,xn. A real matrix A ∈
R
m×n with all of its entries nonnegative is called nonnegative
matrix and is denoted by A � 0 and A ∈ R̄

m×n
+ . A square

matrix A∈R
n×n with all its off-diagonal entries nonnegative

is called Metzler and is denoted by M
n. For two matrices

A = [ai j],B = [bi j] ∈ R
m×n, A � B (respectively, A � B)

means that ai j≥ bi j (respectively, ai j> bi j) for i= 1,2, . . . ,m
and j = 1,2, . . . ,n.

3 Continuous-time Case
Consider the following continuous-time switched positive

linear systems with discrete and distributed delays:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�x(t) = Aσ(t)x(t)+Adσ(t)x(t−d(t))

+Ahσ(t)

∫ 0

−h(t)
x(t+ s)ds+Bσ(t)u(t), t ≥ 0,

x(s) = φ(s), s≤ 0,
(1)

where the map σ(t) : [0,∞) → {1,2, . . . ,N} is a right-
continuous piecewise-constant function, representing the
switching signal with N being the number of subsystems.
x(t) ∈ R

n is the state vector; u(t) ∈ R
m is the control input;

Ai, Adi and Ahi stand for the system matrices of the ith
subsystem or the ith mode of system (1); φ(·) denotes the
initial condition. In this paper, it is assumed that 0≤ h(t)≤ h
(t ≥ 0) with h > 0 and the discrete delay d(t) ≥ 0 is not
restricted to be bounded.

De�nition 1 [22] System (1) is called (internally) positive if
for all initial condition φ(s) � 0 (s ≤ 0) and input u(t) � 0
(t ≥ 0), the state trajectory x(t)� 0 for all t ≥ 0.
Lemma 1 System (1) is positive for arbitrary switching
signal σ(t) and all delays d(t)≥ 0, 0≤ h(t)≤ h if and only
if for all i= 1,2, . . . ,N, Ai is Metzler, Adi, Ahi and Bi are all
nonnegative.

Proof. (Suf�ciency) It suf�ces to prove that for any T > 0,
x(t) � 0 for all t ∈ [0,T ]. Firstly, it is easy to obtain that
all the subsystems are positive by an argument similar to
the proof of [23, Theorem II.2]. Then, we can prove the
positivity of switched system (1) by mathematical induction.
Suppose that the switching sequence over the interval [0,T ]
is 0 ≤ t1 ≤ t2 ≤ . . . ≤ tk ≤ . . . ≤ T , for any input u(t) � 0
and initial condition φ(s) � 0 (s ≤ 0), it is obvious that
x(t) � 0 for t ∈ [0, t1). Due to the continuity of the state
trajectory, one has x(t1) � 0. Suppose that x(t) � 0 for
t ∈ [0, tk] and σ(t) = i for t ∈ [tk, tk+1), it can be deduced
that x(t) � 0 since the ith subsystem is positive and its
initial condition is nonnegative by induction assumption. By
mathematical induction, it follows that x(t)� 0 for t ∈ [0,T ],
which completes the suf�ciency part.
(Necessity) By considering constant switching signal

σ(t) ≡ i (t ≥ 0) and constant delays d(t) = d, h(t) = h, the
necessity holds by [23, Theorem II.2]. �

The following proposition plays a key role in the formu-
lation of the constrained control problem.

Proposition 1 Suppose that for all i = 1,2, . . . ,N, Ai is
Metzler, Adi and Ahi are all nonnegative. Then, given any
x̄� 0, for any initial condition 0	 φ(s)	 x̄ (s≤ 0), the state

trajectory of system (1) with u(t) = 0 satis�es that x(t) 	 x̄
(t ≥ 0) for arbitrary switching signal σ(t) and all delays
d(t) ≥ 0, 0 ≤ h(t) ≤ h if and only if (Ai+Adi+ hAhi)x̄ 	 0
for all i= 1,2, . . . ,N.

Proof. (Suf�ciency) De�ne e(t) � x̄− x(t), then e(t)
satis�es the following equation:

�e(t) = Aσ(t)e(t)+Adσ(t)e(t−d(t))+Ahσ(t)

∫ 0

−h(t)
e(t+ s)ds

− (Aσ(t) +Adσ(t) +h(t)Ahσ(t))x̄.
(2)

Note that the initial condition e(s) � 0 since φ(s) 	 x̄
for s ≤ 0. Also note that (Aσ(t) + Adσ(t) + h(t)Ahσ(t))x̄ 	
(Aσ(t) +Adσ(t) + hAhσ(t))x̄ 	 0, since both Ahσ(t) and x̄ are
nonnegative. By regarding−(Aσ(t)+Adσ(t)+h(t)Ahσ(t))x̄ as
a nonnegative input, it follows that e(t)� 0 for all t ≥ 0 due
to the positivity of the error system (2). Therefore, x(t) 	 x̄
for all t ≥ 0, which completes the suf�ciency part.
(Necessity) Fix σ(t) = i, d(t) = d and h(t) = h (t ≥ 0),

then by noting that 0 � �x(0+) = (A+ Adi + hAhi)x̄, the
necessity directly follows. �

Different from Proposition 1, the following proposition
ensures that the state trajectory never hits the boundary x̄.

Proposition 2 Suppose that for all i = 1,2, . . . ,N, Ai is
Metzler, Adi and Ahi are all nonnegative. Also assume that
there exists x̄ � 0, such that (Ai+Adi+ hAhi)x̄ ≺ 0 for all
i = 1,2, . . . ,N. Then, for arbitrary switching signal σ(t),
any delays d(t) ≥ 0, 0 ≤ h(t) ≤ h and any initial condition
0 	 φ(s) 	 x̄ (s ≤ 0), the state trajectory of system (1) with
u(t) = 0 satis�es that x(t)≺ x̄ for all t > 0.
Proof. De�ne e(t) � x̄− x(t), then e(t) satis�es equation

(2). Since Ai (i = 1,2, . . . ,N) are Metzler matrices, one can
�nd a suf�ciently large μ > 0, such that μI+Ai � 0 for all
i= 1,2, . . . ,N. DenoteU(t)� (μI+Aσ(t))e(t)+Adσ(t)e(t−
d(t)) +Ahσ(t)

∫ 0
−h(t) e(t + s)ds and we can rewrite the error

system (2) as

�e(t) =−μe(t)+U(t)− (Aσ(t)+Adσ(t) +h(t)Ahσ(t))x̄.

Then, it can be readily obtained that

e(t) = e−μte(0)+
∫ t

0
e−μ(t−τ)U(τ)dτ

−
∫ t

0
e−μ(t−τ)(Aσ(τ) +Adσ(τ) +h(τ)Ahσ(τ))x̄dτ.

Note that e(t) � 0 for t ≥ 0 by Proposition 1 and hence
U(t) � 0 for t ≥ 0. Since (Aσ(t) +Adσ(t) + h(t)Ahσ(t))x̄ 	
(Aσ(t) +Adσ(t) + hAhσ(t))x̄ ≺ 0 for all t ≥ 0, it follows that∫ t
0 e−μ(t−τ)(Aσ(τ) + Adσ(τ) + h(τ)Ahσ(τ))x̄dτ ≺ 0 for t > 0
and thus e(t) � 0 for all t > 0. This completes the proof.
�

In the sequel, we focus on system (1) with a memoryless
state-feedback control input u(t) = Kx(t). Given an upper
bound ū � 0 on the controller, our goal is to �nd x̄ � 0 as
well as a controller gain matrix K, such that the closed-loop
system (1) under control input u(t) is positive and satis�es
that for any initial condition 0 	 φ(s) 	 x̄ (s ≤ 0), it holds
that the state trajectory 0	 x(t)	 x̄ (or 0	 x(t)≺ x̄) and the
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input 0 	 u(t) 	 ū for all t > 0. This synthesis problem is
addressed in the following theorems.

Theorem 1 Assume that Ad ,Ah ∈ R̄
n×n
+ . Given u � 0, for

arbitrary switching signal σ(t) and all delays d(t)≥ 0, 0≤
h(t)≤ h, there exist x̄� 0 and a feedback gain matrix K, such
that system (1) under control input u(t) =Kx(t) satis�es that
0 	 x(t) 	 x̄ and 0 	 u(t) 	 ū for all t > 0 whenever 0 	
φ(s) 	 x̄ (s ≤ 0) if and only if there exist a diagonal matrix
X with positive diagonal entries and matrix Z � 0, such that
the following linear program is feasible:

AiX+BiZ ∈M
n,

(Ai+Adi+hAhi)X1+BiZ1 	 0,
Z1 	 ū, i= 1,2, . . . ,N.

(3)

Then, x̄ and K can be obtained as x̄ = X1 and K = ZX−1,
respectively.

Proof. (Suf�ciency) Denote x̄ = X1 and K = ZX−1, it
follows from the �rst condition in (3) that (Ai + BiK)X is
Metzler for i= 1,2, . . . ,N. Hence, Ai+BiK is Metzler since
X is a diagonal matrix with positive diagonal entries, which
implies the positivity of system (1) under control input u(t).
Constraint (Ai+Adi+ hAhi)X1+BiZ1 	 0 is equivalent to
(Ai+BiK+Adi+ hAhi)x̄ 	 0, which results in 0 	 x(t) 	 x̄
for t ≥ 0 by Proposition 1. Note that constraints Z1 	 ū
and Z � 0 imply that Kx̄ 	 ū and K � 0, respectively,
which further yields that 0 	 u(t) = Kx(t) 	 Kx̄ 	 ū since
0	 x(t)	 x̄. This completes the suf�ciency part.
(Necessity) Let us �x σ(t) = i and consider constant

delays d(t) = d and h(t) = h. Note that by Proposition 1,
0	 x(t)	 x̄ implies that (Ai+BiK+Adi+hAhi)x̄	 0. Also
note that u(0) = Kx̄ 	 ū. Denote X = diag{x̄1, x̄2, . . . , x̄n}
where x̄i is the ith entry of vector x̄. Then, it follows that
(Ai + BiK + Adi + hAhi)X1 	 0 and u(0) = KX1 	 ū. In
addition, K � 0 can be inferred from u(0) = Kx(0) � 0
with arbitrary 0 	 x(0) 	 x̄. The positivity of system (1)
under control input u(t) reveals that Ai+BiK is Metzler for
i = 1,2, . . . ,N. Since X is a diagonal matrix with positive
diagonal entries, it is obvious that (Ai+ BiK)X is Metzler
for i = 1,2, . . . ,N. Denoting Z = KX and summarizing the
above conditions, we immediately arrive at constraints (3).
�

Theorem 2 Assume that Ad ,Ah ∈ R̄
n×n
+ . Given ū � 0, for

arbitrary switching signal σ(t) and all delays d(t) ≥ 0,
0 ≤ h(t) ≤ h, there exist x̄ � 0 and a feedback gain matrix
K, such that system (1) under control input u(t) = Kx(t)
satis�es that 0 	 x(t) ≺ x̄ and 0 	 u(t) 	 ū for all t > 0
whenever 0	 φ(s)	 x̄ (s≤ 0) if there exist a diagonalmatrix
X with positive diagonal entries and matrix Z � 0, such that
the following linear program is feasible:

AiX+BiZ ∈M
n,

(Ai+Adi+hAhi)X1+BiZ1 ≺ 0,
Z1 	 ū, i= 1,2, . . . ,N.

(4)

Then, x̄ and K can be obtained as x̄ = X1 and K = ZX−1,
respectively.

Theorem 2 can be proved by following a line similar to
that of Theorem 1.

4 Discrete-time Case
In this section, let us consider the following discrete-

time switched positive linear systems with discrete and
distributed delays:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x(k+1) = Aσ(k)x(k)+Adσ(k)x(k−d(k))

+Ahσ(k)

h(k)

∑
s=1
x(k− s)+Bσ(k)u(k), k ∈ N,

x(s) = φ(s), s≤ 0,s ∈ Z,

(5)

where the map σ(k) : N → {1,2, . . . ,N} stands for the
switching signal with N representing the number of subsys-
tems. x(k) ∈ R

n denotes the state vector; u(k) ∈ R
m is the

control input; φ(·) is the initial condition. In this section, we
assume that for all k ∈ N, h(k) ∈ N+ and 1 ≤ h(k)≤ h with
h ∈ N+. The delay d(k)≥ 0 can be unbounded. This model
can be regarded as a discretized model of system (1).

De�nition 2 [22] System (5) is called (internally) positive
if for all initial condition φ(s) � 0 (s ≤ 0,s ∈ Z) and input
u(k)� 0 (∀k ∈N), the state trajectory x(k)� 0 for all k ∈N.

Lemma 2 System (5) is positive for arbitrary switching
signal σ(k) and all delays d(k) ∈ N, 1 ≤ h(k) ≤ h if and
only if for all i = 1,2, . . . ,N, Ai, Adi, Ahi and Bi are all
nonnegative.

Lemma 2 can be easily proved by mathematical induc-
tion, the details are omitted here. In order to exploit the
constrained control problem for discrete-time system (5), the
following two propositions are needed.

Proposition 3 Suppose that for all i = 1,2, . . . ,N, Ai, Adi
and Ahi are all nonnegative. Then, given any x̄ � 0, for
any initial condition 0 	 φ(s) 	 x̄ (s ≤ 0,s ∈ Z), the state
trajectory of system (5) with u(t) = 0 satis�es that x(k) 	 x̄
(k ∈ N) for arbitrary switching signal σ(k) and all delays
d(k) ∈N, 1≤ h(k)≤ h if and only if (Ai+Adi+hAhi− I)x̄	
0 for all i= 1,2, . . . ,N.

Proof. Let e(k)� x̄−x(k), and e(k) satis�es the following
equation:

e(k+1) = Aσ(k)e(k)+Adσ(k)e(k−d(k))

+Ahσ(k)

h(k)

∑
s=1
e(k− s)

− (Aσ(k) +Adσ(k) +h(k)Ahσ(k)− I)x̄.

(6)

The rest of the proof is similar to that of Proposition 1 and is
therefore omitted here. �

Proposition 4 Suppose that Ai, Adi and Ahi are all nonneg-
ative for all i = 1,2, . . . ,N. Then, given any x̄ � 0, for
any initial condition 0 	 φ(s) 	 x̄ (s ≤ 0,s ∈ Z), the state
trajectory of system (5) with u(t)= 0 satis�es that 0	 x(k)≺
x̄ (k ∈N+) for arbitrary switching signal σ(k) and all delays
d(k) ∈N, 1≤ h(k)≤ h if and only if (Ai+Adi+hAhi− I)x̄≺
0 for all i= 1,2, . . . ,N.

Proof. (Suf�ciency) Let e(k)� x̄−x(k), and e(k) satis�es
equation (6). From Proposition 3, it follows that e(k) � 0
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for all k ∈ N. Then it is obvious that e(k+ 1) � −(Aσ(k) +
Adσ(k) + h(k)Ahσ(k) − I)x̄ � −(Aσ(k) + Adσ(k) + hAhσ(k) −
I)x̄� 0 for all k ∈N, which completes the suf�ciency part.
(Necessity) Let σ(t)≡ i, d(k) = d and h(k) = h, then we

have x(1) = (Ai+Adi+hAhi)x̄≺ x̄, which implies that (Ai+
Adi+hAhi− I)x̄≺ 0. This completes the necessity part. �

Remark 1 It is worth mentioning that unlike the
continuous-time counterpart considered in Proposition
2, the condition (Ai+Adi+ hAhi− I)x̄ ≺ 0 is necessary for
the discrete-time case.

In the following, we aim at designing a state-feedback
controller of the form u(k) = Kx(k) for discrete-time
switched system (5). Given a prescribed upper bound ū � 0
on the controller, we aim to �nd a column vector x̄ � 0
together with a feedback gain matrix K, such that system
(5) under control input u(t) is positive and satis�es that
for any initial condition 0 	 φ(s) 	 x̄, 0 	 x(k) 	 x̄ (or
0 	 x(k) ≺ x̄) and 0 	 u(k) 	 ū holds for all k ∈ N+. This
problem is shown to be solvable via linear programming in
the following theorem.

Theorem 3 Assume that Ad ,Ah ∈ R̄
n×n
+ . Given ū � 0, for

arbitrary switching signal σ(k) and all delays d(k) ∈ N,
1 ≤ h(k) ≤ h, there exist x̄ � 0 and a feedback gain matrix
K, such that system (5) under control input u(k) = Kx(k)
satis�es that 0 	 x(k) 	 x̄ (respectively, 0 	 x(k) ≺ x̄) and
0 	 u(k) 	 ū for k ∈ N+ whenever the initial condition
satis�es that 0 	 φ(s) 	 x̄ (s ≤ 0,s ∈ Z) if and only if there
exist a diagonal matrix X with positive diagonal entries and
matrix Z � 0, such that the following linear program is
feasible:

AiX+BiZ � 0,
(Ai+Adi+hAhi− I)X1+BiZ1	 0 (respectively,≺ 0),

Z1	 ū, i= 1,2, . . . ,N.
(7)

Then, x̄ and K can be obtained as x̄ = X1 and K = ZX−1,
respectively.

5 Illustrative Examples
Example 1 Consider discrete-time switched system (5)
with two subsystems whose system matrices are given as
follows:

A1 =

⎡
⎣ 0.2 0.2 −0.1

−0.1 −0.4 −0.1
−0.1 0.1 0.3

⎤
⎦ , B1 =

⎡
⎣ −0.7 0.6
0.4 0.4
0.2 0

⎤
⎦ ,

Ad1 =

⎡
⎣ 0.1 0.2 0

0 0.3 0
0.1 0.1 0.2

⎤
⎦ , Ah1 =

⎡
⎣ 0.02 0.01 0
0.02 0 0.05
0.02 0.01 0

⎤
⎦ ,

A2 =

⎡
⎣ 0.3 −0.2 0.1
0.1 −0.5 0.05
0.1 0 0.2

⎤
⎦ , B2 =

⎡
⎣ −1 0.8

−0.3 0.6
0.3 −0.1

⎤
⎦ ,

Ad2 =

⎡
⎣ 0.05 0 0.1
0.1 0 0
0 0 0.3

⎤
⎦ , Ah2 =

⎡
⎣ 0 0 0.05
0 0.07 0.03
0 0 0.05

⎤
⎦ .

The delays are chosen as d(k) =
√
k and h(k) =


4|sin(k)|� + 1 where 
·� is the �oor function. Given

ū = [ 30 40 ]T and h = 4, we aim to design a feedback
gain K and �nd a column vector x̄ � 0, such that system
(5) under control input u(t) is positive and satis�es that
0 	 x(k) ≺ x̄ and 0 	 u(k) 	 ū holds for all k ∈ N+,
whenever the initial condition 0 	 φ(s) 	 x̄. Inspired by
[15], we also try to maximize the boundary, that is, max1T x̄.
By maxZ,X 1TX1 subject to the constraints in (7), we can
obtain a feedback gain K as

K =

[
0.5000 0.3334 0.0385
0.2501 1.0000 0.2116

]

and x̄ can be attained as x̄ = [26.9692,25.7866,35.2903]T.
Starting from constant initial condition φ(s) ≡ x̄, the trajec-
tory of system (5) under control input u(k) and randomly
generated switching signal is plotted in Fig. 2. The
switching sequence is depicted in Fig. 1. Note that for
any other initial condition 0 	 φ(s) 	 x̄ (s ≤ 0,s ∈ Z), the
trajectory must be below this due to the positivity of the
system. It can be observed that 0 	 x(k) ≺ x̄ for k ∈ N+

from Fig. 2 and it can be veri�ed that u(k) = Kx(k) 	 Kx̄=
[ 23.4386 39.9982 ]T 	 ū.
Example 2 Let us consider continuous-time switched sys-
tem (1) with two subsystems represented by the following
matrices:

A1 =

⎡
⎣ −0.5 0.1 −0.5
0.7 −1 0.5
−0.1 0.1 −3

⎤
⎦ , B1 =

⎡
⎣ 0 0.2

−1 −0.1
−0.2 0.45

⎤
⎦ ,

Ad1 =

⎡
⎣ 0.1 0 0.1
0.1 0 0
0 0 0.4

⎤
⎦ , Ah1 =

⎡
⎣ 0.02 0.01 0

0 0.02 0.03
0.04 0 0.03

⎤
⎦ ,

A2 =

⎡
⎣ −1 −0.5 1.6

0.4 0 0.8
−0.06 −0.1 −2.5

⎤
⎦ , B2 =

⎡
⎣ 0.1 0.4

−1.5 0.5
−0.1 0.2

⎤
⎦ ,

Ad2 =

⎡
⎣ 0.1 0.2 0.5
0 0 0.1
0.1 0.3 0.2

⎤
⎦ , Ah2 =

⎡
⎣ 0 0 0.04
0.02 0 0.06
0.04 0 0.05

⎤
⎦ .

The delays are chosen as d(t) = 0.1t(1+ sin t) and h(t) =
2 + cost. The boundary for the input is given as ū =
[ 30 100 ]T and h = 3. One can easily check that the
open-loop subsystem 2 without delays is neither positive nor
stable. By maxZ,X 1TX1 subject to the constraints in (4), a
feedback gain K can be attained as

K =

[
0.1143 3.0641 0.2499
0.3571 2.0321 2.5001

]

and x̄ is given by x̄ = [ 35.4268 7.9695 6.1280 ]T . S-
tarting from initial condition φ(s) ≡ x̄, the trajectory of
system (1) under control input u(t) and randomly generated
switching signal is depicted in Fig. 4. The corresponding
switching signal is given in Fig. 3. One can observe that
0	 x(t)≺ x̄ for t > 0 from Fig. 4. It can also be veri�ed that
u(t) = Kx(t)	 Kx̄= [ 29.9992 44.1677 ]T 	 ū.
6 Conclusions
In this paper, constrained control of switched positive

systems with delays has been studied. Based on linear
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programming, we have designed a state-feedback controller,
which is nonnegative and within a prescribed bound, such
that the closed-loop system is positive and its state trajectory
lies in a boundary when the initial condition is located in the
same boundary. This paper can be regarded as extensions
of existing works. Different from these works, the method
only need to make use of the linearity and positivity of the
system and therefore is still applicable when the time delays
are time-varying. As a future research direction, constrained
control of switched positive systems via output feedback
would be an interesting yet challenging problem.
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Fig. 1: Switching signal for discrete-time system (5).
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Fig. 2: State trajectory of system (5) under input u(k) =
Kx(k).
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Fig. 3: Switching signal for continuous-time system (1).
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Fig. 4: State trajectory of system (1) under input u(t) =
Kx(t).
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